Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction

Recorded brain activity analysis is a major tool used in modern medicine and sleep-based research. However, the volume and complexity of the data make manual investigation difficult. Furthermore, high inter-subject variability presents a challenge to deep learning techniques, especially in the detection of sleep-related EEG patterns and artifacts.

Methods

Sleep Pattern Identifier (SPI), a hybrid classifier, was used in this study to address the aforementioned issues. SPI tests the efficacy of artifact detection while examining strategies and tactics used in real-world sleep research. A focus was on inter-subject variability, especially in data gathered from participants suffering from sleep disorders. For comparison and visual inspection of the data, formal statistical measures like accuracy, model loss, precision, recall, and ROC were employed.

Results

With an accuracy of 94.85%, the suggested model outperformed current techniques and demonstrated higher accuracy. Further, the Sleep-EDF dataset was used in this investigation.

Conclusion

The conclusion highlights the effectiveness of the SPI hybrid classifier in identifying EEG patterns, especially in situations where sleep research is conducted in the real world. Research methodologies based on sleep have made significant progress in handling artifacts and adapting to inter-subject variability.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558307000240905054341
2024-09-18
2025-09-04
Loading full text...

Full text loading...

References

  1. CaiT.T. MaJ. ZhangL. CHIME: Clustering of high-dimensional Gaussian mixtures with EM algorithm and its optimality.Ann. Stat.20194731234126710.1214/18‑AOS1711
    [Google Scholar]
  2. PerrierJ. ClochonP. BertranF. CouqueC. BullaJ. DeniseP. BoccaM.L. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia. PLoS One2015101e011686410.1371/journal.pone.0116864 25611059
    [Google Scholar]
  3. ChoJ.W. DuffyJ.F. Sleep, sleep disorders, and sexual dysfunction.World J. Mens Health201937326127510.5534/wjmh.180045
    [Google Scholar]
  4. AcharyaU.R. HagiwaraY. DeshpandeS.N. SurenS. KohJ.E.W. OhS.L. ArunkumarN. CiaccioE.J. LimC.M. Characterization of focal EEG signals: A review.Future Gener. Comput. Syst.20199129029910.1016/j.future.2018.08.044
    [Google Scholar]
  5. FaustO. RazaghiH. BarikaR. CiaccioE.J. AcharyaU.R. A review of automated sleep stage scoring based on physiological signals for the new millennia.Comput. Methods Programs Biomed.2019176819110.1016/j.cmpb.2019.04.032
    [Google Scholar]
  6. ShoeibiA. KhodatarsM. GhassemiN. JafariM. MoridianP. AlizadehsaniR. PanahiazarM. KhozeimehF. ZareA. Hosseini-NejadH. KhosraviA. AtiyaA.F. AminshahidiD. HussainS. RouhaniM. NahavandiS. AcharyaU.R. Epileptic seizures detection using deep learning techniques: A review.Int. J. Environ. Res. Public Health20211811578010.3390/ijerph18115780 34072232
    [Google Scholar]
  7. FaustO. HagiwaraY. HongT.J. LihO.S. AcharyaU.R. Deep learning for healthcare applications based on physiological signals: A review.Comput. Methods Programs Biomed.201816111310.1016/j.cmpb.2018.04.005 29852952
    [Google Scholar]
  8. RadüntzT. ScoutenJ. HochmuthO. MeffertB. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.J. Neurosci. Methods2015243849310.1016/j.jneumeth.2015.01.030
    [Google Scholar]
  9. GoldbergerA.L. AmaralL.A.N. GlassL. HausdorffJ.M. IvanovP.C. MarkR.G. MietusJ.E. MoodyG.B. PengC.K. StanleyH.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.Circulation200010123E215E22010.1161/01.CIR.101.23.e215 10851218
    [Google Scholar]
  10. KhalafO.I. OgudoK.A. SangeethaS.K.B. Design of graph-based layered learning-driven model for anomaly detection in distributed cloud iot network.Mob. Inf. Syst.202220221910.1155/2022/6750757
