Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

The Fintech industry, particularly banks, has witnessed a profound transformation with the integration of artificial intelligence chatbots, redefining customer experience and engagement. As Fintech firms increasingly integrate AI chatbots into their platforms, understanding customer perceptions becomes paramount for strategic decision-making and sustained success. To unravel the complexities of this convergence, a holistic examination is needed, encompassing not only the technological aspects but also the strategic dimensions that underpin competitive advantage. In this context, the role of intellectual property, particularly patents, emerges as a critical factor shaping the innovation landscape. This study aims to comprehensively investigate customers' perceptions towards AI chatbots in the Fintech industry, with a specific focus on technological convergence. The study seeks to analyze the impact of cutting-edge AI chatbot technologies, including those protected by patents, on user attitudes and overall customer experience within the dynamic fintech landscape. This study provides a comprehensive review of 40 empirical studies on AI chatbots in the fintech industry, particularly the banking sector, featuring patented innovations using the PRISMA methodology. Study outcomes illustrate emerging themes related to consumer behavior and response to financial chatbots in terms of acceptance and adoption intention. Additionally, four key factors that influence how people perceive, anticipate, and engage with fintech chatbots, namely satisfaction, trust, anthropomorphism, and privacy are explored. In conclusion, the finance industry's effective integration and broad use of AI chatbots is dependent on the convergence of four factors: satisfaction, privacy, trust, and anthropomorphism. Current study offers a strong basis for analysing and resolving the obstacles to AI chatbot acceptance and deployment in the financial sector by addressing all these elements extensively. This exploration of technological convergence in fintech industry by analyzing customers' behavior and response to financial chatbots not only contributes to a comprehensive understanding of its intricacies but also serves as a foundation for development and deployment of user-centric fintech chatbots.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558325422240926103718
2024-10-09
2025-11-05
Loading full text...

Full text loading...

References

  1. Følstad TaylorC. Investigating the user experience of customer service chatbot interaction: A framework for qualitative analysis of chatbot dialoguesQual. User Experience202161610.1007/s41233‑021‑00046‑5
    [Google Scholar]
  2. AshfaqM. YunJ. YuS. LoureiroS.M.C. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents.Telemat. Inform.20205410147310.1016/j.tele.2020.101473
    [Google Scholar]
  3. PoncetteA.S. RojasP.D. HofferbertJ. Valera SosaA. BalzerF. BrauneK. Hackathons as stepping stones in health care innovation: Case study with systematic recommendations.J. Med. Internet Res.2020223e1700410.2196/17004 32207691
    [Google Scholar]
  4. AkmaN. HafizM. ZainalA. FairuzM. AdnanZ. Review of chatbots design techniques.Int. J. Comput. Appl.2018181871010.5120/ijca2018917606
    [Google Scholar]
  5. MehtaR. VergheseJ. MahajanS. BarykinS. BozhukS. KozlovaN. Vasilievna KapustinaI. MikhaylovA. NaumovaE. DedyukhinaN. Consumers’ behavior in conversational commerce marketing based on messenger chatbots.F1000 Res.20221164764710.12688/f1000research.122037.1
    [Google Scholar]
