Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction

Emotions play a significant role in human relationships in everyday challenges. Human-machine interactions and the complexities of its research include humanoid robots which rely significantly on emotional queries. The present study recommends a novel methodology for human emotion classification using electroencephalogram (EEG) signals. Machine learning (ML) techniques based on electroencephalogram have demonstrated impressive results in distinguishing emotions.

Methods

The present study investigates five ensemble learning-based machine learning (EML) and five conventional machine learning (CML) algorithms for achieving the recognition of human emotions from EEG signals. The main objective of the current research study is to implement the optimal approach for classifying emotions and subsequently will achieve it by using physiological characteristics to categorise the seven main emotional states (stress, happy, sadness, anger, fear, disgust, and surprise). This research follows the study investigation of ensemble learning-based machine learning (EML) and conventional machine learning (CML) algorithms for achieving the recognition of human emotions from EEG signals. Initially, the EEG data in this study are categorized into theta, alpha, beta, and gamma bands using a DWT.

Results

With this idea, the research elaborates on further decomposition based on band-separated EEG signals known as intrinsic mode functions (IMFs) along with empirical mode decomposition is subsequently implemented. Then, 13 statistical characteristics are extracted from the IMFs using five multiclass EML algorithms: adaptive boosting, rotation random forest, bagging, random forest, and extreme gradient boost. The following procedure is carried out to construct an ML-based system. In the final phase, 10-fold cross-validation is used to assess the efficacy of these five EML algorithms. Accuracy, F1-score, and area-under-the-curve (AUC) are performance assessment metrics are employed to compare the final results of these algorithms with the five CML techniques.

Conclusion

The proposed method for EEG-based emotion analysis is significantly more effective and achieves greater outcomes than all of the techniques that were compared, based on the data from the experiments.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558306769240624053833
2024-06-28
2025-11-05
Loading full text...

Full text loading...

