Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction

Cyber-attacks related to ransomware have increased significantly in cloud manufacturing industries over the last decade, causing considerable disruptions to organizations. This type of information may also include personal details, patent rights, bank account details, . This type of malware requires new and better mitigation methods.

Objective

The primary objective of this study was to provide an algorithm to execute experiments using genetic algorithms for load balancing with decision trees and mitigate ransomware.

Methods

Hybrid analysis and machine learning techniques were used in this study to identify ransomware. Since a wide range of samples impacted by ransomware share most of the characteristics, it may be possible to use this study to detect current and future malware variants in industries.

Results

In patented industrial technology, ransomware mitigation plays a crucial role based on the analysis of various papers and patents-to-science references. In this study, a machine learning mitigation algorithm, GeniLeaf Decision Tree (GLDT), was applied to a featured dataset using a genetic algorithm with a decision tree.

Conclusion

Machine learning and load balancing are used to gain insight into ransomware behavior. By using the proposed approach to mitigate ransomware and spoofing patterns, a high level of accuracy is achieved. Using GeniLeaf Decision Trees to mitigate ransomware is a significant innovation.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558324381240827040102
2024-11-01
2025-09-21
Loading full text...

Full text loading...

References

  1. NadirI. BakhshiT. Contemporary cybercrime: A taxonomy of ransomware threats & mitigation techniques.2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 03-04 March 2018, pp. 1-7.10.1109/ICOMET.2018.8346329
    [Google Scholar]
  2. RichardsonR. NorthM.M. Ransomware: Evolution, mitigation and prevention.Int. Manag. Rev.201713110
    [Google Scholar]
  3. MuhammadA. EjiyimeA. S. Analysis of ransomware origin threats and economic lost on victims.Int J Pure Appl Sci2017
    [Google Scholar]
  4. SgandurraD. Muñoz-GonzálezL. MohsenR. LupuE.C. Automated dynamic analysis of ransomware: Benefits, limitations and use for detection.arXiv preprint 1609.03020,2016
    [Google Scholar]
  5. KokS. AbdullahA. JhanjhiN.Z. SupramaniamM. Prevention of crypto-ransomware using a pre-encryption detection algorithm.Computers2019847910.3390/computers8040079
    [Google Scholar]
  6. RaniS. TripathiK. KumarA. Machine learning aided malware detection for secure and smart manufacturing: A comprehensive analysis of the state of the art.Int J Interact Des Manuf2023128
    [Google Scholar]
  7. TailorJ.P. PatelA.D. A comprehensive survey: Ransomware attacks prevention, monitoring and damage control.Int. J. Res. Sci. Innov2017415116121
    [Google Scholar]
  8. AskarifarS. RahmanN.A.A. OsmanH. A review of latest wannacry ransomware: Actions and preventions.J. Eng. Sci. Technol.2018132433
    [Google Scholar]
  9. RosliM.S. AbdullahR.S. YassinW. FaizalM.A. ZakiW.N.F.W.M. Ransomware behavior attack construction via graph theory approach.Int. J. Adv. Comput. Sci. Appl.202011210.14569/IJACSA.2020.0110262
    [Google Scholar]
  10. WangT.Y. JinH. NahrstedtK. mAuditor: mobile auditing framework for mHealth applications.Proceedings of the 2015 Workshop on Pervasive Wireless Healthcare, New York, NY, USA, 22 June 2015, pp. 7–12.10.1145/2757290.2757291
    [Google Scholar]
  11. Al-rimyB.A.S. MaarofM.A. ShaidS.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions.Comput. Secur.20187414416610.1016/j.cose.2018.01.001
    [Google Scholar]
  12. RaniS. TripathiK. AroraY. KumarA. A machine learning approach to analyze cloud computing attacks.2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 14-16 December 2022, pp. 22-26.10.1109/IC3I56241.2022.10073468
    [Google Scholar]
  13. RaniS. TripathiK. AroraY. KumarA. Analysis of anomaly detection of malware using KNN.2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), Gautam Buddha Nagar, India, 23-25 February 2022, pp. 774-779.10.1109/ICIPTM54933.2022.9754044
    [Google Scholar]
