Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction

“Artificial Intelligence will revolutionize our lives” is a phrase frequently echoed. The influence of Artificial Intelligence (AI) and Machine Learning (ML) extends across various aspects of our daily lives, encompassing health, education, economics, the environment, and more.

Methods

A particularly formidable challenge lies in decision support, especially in critical scenarios such as natural disaster management, where artificial intelligence significantly amplifies its ongoing capacity to assist in making optimal decisions. In the realm of disaster management, the primary focus often centers on preventing or mitigating the impact of disasters. Consequently, it becomes imperative to anticipate their occurrence in terms of both time and location, enabling the effective implementation of necessary strategies and measures. In our research, we propose a disaster forecasting framework based on a Multi-Layer Perceptron (MLP) empowered by the Particle Swarm Optimization (PSO) algorithm. The PSO-MLP is further fortified by the incorporation of the Artificial Bee Colony (ABC) algorithm for feature selection, pinpointing the most critical elements. Subsequently, we employ the LIME (Local Interpretable Model-agnostic Explanations) model, a component of eXplainable Artificial Intelligence (XAI). This comprehensive approach aims to assist managers and decision-makers in comprehending the factors influencing the determination of the occurrence of such disasters and increases the performance of the PSO-MLP model. The approach, specifically applied to predict snow avalanches, has yielded impressive results.

Results

The obtained accuracy of 0.92 and an AUC of 0.94 demonstrate the effectiveness of the proposed framework. In comparison, the prediction precision achieved through an SVM is 0.75, while the RF classifier yields 0.86, and XGBoost reaches 0.77. Notably, the precision is further enhanced to 0.81 when utilizing XGBoost optimized by the grid-search.

Conclusion

These results highlight the superior performance of the proposed methodology, showcasing its potential for accurate and reliable snow avalanche predictions compared to other established models.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558324883241011101625
2024-12-23
2025-11-02
Loading full text...

Full text loading...