References

  1. PicardR.W. VyzasE. HealeyJ. Toward machine emotional intelligence: Analysis of affective physiological state.IEEE Trans. Pattern Anal. Mach. Intell.200123101175119110.1109/34.954607
    [Google Scholar]
  2. NasozF. AlvarezK. LisettiC.L. FinkelsteinN. Emotion recognition from physiological signals using wireless sensors for presence technologies.Cogn. Technol. Work20046141410.1007/s10111‑003‑0143‑x
    [Google Scholar]
  3. Alaoui-IsmaïliO. RobinO. RadaH. DittmarA. Vernet-MauryE. Basic emotions evoked by odorants: Comparison between autonomic responses and self-evaluation.Physiol. Behav.199762471372010.1016/S0031‑9384(97)90016‑0 9284489
    [Google Scholar]
  4. StephensC.L. ChristieI.C. FriedmanB.H. Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis.Biol. Psychol.201084346347310.1016/j.biopsycho.2010.03.014 20338217
    [Google Scholar]
  5. LimC. ChangJ.H. Adaptive kernel function of SVM for improving speech/music classification of 3GPP2 SMV.ETRI J.201133687187910.4218/etrij.11.0110.0780
    [Google Scholar]
  6. QuinlanJ.R. C4. 5: programs for machine learning.Elsevier2014
    [Google Scholar]
  7. DudaR.O. HartP.E. StorkD.G. IonescuA. Pattern classification, chapter nonparametric techniques.Wiley-Interscience Publication2000177178
    [Google Scholar]
  8. KohonenT. Self-organizing maps, ser. Information Sciences.BerlinSpringer20013010.1007/978‑3‑642‑56927‑2
    [Google Scholar]
  9. AhaD.W. KiblerD. AlbertM.K. Instance-based learning algorithms.Mach. Learn.199161376610.1007/BF00153759
    [Google Scholar]
  10. JungT.P. SejnowskiT.J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing.IEEE Trans. Affect. Comput.201913196107
    [Google Scholar]
  11. BajajV. TaranS. SengurA. Emotion classification using flexible analytic wavelet transform for electroencephalogram signals.Health Inf. Sci. Syst.2018611210.1007/s13755‑018‑0048‑y 30279982
    [Google Scholar]
  12. KhareS.K. BajajV. Constrained based tunable Q wavelet transform for efficient decomposition of EEG signals.Appl. Acoust.202016310723410.1016/j.apacoust.2020.107234
    [Google Scholar]
  13. HuangN.E. ShenZ. LongS.R. WuM.C. ShihH.H. ZhengQ. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proc. R. Soc. Lond. A199845497190390510.1098/rspa.1998.0193
    [Google Scholar]
  14. TaranS. BajajV. SharmaD. SiulyS. SengurA. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications.Measurement2018116687610.1016/j.measurement.2017.10.067
    [Google Scholar]
  15. PatelR. JanawadkarM.P. SengottuvelS. GireesanK. RadhakrishnanT.S. Suppression of eye-blink associated artifact using single channel EEG data by combining cross-correlation with empirical mode decomposition.IEEE Sens. J.201616186947695410.1109/JSEN.2016.2591580
    [Google Scholar]
  16. BhattacharyyaA. SharmaM. PachoriR.B. SircarP. AcharyaU.R. A novel approach for automated detection of focal EEG signals using empirical wavelet transform.Neural Comput. Appl.2018298475710.1007/s00521‑016‑2646‑4
    [Google Scholar]
  17. DouS. FengZ. YangX. TianJ. Real-time multimodal emotion recognition system based on elderly accompanying robot.J. Phys. Conf. Ser.20201453101209310.1088/1742‑6596/1453/1/012093
    [Google Scholar]
  18. ArulDassS.D. Classifying distinct emotions from parents of ASD child using EEG source data by combining Bernoulli-Laplace Prior and graph neural networks.Neural Comput. Appl.2023119
    [Google Scholar]
  19. GuptaV. ChopdaM.D. PachoriR.B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals.IEEE Sens. J.20191962266227410.1109/JSEN.2018.2883497
    [Google Scholar]
  20. SangnarkS. AutthasanP. PonglertnapakornP. ChalekarnP. SudhawiyangkulT. TrakulruangrojM. SongsermsawadS. AssabumrungratR. AmplodS. OunjaiK. WilaiprasitpornT. Revealing preference in popular music through familiarity and brain response.IEEE Sens. J.20212113149311494010.1109/JSEN.2021.3073040
    [Google Scholar]
  21. TuncerT. DoganS. SubasiA. A new fractal pattern feature generation function based emotion recognition method using EEG.Chaos Solitons Fractals202114411067110.1016/j.chaos.2021.110671
