Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Privacy plays a substantial role in both public and private, databases especially in the healthcare industry and government sectors require a high-confidential data transmission process. Most often, these data contain personal information that must be concealed throughout data processing and transmission between terminal devices and cloud data centers, such as username, ID, account information, and a few more sensitive details. Recently, fog computing highly utilized for such data transmission, storing, and network interconnection processes due to its low latency, mobility, reduced computational cost, position awareness, data localization, and geographical distribution. It delivers to cloud computing and the widespread positioning of IoT applications. Since fog-based service is provided to the massive-scale end-end users by fog server/node, privacy is a foremost concern for fog computing. Fog computing poses several challenges if it comes to delivering protected data transfer; making the development of privacy preservation strategies particularly desirable. This paper exhibits a systematical literature review (SLR) on privacy preservation methods developed for fog computing in terms of issues, challenges, and various solutions. The main objective of this paper is to categorize the existing privacy-related research methods and solutions that have been published between 2012 and 2022 using analytical and statistical methods. The next step is to present specific practical issues in this area. Depending on the issues, the merits and drawbacks of each suggested fog security method are explored, and some suggestions are made for how to tackle the privacy concerns with fog computing. To build, deploy, and maintain fog systems, several imminent motivational directions and open concerns in this topic were presented.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558283303250103030013
2025-10-01
2025-11-02
Loading full text...

Full text loading...

References

  1. LiT. LiN. ZhangJ. Slicing: A new approach for privacy preserving data publishing.IEEE Trans. Knowl. Data Eng.201224356157410.1109/TKDE.2010.236
    [Google Scholar]
  2. Cisco global cloud networking survey.2012Available from: https://www.cisco.com/c/dam/en/us/solutions/enterprise-networks/2012_Cisco_Global_Cloud_Networking_Survey_Results.pdf
  3. KuteR.D.V. A review paper on security concerns in cloud computing and proposed security models.Proceedings of International Conference on Emerging Trends in Inform,Vellore, India, 24-25 Feb. 2020, pp. 1-4.10.1109/ic‑ETITE47903.2020.37
    [Google Scholar]
  4. BenslimaneY. YangZ. BahliB. Key topics in cloud computing security: A systematic literature review2nd International Conference on Information Science and Security (ICISS),Seoul, Korea (South), 14-16 Dec. 2015, pp. 1-4.10.1109/ICISSEC.2015.7371014
    [Google Scholar]
  5. MondalA. PaulS. GoswamiR.T. NathS. Cloud computing security issues & challenges: A review.Proceedings of International Conference on Computer Communication and Informatics (ICCCI),Coimbatore, India, 22-24 Jan. 2020, pp. 1-5.10.1109/ICCCI48352.2020.9104155
    [Google Scholar]
  6. LiuK. ChenC. GuoJ. LiQ. GuoY. A review of research on security of cloud service platform in medical environment.IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW),Yilan, Taiwan, 20-22 May 2019, pp. 1-2.10.1109/ICCE‑TW46550.2019.8992007
    [Google Scholar]
  7. ShanmugasundaramG. AswiniV. SuganyaG. A comprehensive review on cloud computing security.Proceedings of International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS),Coimbatore, India, 17-18 March 2017, pp. 1-5.