  6. ZhouL. GaoJ. LiD. ShumH.Y. The design and implementation of XiaoIce, an empathetic social chatbot.Comput. Linguist.2020461539310.1162/coli_a_00368
    [Google Scholar]
  7. RadziwillN.M. BentonM.C. Evaluating quality of chatbots and intelligent conversational agentsarxiv2017
    [Google Scholar]
  8. SnyderH. Literature review as a research methodology: An overview and guidelines.J. Bus. Res.201910433333910.1016/j.jbusres.2019.07.039
    [Google Scholar]
  9. GkinkoL. ElbannaA. The appropriation of conversational AI in the workplace: A taxonomy of AI chatbot users.Int. J. Inf. Manage.20236910256810.1016/j.ijinfomgt.2022.102568
    [Google Scholar]
  10. AlagarsamyS. MehroliaS. Exploring chatbot trust: Antecedents and behavioural outcomes.Heliyon202395e1607410.1016/j.heliyon.2023.e16074 37206046
    [Google Scholar]
  11. JangM. JungY. KimS. Investigating managers’ understanding of chatbots in the Korean financial industry.Comput. Human Behav.202112010674710.1016/j.chb.2021.106747
    [Google Scholar]
  12. LuiA. LambG.W. Artificial intelligence and augmented intelligence collaboration: Regaining trust and confidence in the financial sector.Inf. Commun. Technol. Law201827326728310.1080/13600834.2018.1488659
    [Google Scholar]
  13. AznoliF. NavimipourN.J. Cloud services recommendation: Reviewing the recent advances and suggesting the future research directions.J. Netw. Comput. Appl.201777738610.1016/j.jnca.2016.10.009
    [Google Scholar]
  14. NgM. CoopamootooK.P.L. ToreiniE. AitkenM. ElliotK. Van MoorselA. Simulating the effects of social presence on trust, privacy concerns & usage intentions in automated bots for finance, 2020. IEEE European Symposium on Security and Privacy Workshops (EuroS& PW)Genoa, Italy, 07-11 September202019019910.1109/EuroSPW51379.2020.00034
    [Google Scholar]
  15. NguyenD.M. ChiuY.T.H. LeH.D. Determinants of continuance intention towards banks’ chatbot services in Vietnam: A necessity for sustainable development.Sustainability20211314762510.3390/su13147625
    [Google Scholar]
  16. AslamW. Ahmed SiddiquiD. ArifI. FarhatK. Chatbots in the frontline: Drivers of acceptance.Kybernetes20225293781381010.1108/K‑11‑2021‑1119
    [Google Scholar]
  17. JinS.V. YounS. Social presence and imagery processing as predictors of chatbot continuance intention in human-AI-interaction.Int. J. Hum. Comput. Interact.20223991874188610.1080/10447318.2022.2129277
    [Google Scholar]
  18. SilvaF.A. ShojaeiA.S. BarbosaB. Chatbot-based services: A study on customers’ reuse intention.J. Theor. Appl. Electron. Commer. Res.202318145747410.3390/jtaer18010024
    [Google Scholar]
  19. KumarA. RaniS. RatheeS. BhatiaS. Security and Risk Analysis for Intelligent Cloud Computing: Methods, Applications, and Preventions.CRC Press202310.1201/9781003329947
    [Google Scholar]
  20. RaniS. TripathiK. AroraY. KumarA. "A machine learning approach to analyze cloud computing attacks", 2022 5th International Conference on Contemporary Computing and Informatics (IC3I)Uttar Pradesh, India, 14-16 December2022222610.1109/IC3I56241.2022.10073468
    [Google Scholar]
  21. GoE. SundarS.S. Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions.Comput. Human Behav.20199730431610.1016/j.chb.2019.01.020
    [Google Scholar]
  22. van EschP. ArliD. GheshlaghiM.H. Creating an effective self-managed service climate for frontline service employees.J. Retailing Consum. Serv.20205710220410.1016/j.jretconser.2020.102204
    [Google Scholar]
  23. NadarzynskiT. MilesO. CowieA. RidgeD. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixedmethods study.Digit. Health2019510.1177/2055207619871808 31467682
    [Google Scholar]