References

  1. OktariR.S. MunadiK. IdroesR. SofyanH. Knowledge management practices in disaster management: Systematic review.Int. J. Disaster Risk Reduct.20205110188110.1016/j.ijdrr.2020.101881
    [Google Scholar]
  2. SassiM. IdoudiH. BousselmiK. Predictive systems for snow avalanche forecasting8th International Conference on Control, Decision and Information Technologies (CoDIT), 2022, pp. 837–842.10.1109/CoDIT55151.2022.9803894
    [Google Scholar]
  3. HornikK. StinchcombeM. WhiteH. Multilayer feedforward networks are universal approximators.Neural Netw.19892535936610.1016/0893‑6080(89)90020‑8
    [Google Scholar]
  4. NguyenH. MoayediH. FoongL.K. Al NajjarH.A.H. JusohW.A.W. RashidA.S.A. JamaliJ. Optimizing ANN models with PSO for predicting short building seismic response.Eng. Comput.202036382383710.1007/s00366‑019‑00733‑0
    [Google Scholar]
  5. Jahed ArmaghaniD. ShoibR.S.N.S.B.R. FaiziK. RashidA.S.A. Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles.Neural Comput. Appl.201728239140510.1007/s00521‑015‑2072‑z
    [Google Scholar]
  6. GunningD. StefikM. ChoiJ. MillerT. StumpfS. YangG.Z. XAI—Explainable artificial intelligence.Sci. Robot.2019437eaay712010.1126/scirobotics.aay7120 33137719
    [Google Scholar]
  7. DasA. RadP. Opportunities and challenges in explainable artificial intelligence (xai): A surveyarXiv202010.48550/arXiv.2006.11371
    [Google Scholar]
  8. LinardosV. DrakakiM. TzionasP. KarnavasY.L. Machine Learning in Disaster Management: Recent Developments in Methods and ApplicationsMach. Learn. Knowl. Extr.20224244647310.3390/make4020020
    [Google Scholar]
  9. ArintaR.R. Natural Disaster Application on Big Data and Machine Learning: A ReviewThe 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2019, pp. 249–25.
    [Google Scholar]
  10. KimJ.M. BaeJ. AdhikariM.D. YumS.G. A study of deep learning algorithm usage in predicting building loss ratio due to typhoons: The case of southern part of the Korean Peninsula.Front. Earth Sci. (Lausanne)202311113634610.3389/feart.2023.1136346
    [Google Scholar]
  11. HuseyinK. AmirY. Unsupervised change detection in landsat images with atmospheric artifacts: A fuzzy multiobjective approach.Math. Probl. Eng.20204116
    [Google Scholar]
  12. MoghimiA. SarmadianA. MohammadzadehA. CelikT. AmaniM. KusetogullariH. Distortion robust relative radiometric normalization of multitemporal and multisensor remote sensing images using image features.IEEE Trans. Geosci. Remote Sens.20226012010.1109/TGRS.2021.3063151
    [Google Scholar]
  13. AkayH. Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques.Catena202120610552410.1016/j.catena.2021.105524
    [Google Scholar]
  14. ChoubinB. BorjiM. MosaviA. Sajedi-HosseiniF. SinghV.P. ShamshirbandS. Snow avalanche hazard prediction using machine learning methods.J. Hydrol. (Amst.)201957712392910.1016/j.jhydrol.2019.123929
    [Google Scholar]
  15. TiwariA. A.G VishwakarmaB.D. Parameter importance assessment improves efficacy of machine learning methods for predicting snow avalanche sites in Leh-Manali Highway, IndiaSci. Total Environ.202179414873810.1016/j.scitotenv.2021.148738 34225139
    [Google Scholar]
  16. RahmatiO. FalahF. DayalK.S. DeoR.C. MohammadiF. BiggsT. MoghaddamD.D. NaghibiS.A. BuiD.T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia.Sci. Total Environ.202069913423010.1016/j.scitotenv.2019.134230 31522053
    [Google Scholar]
  17. MosaviA. ShirzadiA. ChoubinB. TaromidehF. HosseiniF.S. BorjiM. ShahabiH. SalvatiA. DinevaA.A. Towards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mapping.IEEE Access2020814596814598310.1109/ACCESS.2020.3014816
    [Google Scholar]
  18. KaurP. JoshiJ.C. AggarwalP. A multi-model decision support system (MM-DSS) for avalanche hazard prediction over North-West Himalaya.Nat. Hazards2022110156358510.1007/s11069‑021‑04958‑5
    [Google Scholar]
  19. YariyanP. OmidvarE. MinaeiF. Ali AbbaspourR. TiefenbacherJ.P. An optimization on machine learning algorithms for mapping snow avalanche susceptibility.Nat. Hazards2021136
    [Google Scholar]
  20. WenH. WuX. LiaoX. WangD. HuangK. WünnemannB. Application of machine learning methods for snow avalanche susceptibility mapping in the Parlung Tsangpo catchment, southeastern Qinghai-Tibet Plateau.Cold Reg. Sci. Technol.202219810353510.1016/j.coldregions.2022.103535
    [Google Scholar]
  21. SahohB. ChoksuriwongA. The role of explainable Artificial Intelligence in high-stakes decision-making systems: A systematic review.J. Ambient Intell. Humaniz. Comput.20231467827784310.1007/s12652‑023‑04594‑w 37228699