    [Google Scholar]
  11. SangeethaS.K.B. DhayaR. ShahD.T. DharanidharanR. ReddyK.P.S. An empirical analysis of machine learning frameworks for digital pathology in medical science.J. Phys. Conf. Ser.20211767101203110.1088/1742‑6596/1767/1/012031
    [Google Scholar]
  12. SangeethaS.K.B. DhayaR. Deep learning era for future 6G wireless communications-theory, applications, and challenges.Artif. Intell. Tech. Wireless Commun. Netw2022105119
    [Google Scholar]
  13. SangeethaS.K.B. KumarM.S. RajaduraiD. K, H. Maheshwari V. DaluG.T. An empirical analysis of an optimized pretrained deep learning model for COVID-19 diagnosis.Comput. Math. Methods Med.2022202211010.1155/2022/9771212 35928972
    [Google Scholar]
  14. LohH.W. OoiC.P. DhokS.G. SharmaM. BhuraneA.A. AcharyaU.R. Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network.Appl. Intell.20225232903291710.1007/s10489‑021‑02597‑8
    [Google Scholar]
  15. KetuS. MishraP.K. Hybrid classification model for eye state detection using electroencephalogram signals.Cogn. Neurodynamics2022161739010.1007/s11571‑021‑09678‑x 35126771
    [Google Scholar]
  16. SharmaM. BhuraneA.A. AcharyaU.R. An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features.Expert Syst.202241512939
    [Google Scholar]
  17. SharmaM. DarjiJ. ThakrarM. AcharyaU.R. Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals.Comput. Biol. Med.202214310522410.1016/j.compbiomed.2022.105224 35091364
    [Google Scholar]
  18. YouJ. MaY. WangY. GTransU-CAP: Automatic labeling for cyclic alternating patterns in sleep EEG using gated transformer-based U-Net framework.Comput. Biol. Med.202214710580410.1016/j.compbiomed.2022.105804 35803081
    [Google Scholar]
  19. SairamyaN.J. SubathraM.S.P. Thomas GeorgeS. Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN.Expert Syst. Appl.202219211623010.1016/j.eswa.2021.116230
    [Google Scholar]
  20. DiykhM. MiftenF.S. AbdullaS. DeoR.C. SiulyS. GreenJ.H. OudahbA.Y. Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals.Measurement202219011073110.1016/j.measurement.2022.110731
    [Google Scholar]
  21. Catherine JoyR. Thomas GeorgeS. Albert RajanA. SubathraM.S.P. Detection of adhd from eeg signals using different entropy measures and ann.Clin. EEG Neurosci.2022531122310.1177/15500594211036788 34424101
    [Google Scholar]
  22. CuiJ. LanZ. LiuY. LiR. LiF. SourinaO. Müller-WittigW. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG.Methods202220217318410.1016/j.ymeth.2021.04.017 33901644
    [Google Scholar]
  23. SharmaM. PatelV. AcharyaU.R. Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel EEG signals.Knowl. Base. Syst.202122410707810.1016/j.knosys.2021.107078
    [Google Scholar]
  24. ShiM. YangC. ZhangD. A smart detection method of sleep quality using EEG signal and long short-term memory model.Math. Probl. Eng.202120211810.1155/2021/5515100
    [Google Scholar]
  25. DereymaekerA. PillayK. VervischJ. De VosM. Van HuffelS. JansenK. NaulaersG. Review of sleep-EEG in preterm and term neonates.Early Hum. Dev.20171138710310.1016/j.earlhumdev.2017.07.003 28711233
    [Google Scholar]
  26. BanvilleH. ChehabO. HyvärinenA. EngemannD.A. GramfortA. Uncovering the structure of clinical EEG signals with self-supervised learning.J. Neural Eng.202118404602010.1088/1741‑2552/abca18 33181507
    [Google Scholar]
  27. Aya HassounehA.M. Development of a real-time emotion recognition system using facial expressions and EEG based on machine learning and deep neural network methods.Inform. Med. Unlocked20202010037210.1016/j.imu.2020.100372
    [Google Scholar]
  28. AsgharM.A. KhanM.J. RizwanM. MehmoodR.M. KimS.H. An innovative multi-model neural network approach for feature selection in emotion recognition using deep feature clustering.Sensors20202013376510.3390/s20133765 32635609