  24. KumarA. KumarD. KumarP. DhawanV. Optimization of incremental sheet forming process using artificial intelligence-based techniques.Nat-Inspired Optim. Adv. Manuf. Process Syst2020113130
    [Google Scholar]
  25. KumarA. MittalR.K. HaleemA. Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing.Elsevier202310.1007/978‑3‑031‑34563‑0
    [Google Scholar]
  26. Rodríguez CardonaD. WerthO. SchönbornS. BreitnerM.H. "A mixed methods analysis of the adoption and diffusion of Chatbot Technology in the German insurance sector", Proceedings of the 25th Americas Conference on Information Systems (AMCIS)Cancu, Mexico, January2019
    [Google Scholar]
  27. AliO. AllyM. ClutterbuckP. DwivediY. The state of play of blockchain technology in the financial services sector: A systematic literature review.Int. J. Inf. Manage.20205410219910.1016/j.ijinfomgt.2020.102199
    [Google Scholar]
  28. BhatoreS. MohanL. ReddyY.R. Machine learning techniques for credit risk evaluation: A systematic literature review.J. Bank. Fin. Technol.20204111113810.1007/s42786‑020‑00020‑3
    [Google Scholar]
  29. DastileX. ÇelikT. PotsaneM. Statistical and machine learning models in credit scoring: A systematic literature survey.Appl. Soft Comput.20209110626310.1016/j.asoc.2020.106263
    [Google Scholar]
  30. DohertyD. CurranK. Chatbots for online banking services.Web Intelligence201917432734210.3233/WEB‑190422
    [Google Scholar]
  31. Van EeuwenM. Mobile conversational commerce: Messenger chatbots as the next interface between businesses and consumers.2017Available from: http://purl.utwente.nl/essays/71706
    [Google Scholar]
  32. CiechanowskiL. PrzegalińskaA. and K. Wegner, “The necessity of new paradigms in measuring Human-Chatbot interaction”.Advances in Intelligent Systems and Computing.ChamSpringer201760520521410.1007/978‑3‑319‑60747‑4_19
    [Google Scholar]
  33. FryerL.K. NakaoK. ThompsonA. Chatbot learning partners: Connecting learning experiences, interest and competence.Comput. Human Behav.20199327928910.1016/j.chb.2018.12.023
    [Google Scholar]
  34. LaiS. LeuF. LinJ. A banking chatbot security control procedure for protecting user data security and privacy.Lecture notes on data engineering and communications technologies.ChamSpringer201810.1007/978‑3‑030‑02613‑4_50
    [Google Scholar]
  35. AraujoT. Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions.Comput. Human Behav.20188518318910.1016/j.chb.2018.03.051
    [Google Scholar]
  36. ThompsonC. Assessing chatbot interaction as a means of driving customer engagement.2018Available from: https://urn.fi/URN:NBN:fi:amk-2018121321406
    [Google Scholar]
  37. GkinkoL. ElbannaA. Designing trust: The formation of employees’ trust in conversational AI in the digital workplace.J. Bus. Res.202315811370710.1016/j.jbusres.2023.113707
    [Google Scholar]
  38. HuangS.Y.B. LeeC.J. LeeS.C. Toward a unified theory of customer continuance model for financial technology chatbots.Sensors20212117568710.3390/s21175687 34502578
    [Google Scholar]
  39. PaschouT. RapacciniM. AdrodegariF. SaccaniN. Digital servitization in manufacturing: A systematic literature review and research agenda.Ind. Mark. Manage.20208927829210.1016/j.indmarman.2020.02.012
    [Google Scholar]
  40. ShamseerL. MoherD. ClarkeM. GhersiD. LiberatiA. PetticrewM. ShekelleP. StewartL.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanationBMJ2015349jan02 1g764710.1136/bmj.g764725555855
    [Google Scholar]
  41. MoherD. ShamseerL. ClarkeM. GhersiD. LiberatiA. PetticrewM. ShekelleP. StewartL.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.Syst. Rev.2015411910.1186/2046‑4053‑4‑1 25554246