    [Google Scholar]
  8. CotroneoD. SimoneL.D. LiguoriP. NatellaR. Fault injection analytics: A novel approach to discover failure modes in cloud-computing systems.IEEE Trans. Depend. Secure Comput.20202020
    [Google Scholar]
  9. YangZ. LiangB. JiW. An intelligent end-edge-cloud architecture for visual iot assisted healthcare systems.IEEE Internet Things J.2021823167791678610.1109/JIOT.2021.3052778
    [Google Scholar]
  10. ModiC. PatelD. BorisaniyaB. PatelH. PatelA. RajarajanM. A survey of intrusion detection techniques in Cloud.J. Netw. Comput. Appl.2013361425710.1016/j.jnca.2012.05.003
    [Google Scholar]
  11. LaiJ. GuoF. SusiloW. HuangX. JiangP. ZhangF. Data access control in cloud computing: Flexible and receiver extendable.IEEE Trans. Serv. Comput.20211552658267010.1109/TSC.2021.3057197
    [Google Scholar]
  12. SuZ. WangY. LuanT. ZhangN. LiF. ChenT. CaoH. Secure and efficient federated learning for smart grid with edgecloud collaboration.IEEE Trans. Industr. Inform.20212021
    [Google Scholar]
  13. NieX. SuoH. Security in the cloud computing: A review.Proceedings of 2012 2nd International Conference on Computer Science and Network Technology,Changchun, China, 29-31 Dec. 2012, pp. 2145-2149.10.1109/ICCSNT.2012.6526342
    [Google Scholar]
  14. NakhodchiB. ZolfaghariB. YazdinejadA. DehghantanhaA. Steeleye: An application-layer attack detection and attribution model in industrial control systems using semi-deep learning.18th International Conference on Privacy, Security and Trust (PST),Auckland, New Zealand, 13-15 Dec. 2021, pp. 1-8.10.1109/PST52912.2021.9647777
    [Google Scholar]
  15. YazdinejadA. SrivastavaG. PariziR.M. DehghantanhaA. ChooK.K.R. AledhariM. Decentralized authentication of distributed patients in hospital networks using blockchain.IEEE J. Biomed. Health Inform.20202482146215610.1109/JBHI.2020.296964831995507
    [Google Scholar]
  16. YazdinejadA. PariziR.M. BohlooliA. DehghantanhaA. ChooK.K.R. A high-performance framework for a network programmable packet processor using P4 and FPGA.J. Netw. Comput. Appl.202015610256410.1016/j.jnca.2020.102564
    [Google Scholar]
  17. SunJ. Privacy protection and data security in cloud computing: A survey, challenges, and solutions.IEEE Access2019714742014745210.1109/ACCESS.2019.2946185
    [Google Scholar]
  18. ChentharaS. AhmedK. WangH. WhittakerF. Security and privacy-preserving challenges of e-health solutions in cloud computing.IEEE Access2019743617438210.1109/ACCESS.2019.2919982
    [Google Scholar]
  19. YangP. XiongN. RenJ. Data security and privacy protection for cloud storage: A survey.IEEE Access2020813172313174010.1109/ACCESS.2020.3009876
    [Google Scholar]
  20. MasoodA. LakewD.S. ChoS. Security and privacy challenges in connected vehicular cloud computing.IEEE Commun. Surv. Tutor.20202242725276410.1109/COMST.2020.3012961
    [Google Scholar]
  21. AbbasA. KhanS.U. A review on the state-of-the-art privacy-preserving approaches in the e-health clouds.IEEE J. Biomed. Health Inform.20141841431144110.1109/JBHI.2014.230084625014943
    [Google Scholar]
  22. YuH. A survey of public key encryption with search functionality for cloud-assisted iot.IEEE Internet Things J.20212021
    [Google Scholar]
  23. VishwanathA. PeruriR. Security in fog computing through encryption.IJITCS20168510.5815/ijitcs.2016.05.03
    [Google Scholar]
  24. YangY. WuL. YinG. LiL. ZhaoH. A survey on security and privacy issues in Internet of Things.IEEE Internet Things J.2017451250125810.1109/JIOT.2017.2694844
    [Google Scholar]
  25. AlBelooshiB. DamianiE. SalahK. MartinT. Securing cryptographic keys in the cloud: A survey.IEEE Cloud Computing201634425610.1109/MCC.2016.89
    [Google Scholar]
  26. GuptaK. GuptaD. PrasadS.K. JohriP. A review on cryptography based data security techniques for the cloud computingProceedings of International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE),Greater Noida, India, 04-05 March 2021, pp. 1039-1044.
    [Google Scholar]
  27. AbdullahS. A review of cloud security based on cryptographic mechanismsProceedings of International Symposium on Biometrics and Security Technologies (ISBAST),Kuala Lumpur, Malaysia, 2014.
    [Google Scholar]
  28. HanafyA. Data security in cloud computing using steganography: A reviewProceedings of International Conference on Innovative Trends in Computer Engineering (ITCE),Aswan, Egypt, 2019.