  14. BirkelH.S. VeileJ.W. MüllerJ.M. HartmannE. VoigtK.I. Development of a risk framework for industry 4.0 in the context of sustainability for established manufacturers.Sustainability201911238410.3390/su11020384
    [Google Scholar]
  15. CiffolilliA. MuscioA. Industry 4.0: National and regional comparative advantages in key enabling technologies.Eur. Plann. Stud.201826122323234310.1080/09654313.2018.1529145
    [Google Scholar]
  16. RachingerM. KorajmanI. MüllerC. Systematic literature review of business model innovation in business ecosystems.ISPIM Conference ProceedingsFlorence, May 2019, pp. 1-22.
    [Google Scholar]
  17. AlsamhiS.H. ShvetsovA.V. KumarS. HassanJ. AlhartomiM.A. ShvetsovaS.V. SahalR. HawbaniA. Computing in the sky: A survey on intelligent ubiquitous computing for uav-assisted 6g networks and industry 4.0/5.0.Drones20226717710.3390/drones6070177
    [Google Scholar]
  18. SnieškaV. NavickasV. HaviernikováK. OkręglickaM. GajdaW. Technical, information and innovation risks of industry 4.0 in small and medium-sized enterprises–case of Slovakia and Poland.J. Bus. Econ. Manag.20202151269128410.3846/jbem.2020.12279
    [Google Scholar]
  19. SrivastavaR. AlsamhiS.H. MurrayN. DevineD. Shape memory alloy-based wearables: A review, and conceptual frameworks on HCI and HRI in industry 4.0.Sensors20222218680210.3390/s2218680236146151
    [Google Scholar]
  20. AlsamhiS.H. ShvetsovA.V. HawbaniA. ShvetsovaS.V. KumarS. ZhaoL. Survey on federated learning enabling indoor navigation for industry 4.0 in B5G.Future Gener. Comput. Syst.202314825026510.1016/j.future.2023.06.001
    [Google Scholar]
  21. ChandM. Strategic assessment and mitigation of risks in sustainable manufacturing systems.Sust. Oper. Comput.2021220621310.1016/j.susoc.2021.07.004
    [Google Scholar]
  22. AlsamhiS. H. CurryE. HawbaniA. KumarS. HassanU. U. RajputN. S. DataSpace in the sky: A novel decentralized framework to secure drones data sharing in B5G for industry 4.0 toward industry 5.0.Preprints 2023
    [Google Scholar]
  23. AlsamhiS.H. SaifA.A.F. CurryE. KumarS. HawbaniA. Autonomous multi-robot collaboration in virtual environments to perform tasks in industry 4.0.2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), Ibb, Yemen, 25-26 October 2022, pp. 1-7.
    [Google Scholar]
  24. BrewerR. Ransomware attacks: Detection, prevention and cure.Netw. Secur.2016201695910.1016/S1353‑4858(16)30086‑1
    [Google Scholar]
  25. GuresE. ShayeaI. ErgenM. AzmiM.H. El-SalehA.A. Machine learning-based load balancing algorithms in future heterogeneous networks: A survey.IEEE Access202210376893771710.1109/ACCESS.2022.3161511
    [Google Scholar]
  26. NingZ. SongQ. GuoL. DaiM. YueM. Dynamic cell range expansion-based interference coordination scheme in next generation wireless networks.China Commun.20141159810410.1109/CC.2014.6880465
    [Google Scholar]
  27. RaniS. KumarA. BagchiA. YadavS. KumarS. RPL based routing protocols for load balancing in IoT network.J. Phys. Conf. Ser.20211950101207310.1088/1742‑6596/1950/1/012073
    [Google Scholar]
  28. SchmugarC.D. CochinC. FurtakA. CarrivickA.J. BulyginY. LoucaidesJ.J. "Mitigation of ransomware"U.S. Patent 11941119,2024
    [Google Scholar]
  29. AlmohriH. ChengL. YaoD. AlemzadehH. On threat modeling and mitigation of medical cyber-physical systems.2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17-19 July 2017, pp. 114-119.10.1109/CHASE.2017.69
    [Google Scholar]
  30. NarudinF.A. FeizollahA. AnuarN.B. GaniA. Evaluation of machine learning classifiers for mobile malware detection.Soft Comput.201620134335710.1007/s00500‑014‑1511‑6
    [Google Scholar]
  31. CabajK. GregorczykM. MazurczykW. Software-defined networking-based crypto ransomware detection using HTTP traffic characteristics.Comput. Electr. Eng.20186635336810.1016/j.compeleceng.2017.10.012
    [Google Scholar]
  32. CusackG. MichelO. KellerE. Machine learning-based detection of ransomware using SDN.Proceedings of the 2018 ACM international workshop on security in software defined networks & network function virtualization, New York, NY, USA, 14 March 2018, pp. 1 - 6.10.1145/3180465.3180467
    [Google Scholar]
  33. AlhawiO. M. BaldwinJ. DehghantanhaA. Leveraging machine learning techniques for Windows ransomware network traffic detection.Cyber Threat Intell201893106