    [Google Scholar]
  42. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.Int. J. Surg.20218810590610.1016/j.ijsu.2021.105906 33789826
    [Google Scholar]
  43. LevyY. EllisT. A systems approach to conduct an effective literature review in support of information systems research.Inf. Sci.2006918121210.28945/479
    [Google Scholar]
  44. MogajiE. NguyenN.P. Managers’ understanding of artificial intelligence in relation to marketing financial services: Insights from a cross-country study.Int. J. Bank Mark.20224061272129810.1108/IJBM‑09‑2021‑0440
    [Google Scholar]
  45. BrachtenF. KissmerT. StieglitzS. The acceptance of chatbots in an enterprise context – A survey study.Int. J. Inf. Manage.20216010237510.1016/j.ijinfomgt.2021.102375
    [Google Scholar]
  46. RichadR. VivensiusV. SfenriantoS. KaburuanE.R. Analysis of factors influencing millennial’s technology acceptance of chatbot in the banking industry in Indonesia.Int. J. Manag.20191031270128110.34218/IJM.10.3.2019.011
    [Google Scholar]
  47. ManshadM.S. BrannonD.C. Gender-based conversational interface preferences in live chat systems for financial services.J. Financ. Serv. Mark.202210.1057/s41264‑022‑00175‑8
    [Google Scholar]
  48. ShinH. BunossoI. LevineL.R. The influence of chatbot humour on consumer evaluations of services.Int. J. Consum. Stud.202347254556210.1111/ijcs.12849
    [Google Scholar]
  49. FølstadA. HalvorsrudR. "Communicating service offers in a conversational user interface: An exploratory study of user preferences in chatbot interaction", ACM International Conference Proceeding Series SydneyNSW, Australia 15 February202167167610.1145/3441000.3441046
    [Google Scholar]
  50. MulyonoJ.A. SfenriantoS. Evaluation of customer satisfaction on Indonesian banking chatbot services during the COVID-19 pandemic CommIT (Commun. Inform. Technol.) J.20221616985
    [Google Scholar]
  51. GoliM. SahuA.K. BagS. DhamijaP. Users’ acceptance of artificial intelligence-based chatbots.Int. J. Technol. Hum. Interact.202319111810.4018/IJTHI.318481
    [Google Scholar]
  52. GuptaD.A. Customers’ attitude towards chatbots in banking industry of India.Int. J. Innov. Technol. Explor. Eng.20198111222122510.35940/ijitee.J9366.0981119
    [Google Scholar]
  53. SoniR. TyagiV. ProfessorA. ProfessorA. Acceptance of chat bots by millennial consumers.IJREAM201904102454915010.18231/2454‑9150.2018.1343
    [Google Scholar]
  54. AltM.A. VizeliI. SăplăcanZ. Banking with a chatbot – A study on technology acceptance Studia Universitatis Babes-Bolyai Oeconomica2021661133510.2478/subboec‑2021‑0002
    [Google Scholar]
  55. BelancheD. CasalóL.V. FlaviánC. Artificial Intelligence in FinTech: Understanding robo-advisors adoption among customers.Ind. Manage. Data Syst.201911971411143010.1108/IMDS‑08‑2018‑0368
    [Google Scholar]
  56. SugumarM. ChandraS. Do I desire chatbots to be like humans? exploring factors for adoption of chatbots for financial services.J. Int. Technol. Inf. Manag.2021303387710.58729/1941‑6679.1501
    [Google Scholar]
  57. AbdulquadriA. MogajiE. KieuT.A. NguyenN.P. Digital transformation in financial services provision: A Nigerian perspective to the adoption of chatbot.J. Enterpris. Comm.2021152258281
    [Google Scholar]
  58. ErenB.A. Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey.Int. J. Bank Mark.202139229431110.1108/IJBM‑02‑2020‑0056
    [Google Scholar]
  59. Zainol CandidateS. Farid ShamsudinM. HassanS. Azila Mohd NoorN. Understanding customer satisfaction of chatbots service and system quality in banking services.J. Inf. Technol. Manage.20231514215210.22059/jitm.2022.89417
    [Google Scholar]