    [Google Scholar]
  29. ChoJ. HwangH. Spatio-temporal representation of an electoencephalogram for emotion recognition using a three-dimensional convolutional neural network.Sensors20202012349110.3390/s20123491 32575708
    [Google Scholar]
  30. ChenJ.X. ZhangP.W. MaoZ.J. HuangY.F. JiangD.M. ZhangY.N. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks.IEEE Access20197443174432810.1109/ACCESS.2019.2908285
    [Google Scholar]
  31. ImmanuelR.R. SangeethaS.K.B. "Analysis of EEG signal with feature and feature extraction techniques for emotion recognition using deep learning techniques", International Conference on Computational Intelligence and Data EngineeringSingapore August 202214115410.1007/978‑981‑99‑0609‑3_10
    [Google Scholar]
  32. SangeethaS.K.B. MathivananS.K. MuthukumaranV. PughazendiN. JayagopalP. UddinM.S. A deep learning approach to detect microsleep using various forms of EEG signal.Math. Probl. Eng.202320231731793810.1155/2023/7317938
    [Google Scholar]
  33. GargD. VermaG.K. Emotion recognition in valence-arousal space from multi-channel EEG data and wavelet based deep learning framework.Procedia Comput. Sci.202017185786710.1016/j.procs.2020.04.093
    [Google Scholar]
  34. GaoQ. WangC. WangZ. SongX. DongE. SongY. EEG based emotion recognition using fusion feature extraction method.Multimedia Tools Appl.20207937-38270572707410.1007/s11042‑020‑09354‑y
    [Google Scholar]
  35. GaoZ. WangX. YangY. LiY. MaK. ChenG. A channel-fused dense convolutional network for EEG-based emotion recognition.IEEE Trans. Cogn. Dev. Syst.202113494595410.1109/TCDS.2020.2976112
    [Google Scholar]
  36. ChaoH. DongL. LiuY. LuB. Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition.Complexity20202020681650210.1155/2020/6816502
    [Google Scholar]
  37. IslamM.R. BaruaS. AhmedM.U. BegumS. Di FlumeriG. Deep learning for automatic eeg feature extraction: An application in drivers’ mental workload classification.Human Mental Workload: Models and Applications. H-WORKLOAD 2019. Communications in Computer and Information Science. LongoL. LevaM. ChamSpringer2019110710.1007/978‑3‑030‑32423‑0_8
    [Google Scholar]
  38. KhareS.K. BajajV. Time–frequency representation and convolutional neural network-based emotion recognition.IEEE Trans. Neural Netw. Learn. Syst.20213272901290910.1109/TNNLS.2020.3008938 32735536
    [Google Scholar]
  39. NawazR. CheahK.H. NisarH. YapV.V. Comparison of different feature extraction methods for EEG-based emotion recognition.Biocybern. Biomed. Eng.202040391092610.1016/j.bbe.2020.04.005
    [Google Scholar]
  40. ImmanuelR.R. SangeethaS.K.B. Decoding emotions using deep learning approach to eeg-based emotion recognition, 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS)December20231610.1109/ICCEBS58601.2023.10449107
    [Google Scholar]
  41. ImmanuelR.R. SangeethaS.K.B. Implementation of an automatic EEG feature extraction with gated recurrent neural network for emotion recognition, Computer Vision and Machine Intelligence Paradigms for SDGs: Select Proceedings of ICRTAC-CVMIP 2021.Springer Nature Singapore: Singapore202313315010.1007/978‑981‑19‑7169‑3_13
    [Google Scholar]
  42. SongT. ZhengW. SongP. CuiZ. EEG emotion recognition using dynamical graph convolutional neural networks.IEEE Trans. Affect. Comput.202011353254110.1109/TAFFC.2018.2817622
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558307000240905054341
Loading
/content/journals/rascs/10.2174/0126662558307000240905054341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): artifact detection; classifier; clustering; machine learning; pattern detection; Sleep EEG
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test