    [Google Scholar]
  22. IbanM.C. BilgiliogluS.S. Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost, NGBoost, and LightGBM) with eXplainable Artificial Intelligence (XAI) approach.Stochastic Environ. Res. Risk Assess.20233762243227010.1007/s00477‑023‑02392‑6
    [Google Scholar]
  23. SchweizerJ. MittererC. ReuterB. TechelF. Avalanche danger level characteristics from field observations of snow instability.Cryosphere20211573293331510.5194/tc‑15‑3293‑2021
    [Google Scholar]
  24. FierzC. ArmstrongR. L. DurandY. EtcheversP. GreeneE. McClungD. M. NishimuraK. SatyawaliP. K. SokratovS. A. The international classification for seasonal snow on the ground (2009)Available from: https://unesdoc.unesco.org/ark:/48223/pf0000186462
  25. F¨ohnP.M. The rutschblock as a practical tool for slope stability evaluation.IAHS Publ1987162223228
    [Google Scholar]
  26. HaitovskyY. Multicollinearity in regression analysis.Rev. Econ. Stat.196951448648910.2307/1926450
    [Google Scholar]
  27. SteigerJ.H. Tests for comparing elements of a correlation matrix.Psychol. Bull.198087224525110.1037/0033‑2909.87.2.245
    [Google Scholar]
  28. JainA. ZongkerD. Feature selection: Evaluation, application, and small sample performance.IEEE Trans. Pattern Anal. Mach. Intell.199719215315810.1109/34.574797
    [Google Scholar]
  29. CaiJ. LuoJ. WangS. YangS. Feature selection in machine learning: A new perspective.Neurocomputing2018300707910.1016/j.neucom.2017.11.077
    [Google Scholar]
  30. Cervelló-RoyoR. GuijarroF. MichniukK. Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data.Expert Syst. Appl.201542145963597510.1016/j.eswa.2015.03.017
    [Google Scholar]
  31. OsmanH. GhafariM. NierstraszO. The impact of feature selection on predicting the number of bugsarXiv201810.48550/arXiv.1807.04486
    [Google Scholar]
  32. BommertA. SunX. BischlB. RahnenführerJ. LangM. Benchmark for filter methods for feature selection in high-dimensional classification data.Comput. Stat. Data Anal.202014310683910.1016/j.csda.2019.106839
    [Google Scholar]
  33. AlsharkawiA. Al-FetyaniM. DawasM. SaadehH. AlyamanM. Improved poverty tracking and targeting in Jordan using feature selection and machine learning.IEEE Access202210864838649710.1109/ACCESS.2022.3198951
    [Google Scholar]
  34. BommagantiH. Feature boosting: A novel feature subset selection approachPh.D. thesis, University of Minnesota2001
    [Google Scholar]
  35. Pang-NingT. SteinbachM. KumarV. Introduction to Data Mining. Pearson Addison-Wesley2006. Available from: https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf 2006
  36. ChenY.-W. LinC.-J. Combining SVMs with Various Feature Selection Strategies.Feature Extraction. Studies in Fuzziness and Soft Computing. GuyonI. NikraveshM. GunnS. Berlin, HeidelbergSpringer200610.1007/978‑3‑540‑35488‑8_13
    [Google Scholar]
  37. SunZ.L. HuangD.S. CheungY.M. LiuJ. HuangG.B. Using fcmc, fvs, and pca techniques for feature extraction of multispectral images.IEEE Geosci. Remote Sens. Lett.20052210811210.1109/LGRS.2005.844169
    [Google Scholar]
  38. KarabogaD. GorkemliB. OzturkC. KarabogaN. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications.Artif. Intell. Rev.2014421215710.1007/s10462‑012‑9328‑0
    [Google Scholar]
  39. MohammadiF.G. AbadehM.S. Image steganalysis using a bee colony based feature selection algorithm.Eng. Appl. Artif. Intell.201431354310.1016/j.engappai.2013.09.016
    [Google Scholar]
  40. SchiezaroM. PedriniH. Data feature selection based on Artificial Bee Colony algorithm.J. Image Video Proc.2013201314710.1186/1687‑5281‑2013‑47
    [Google Scholar]
  41. ZahediL. Ghareh MohammadiF. AminiM.H. A2bcf: An automated abc-based feature selection algorithm for classification models in an education application.Appl. Sci. (Basel)2022127355310.3390/app12073553
    [Google Scholar]
  42. SuzukiK. Artificial neural networks: Industrial and control engineering applications.BoD–Books on Demand201110.5772/2041
    [Google Scholar]
  43. GallantS.I. Perceptron-based learning algorithms.IEEE Trans. Neural Netw.19901217919110.1109/72.80230 18282835
    [Google Scholar]
  44. DekkerA.H. Kohonen neural networks for optimal colour quantization.Network19945335136710.1088/0954‑898X_5_3_003
    [Google Scholar]
  45. GardnerM.W. DorlingS.R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences.Atmos. Environ.19983214-152627263610.1016/S1352‑2310(97)00447‑0
    [Google Scholar]
  46. LiZ. LiuF. YangW. PengS. ZhouJ. A survey of convolutional neural networks: Analysis, applications, and prospects.IEEE Trans. Neural Netw. Learn. Syst.202233126999701910.1109/TNNLS.2021.3084827 34111009