  60. DeepthiB. GuptaP. RaiP. AroraH. Assessing the dynamics of AI driven technologies in indian banking and financial sector.Vision20220972262922108737110.1177/09722629221087371
    [Google Scholar]
  61. NordheimC.B. FølstadA. BjørkliC.A. An initial model of trust in chatbots for customer service-findings from a questionnaire study.Interact. Comput.201931331733510.1093/iwc/iwz022
    [Google Scholar]
  62. HildebrandC. BergnerA. Conversational robo advisors as surrogates of trust: Onboarding experience, firm perception, and consumer financial decision making.J. Acad. Mark. Sci.20214965967610.1007/s11747‑020‑00753‑z
    [Google Scholar]
  63. BalakrishnanJ. AbedS.S. JonesP. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?Technol. Forecast. Soc. Change202218012169210.1016/j.techfore.2022.121692
    [Google Scholar]
  64. SheehanB. JinH.S. GottliebU. Customer service chatbots: Anthropomorphism and adoption.J. Bus. Res.2020115142410.1016/j.jbusres.2020.04.030
    [Google Scholar]
  65. CrolicC. ThomazF. HadiR. StephenA.T. Blame the bot: Anthropomorphism and anger in customer–chatbot interactions.J. Mark.202286113214810.1177/00222429211045687
    [Google Scholar]
  66. AdamM. WesselM. BenlianA. AI-based chatbots in customer service and their effects on user compliance.Electron. Mark.202131242744510.1007/s12525‑020‑00414‑7
    [Google Scholar]
  67. PatilD.K. KulkarniD.M.S. Artificial intelligence in financial services: Customer chatbot advisor adoption.Int. J. Innov. Technol. Explor. Eng.2019914296430310.35940/ijitee.A4928.119119
    [Google Scholar]
  68. ChengY. JiangH. How do ai-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use.J. Broadcast. Electron. Media202064459261410.1080/08838151.2020.1834296
    [Google Scholar]
  69. J. Lappeman, S. Marlie, T. Johnson, and S. Poggenpoel, “Trust and digital privacy: Willingness to disclose personal information to banking chatbot services”.J. Financ. Serv. Mark.202210.1057/s41264‑022‑00154‑z
    [Google Scholar]
  70. RajendraP. KumariM. RaniS. DograN. BoadhR. KumarA. DahiyaM. Impact of artificial intelligence on civilization: Future perspectives.Mater. Today Proc.20225625225610.1016/j.matpr.2022.01.113
    [Google Scholar]
  71. FrisonA.K. WintersbergerP. RienerA. SchartmüllerC. BoyleL.N. MillerE. WeiglK. "UX we trust: Investigation of aesthetics and usability of driver-vehicle interfaces and their impact on the perception of automated driving", Proceedings of the 2019 CHI conference on human factors in computing systems,Glasgow, Scotland Uk, 02 May201911310.1145/3290605.3300374
    [Google Scholar]
  72. KumarA. ShrivastavaV.K. KumarP. KumarA. GulatiV. Predictive and experimental analysis of forces in die-less forming using artificial intelligence techniques.PProc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.20240957408924123547310.1177/09544089241235473
    [Google Scholar]
  73. KumarA. KumarP. SharmaN. SrivastavaA.K. 3D Printing Technologies: Digital Manufacturing, Artificial Intelligence, Industry 4.0.Walter de Gruyter GmbH & Co KG202410.1515/9783111215112
    [Google Scholar]
  74. GórskiT. Verification of architectural views model 1+ 5 applicability.Computer Aided Systems Theory–EUROCAST 2019.Springer International Publishing202010.1007/978‑3‑030‑45093‑9_60
    [Google Scholar]
  75. GórskiT. The 1+ 5 architectural views model in designing blockchain and IT system integration solutions.Symmetry20211311200010.3390/sym13112000
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558325422240926103718
Loading
/content/journals/rascs/10.2174/0126662558325422240926103718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test