    [Google Scholar]
  22. LakhanP. BanluesombatkulN. ChangniamV. DhithijaiyratnR. LeelaarpornP. BoonchiengE. HompoonsupS. WilaiprasitpornT. Consumer grade brain sensing for emotion recognition.IEEE Sens. J.201919219896990710.1109/JSEN.2019.2928781
    [Google Scholar]
  23. HakimL. WibawaA.D. PaneE.S. PurnomoM.H. Emotion recognition in elderly based on SpO2 and pulse rate signals using support vector machine2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS)Singapore, 06-08 June 2018474479
    [Google Scholar]
  24. AwaisM. RazaM. SinghN. BashirK. ManzoorU. IslamS.U. RodriguesJ.J.P.C. LSTM-based emotion detection using physiological signals: IoT framework for healthcare and distance learning in COVID-19.IEEE Internet Things J.2021823168631687110.1109/JIOT.2020.3044031 35582634
    [Google Scholar]
  25. Meza-KuboV. MoránA.L. CarrilloI. GalindoG. García-CansecoE. Assessing the user experience of older adults using a neural network trained to recognize emotions from brain signals.J. Biomed. Inform.20166220220910.1016/j.jbi.2016.07.004 27392644
    [Google Scholar]
  26. DasA.B. BhuiyanM.I.H. Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain.Biomed. Signal Process. Control2016291121
    [Google Scholar]
  27. JiN. MaL. DongH. ZhangX. EEG signals feature extraction based on DWT and EMD combined with approximate entropy.Brain Sci.20199820110.3390/brainsci9080201 31416258
    [Google Scholar]
  28. TaranS. BajajV. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.Comput. Methods Programs Biomed.201917315716510.1016/j.cmpb.2019.03.015 31046991
    [Google Scholar]
  29. GuptaV. BhattacharyyaA. PachoriR.B. Classification of seizure and non-seizure EEG signals based on EMD-TQWT method 2017 22nd International Conference on Digital Signal Processing (DSP)London, UK, 23-25 August1510.1109/ICDSP.2017.8096036
    [Google Scholar]
  30. ZhangT. WangX. XuX. ChenC.L.P. GCB-Net: Graph convolutional broad network and its application in emotion recognition.IEEE Trans. Affect. Comput.202213137938810.1109/TAFFC.2019.2937768
    [Google Scholar]
  31. TandleA.L. JoshiM.S. DharmadhikariA.S. JaiswalS.V. Mental state and emotion detection from musically stimulated EEG.Brain Inform.2018521410.1186/s40708‑018‑0092‑z 30499008
    [Google Scholar]
  32. KropotovJ.D. Quantitative EEG, event-related potentials and neurotherapy.Academic Press2010
    [Google Scholar]
  33. SammlerD. GrigutschM. FritzT. KoelschS. Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music.Psychophysiology200744229330410.1111/j.1469‑8986.2007.00497.x 17343712
    [Google Scholar]
  34. BhattacharyyaA. PachoriR.B. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform.IEEE Trans. Biomed. Eng.20176492003201510.1109/TBME.2017.2650259 28092514
    [Google Scholar]
  35. BhattacharyyaA. SinghL. PachoriR.B. Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals.Digit. Signal Process.20187818519610.1016/j.dsp.2018.02.020
    [Google Scholar]
  36. GuillaumeP. VerbovenP. VanlanduitS. Frequency-domain maximum likelihood identification of modal parameters with confidence intervalsProceedings of the international seminar on modal analysis1Katholieke Universiteit Leuven1998359366
    [Google Scholar]
  37. J.Prabhu PrabhuJ. Ameliorating the privacy on large scale aviation dataset by implementing mapreduce multidimensional hybrid k-anonymization.Int. J. Web Portals2019112144010.4018/IJWP.2019070102
    [Google Scholar]
  38. GoshvarpourA. GoshvarpourA. Lemniscate of Bernoulli’s map quantifiers: Innovative measures for EEG emotion recognition.Cogn. Neurodynamics2023117
    [Google Scholar]
  39. DassA.S. PrabhuJ. Hybrid coherent encryption scheme for multimedia big data management using cryptographic encryption methods.Int. J. Grid Util. Comput.202011449650810.1504/IJGUC.2020.108449
    [Google Scholar]
  40. GrassbergerP. ProcacciaI. Measuring the strangeness of strange attractors.Physica D198391-218920810.1016/0167‑2789(83)90298‑1