    [Google Scholar]
  47. KimKwang-Ho ParkJong-Keun HwangKab-Ju KimSung-Hak Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems.IEEE Trans. Power Syst.19951031534153910.1109/59.466492
    [Google Scholar]
  48. NagiJ. YapK.S. NagiF. TiongS.K. AhmedS.K. A computational intelligence scheme for the prediction of the daily peak load.Appl. Soft Comput.20111184773478810.1016/j.asoc.2011.07.005
    [Google Scholar]
  49. LiuH. TianH. ChenC. LiY. An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization.Int. J. Electr. Power Energy Syst.20135216117310.1016/j.ijepes.2013.03.034
    [Google Scholar]
  50. SavangouderR.V. PatraJ.C. PalanisamyS. Inverse Modeling of ADI for Prediction of Process Parameters Using PSO-MLP TechniqueInternational Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8.10.1109/IJCNN52387.2021.9533566
    [Google Scholar]
  51. AliouaneL. Levenberg-marquardt algorithm neural network for clay volume estimation from well-log data in an unconventional tight sand gas reservoir of ahnet basin (algerian sahara).Bull. Geoph. Ocean202263443454
    [Google Scholar]
  52. HanJ. MoragaC. The influence of the sigmoid function parameters on the speed of backpropagation learningInternational workshop on artificial neural networks1995195201.10.1007/3‑540‑59497‑3_175
    [Google Scholar]
  53. ZhangW. LiuY. ClercM. An adaptive PSO algorithm for reactive power optimizationSixth International Conference on Advances in Power System Control, Operation and Management ASDCOM2003302307.10.1049/cp:20030603
    [Google Scholar]
  54. PedersenT. L. BenestyM. Local Interpretable Model-Agnostic ExplanationsAvailable from: https://cran.r-project.org/web/packages/lime/lime.pdf
  55. Barredo ArrietaA. Díaz-RodríguezN. Del SerJ. BennetotA. TabikS. BarbadoA. GarciaS. Gil-LopezS. MolinaD. BenjaminsR. ChatilaR. HerreraF. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.Inf. Fusion2020588211510.1016/j.inffus.2019.12.012
    [Google Scholar]
  56. MohammadifarA. GholamiH. CominoJ.R. CollinsA.L. Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory.Catena202120010517810.1016/j.catena.2021.105178
    [Google Scholar]
  57. IbanM.C. SekertekinA. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey.Ecol. Inform.20226910164710.1016/j.ecoinf.2022.101647
    [Google Scholar]
  58. ZhouX. WenH. LiZ. ZhangH. ZhangW. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost.Geocarto Int.20223726134191345010.1080/10106049.2022.2076928
    [Google Scholar]
  59. MadhushaniC. DananjayaK. EkanayakeI.U. MeddageD.P.P. KantamaneniK. RathnayakeU. Modeling streamflow in non-gauged watersheds with sparse data considering physiographic, dynamic climate, and anthropogenic factors using explainable soft computing techniques.J. Hydrol. (Amst.)202463113084610.1016/j.jhydrol.2024.130846
    [Google Scholar]
  60. RibeiroM.T. SinghS. GuestrinC. why should i trust you?” explaining the predictions of any classifierProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining201611351144.10.1145/2939672.2939778
    [Google Scholar]
  61. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. Scikit-learn: Machine Learning in PythonJ. Mach. Learn. Res.201112201128252830
    [Google Scholar]
  62. ChenT. GuestrinC. Xgboost: A scalable tree boosting systemProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining2016785794.10.1145/2939672.2939785
    [Google Scholar]
  63. BuitinckL. LouppeG. BlondelM. PedregosaF. MuellerA. GriselO. NiculaeV. PrettenhoferP. GramfortA. GroblerJ. Api design for machine learning software: Experiences from the scikit-learn projectarXiv201310.48550/arXiv.1309.0238
    [Google Scholar]
  64. MirandaL.J. Pyswarms: A research toolkit for particle swarm optimization in python.J. Open Source Softw.201832143310.21105/joss.00433
    [Google Scholar]
  65. RahmatiO. GhorbanzadehO. TeimurianT. MohammadiF. TiefenbacherJ.P. FalahF. PirastehS. NgoP.T.T. BuiD.T. Spatial modeling of snow avalanche using machine learning models and geoenvironmental factors: Comparison of effectiveness in two mountain regions.Remote Sens. (Basel)20191124299510.3390/rs11242995
    [Google Scholar]
  66. YangJ. HeQ. LiuY. Winter–spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the western tianshan mountains, china.Remote Sens. (Basel)2022146134010.3390/rs14061340
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558324883241011101625
Loading
/content/journals/rascs/10.2174/0126662558324883241011101625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test