    [Google Scholar]
  34. TakeuchiY. SakaiK. FukumotoS. Detecting ransomware using support vector machines.Workshop Proceedings of the 47th International Conference on Parallel Processing, New York, NY, USA, 13 August 2018, pp. 1 - 6.
    [Google Scholar]
  35. WanY.L. ChangJ.C. ChenR.J. WangS.J. Feature-selection-based ransomware detection with machine learning of data analysis.2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27-30 April 2018, pp. 85-88.201810.1109/CCOMS.2018.8463300
    [Google Scholar]
  36. CohenA. NissimN. Trusted detection of ransomware in a private cloud using machine learning methods leveraging meta-features from volatile memory.Expert Syst. Appl.201810215817810.1016/j.eswa.2018.02.039
    [Google Scholar]
  37. Fernández MaimóL. Huertas CeldránA. Perales GómezÁ.L. García ClementeF.J. WeimerJ. LeeI. Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments.Sensors2019195111410.3390/s1905111430841592
    [Google Scholar]
  38. Mc AfeeL.L.C. "Mitigation of ransomware"U.S. Patent 10819738B22020
    [Google Scholar]
  39. ArshadI. EHRCoI4: A novel framework for enhancing human-robot collaboration in industry 4.0.2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA), October 2023, pp. 1-6.
    [Google Scholar]
  40. SaadY. "Dell detecting and protecting against ransomware"U.S. Patent 10819738B2,2018
    [Google Scholar]
  41. CabajK. MazurczykW. Using software-defined networking for ransomware mitigation: The case of cryptowall.IEEE Netw.2016306142010.1109/MNET.2016.1600110NM
    [Google Scholar]
  42. AhmedU. LinJ.C.W. SrivastavaG. Mitigating adversarial evasion attacks of ransomware using ensemble learning.Comput. Electr. Eng.202210010790310.1016/j.compeleceng.2022.107903
    [Google Scholar]
  43. DjennaA. BouridaneA. RubabS. MarouI.M. Artificial intelligence-based malware detection, analysis, and mitigation.Symmetry202315367710.3390/sym15030677
    [Google Scholar]
  44. SomasundaramA. DDOS mitigation in cloud computing environment by dynamic resource scaling with elastic load balancing.Turk. J. Comput. Math. Educ.2021121133463362
    [Google Scholar]
  45. SayemA. BiswasP.K. KhanM.M.A. RomoliL. Dalle MuraM. Critical barriers to industry 4.0 adoption in manufacturing organizations and their mitigation strategies.J. Manuf. Mater. Process.20226613610.3390/jmmp6060136
    [Google Scholar]
  46. Sibi ChakkaravarthyS. SangeethaD. VaidehiV. A survey on malware analysis and mitigation techniques.Comput. Sci. Rev.20193212310.1016/j.cosrev.2019.01.002
    [Google Scholar]
  47. KolodenkerE. KochW. StringhiniG. EgeleM. Paybreak: Defense against cryptographic ransomware.Proceedings of the 2017 ACM on Asia conference on computer and communications security, New York, NY, USA, 02 April 2017, pp. 599 - 611.
    [Google Scholar]
  48. Fernández MaimóL. Huertas CeldránA. Gil PérezM. García ClementeF.J. Martínez PérezG. Dynamic management of a deep learning-based anomaly detection system for 5G networks.J. Ambient Intell. Humaniz. Comput.20191083083309710.1007/s12652‑018‑0813‑4
    [Google Scholar]
  49. KumarA. KumarP. MittalR.K. GambhirV. Materials processed by additive manufacturing techniques.Advances in Additive ManufacturingElsevier202321723310.1016/B978‑0‑323‑91834‑3.00014‑4
    [Google Scholar]
  50. BoadhR. GroverR. DahiyaM. KumarA. RatheeR. RajoriaY.K. RawatM. RaniS. Study of fuzzy expert system for the diagnosis of various types of cancer.Mater. Today Proc.20225629830710.1016/j.matpr.2022.01.161
    [Google Scholar]
  51. ThomasS. MollD. "U.S. Patent and Trademark Office"U.S. Patent No. 7,480,6552009
    [Google Scholar]
  52. GuptaS. RaniS. DixitD.A. DevD.H. Features exploration of distinct load balancing algorithms in cloud computing environment.Int. J. Adv. Netw. Appl.20191114177418310.35444/IJANA.2019.11017
    [Google Scholar]
  53. ContinellaA. ZaneroS. MaggiF. GuagnelliA. ZingaroG. BarenghiA. De PasqualeG. "Protection system and method for protecting a computer system against ransomware attacks"U.S. Patent . 153684652018
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558324381240827040102
Loading
/content/journals/rascs/10.2174/0126662558324381240827040102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test