    [Google Scholar]
  41. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  42. DomaV. PirouzM. A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals.J. Big Data2020711810.1186/s40537‑020‑00289‑7
    [Google Scholar]
  43. BhattacharyyaS. KhasnobishA. ChatterjeeS. KonarA. TibarewalaD.N. Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data2010 International Conference on Systems in Medicine and Biology2010Kharagpur, India 16-18 December126131
    [Google Scholar]
  44. HoT.K. Random decision forestsProceedings of 3rd international conference on document analysis and recognitionMontreal, QC, Canada, 14-16 August1995127828210.1109/ICDAR.1995.598994
    [Google Scholar]
  45. RodríguezJ.J. KunchevaL.I. AlonsoC.J. Rotation forest: A new classifier ensemble method.IEEE Trans. Pattern Anal. Mach. Intell.200628101619163010.1109/TPAMI.2006.211 16986543
    [Google Scholar]
  46. BreimanL. Bagging predictors.Mach. Learn.199624212314010.1007/BF00058655
    [Google Scholar]
  47. HastieT. RossetS. ZhuJ. ZouH. Multi-class AdaBoost.Stat. Interface20092334936010.4310/SII.2009.v2.n3.a8
    [Google Scholar]
  48. ChenT. HeT. BenestyM. KhotilovichV. TangY. ChoH. ZhouT. Xgboost: Extreme gradient boostingR package version 0.4-220151414
    [Google Scholar]
  49. CawleyG.C. TalbotN.L. On over-fitting in model selection and subsequent selection bias in performance evaluation.J. Mach. Learn. Res.20101120792107
    [Google Scholar]
  50. KambleK.S. SenguptaJ. Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals.IEEE Sens. J.20222232496250710.1109/JSEN.2021.3135953
    [Google Scholar]
  51. PedregosaF. Scikit-learn: Machine learning in python Fabian.J. Mach. Learn. Res.2011122825
    [Google Scholar]
  52. SongT. ZhengW. SongP. CuiZ. EEG emotion recognition using dynamical graph convolutional neural networks.IEEE Trans. Affect. Comput.202011353254110.1109/TAFFC.2018.2817622
    [Google Scholar]
  53. ZhangG. YuM. LiuY.J. ZhaoG. ZhangD. ZhengW. SparseDGCNN: Recognizing emotion from multichannel EEG signalsIEEE Trans. Affect. Comput.2021
    [Google Scholar]
  54. GongL.H. DingW. LiZ. WangY.Z. ZhouN.R. Quantum K-Nearest neighbor classification algorithm via a divide-and-conquer strategy.Adv. Quantum Technol.202476230022110.1002/qute.202300221
    [Google Scholar]
  55. GongC. ZhouN. XiaS. HuangS. Quantum particle swarm optimization algorithm based on diversity migration strategy.Future Gener. Comput. Syst.202415744545810.1016/j.future.2024.04.008
    [Google Scholar]
  56. ÖzerdemM.S. PolatH. Emotion recognition based on EEG features in movie clips with channel selection.Brain Inform.20174424125210.1007/s40708‑017‑0069‑3 28711988
    [Google Scholar]
  57. PaneE.S. WibawaA.D. PurnomoM.H. Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters.Cogn. Process.201920440541710.1007/s10339‑019‑00924‑z 31338704
    [Google Scholar]
  58. WeiC. ChenL. SongZ. LouX. LiD. EEG-based emotion recognition using simple recurrent units network and ensemble learning.Biomed. Signal Process. Control20205810175610.1016/j.bspc.2019.101756
    [Google Scholar]
  59. PandeyP. SeejaK.R. Subject independent emotion recognition from EEG using VMD and deep learning.J. King Saud Univ. Comput. Inf. Sci.20223451730173810.1016/j.jksuci.2019.11.003
    [Google Scholar]
  60. PanJ. FangW. ZhangZ. ChenB. ZhangZ. WangS. Multimodal emotion recognition based on facial expressions, speech, and EEG.IEEE Open J. Eng. Med. Biol.20231810.1109/OJEMB.2023.3240280
    [Google Scholar]
  61. HouF. LiuJ. BaiZ. YangZ. LiuJ. GaoQ. SongY. EEG-based emotion recognition for hearing impaired and normal individuals with residual feature pyramids network based on time-frequency-spatial features.IEEE Trans. Instrum. Meas.20237211110.1109/TIM.2023.3240230
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558306769240624053833
Loading
/content/journals/rascs/10.2174/0126662558306769240624053833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test