    [Google Scholar]
  29. AhmadiS. SalehfarM. Privacy-preserving cloud computing: Ecosystem, life cycle, layered architecture and future roadmap.arXiv202220221112010.48550/arXiv.2204.11120
    [Google Scholar]
  30. RezapourR. AsghariP. JavadiH.H.S. GhanbariS. Security in fog computing: A systematic review on issues, challenges and solutions.Comput. Sci. Rev.20214110042110.1016/j.cosrev.2021.100421
    [Google Scholar]
  31. YahuzaM. IdrisM. WahabA. HoA. KhanS. MusaS. TahaA. Systematic review on security and privacy requirements in edge computing: State of the art and future research opportunities.IEEE Access20208765417656710.1109/ACCESS.2020.2989456
    [Google Scholar]
  32. ZhangK. MaoY. LengS. ZhaoQ. LiL. PengX. PanL. MaharjanS. ZhangY. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks.IEEE Access201645896590710.1109/ACCESS.2016.2597169
    [Google Scholar]
  33. RodriguesT.G. SutoK. NishiyamaH. KatoN. Hybrid method for minimizing service delay in edge cloud computing through vm migration and transmission power control.IEEE Trans. Comput.201766581081910.1109/TC.2016.2620469
    [Google Scholar]
  34. RapuzziR. RepettoM. Building situational awareness for network threats in fog/edge computing: Emerging paradigms beyond the security perimeter model.Future Gener. Comput. Syst.20188523524910.1016/j.future.2018.04.007
    [Google Scholar]
  35. ShiW. CaoJ. ZhangQ. LiY. XuL. Edge Computing: Vision and Challenges.IEEE Internet Things J.20163563764610.1109/JIOT.2016.2579198
    [Google Scholar]
  36. MahmudR. KotagiriR. BuyyaR. A data utility model for data-intensive applications in fog computing environments.Fog ComputingChamSpringer MahmoodZ. 201818320210.1007/978‑3‑319‑94890‑4
    [Google Scholar]
  37. HuP. DhelimS. NingH. QiuT. Survey on fog computing: architecture, key technologies, applications and open issues.J. Netw. Comput. Appl.201798274210.1016/j.jnca.2017.09.002
    [Google Scholar]
  38. MunirA. KansakarP. KhanS.U. IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things.IEEE Consum. Electron. Mag.201763748210.1109/MCE.2017.2684981
    [Google Scholar]
  39. MuniswamaiahM. AgerwalaT. TappertC.C. Fog Computing and the Internet of Things (IoT): A Review.2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom)202110.1109/CSCloud‑EdgeCom52276.2021.00012
    [Google Scholar]
  40. HS. vN. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges.ICT Express20217216217610.1016/j.icte.2021.05.004
    [Google Scholar]
  41. AtlamH. WaltersR. WillsG. Fog Computing and the Internet of Things: A Review.Big Data and Cognitive Computing2018221010.3390/bdcc2020010
    [Google Scholar]
  42. What is Fog Computing Computing Examples and Best PracticesAvailable from: https://www.spiceworks.com/tech/edge-computing/articles/what-is-fog-computing/
  43. KitanovS. JanevskiT. State of the art: Fog computing for 5G networks2016 24th Telecommunications Forum (TELFOR)20161410.1109/TELFOR.2016.7818728
    [Google Scholar]
  44. MengY. NaeemM.A. AlmagrabiA.O. AliR. KimH.S. Advancing the state of the fog computing to enable 5G network technologies.Sensors2020206175410.3390/s2006175432245261
    [Google Scholar]
  45. PeterN. FOG computing and its real time applications.Int. J. Emerg. Technol. Adv. Eng.20155266269
    [Google Scholar]
  46. AazamM. HuhE.N. Fog computing and smart gateway based communication for cloud of things.Proceedings of the 2014 International Conference on Future Internet of Things Cloud, FiCloud 2014,Barcelona, Spain, 27–29 August 2014; pp. 464–470.2014
    [Google Scholar]
  47. LiuY. FieldsendJ.E. MinG. A framework of fog computing: Architecture, challenges and optimization.IEEE Access20175254452545410.1109/ACCESS.2017.2766923
    [Google Scholar]
  48. NahaR.K. GargS. GeorgakopoulosD. JayaramanP.P. GaoL. XiangY. RanjanR. Fog computing: Survey of trends, architectures, requirements, and research directions.IEEE Access20186479804800910.1109/ACCESS.2018.2866491
    [Google Scholar]
  49. AazamM. HuhE.N. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT.Proceeding of the 29th IEEE International Conference on Advanced Information Networking and Applications (AINA)201568769410.1109/AINA.2015.254
    [Google Scholar]
  50. ArkianH.R. DiyanatA. PourkhaliliA. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications.J. Netw. Comput. Appl.20178215216510.1016/j.jnca.2017.01.012
    [Google Scholar]
  51. LuanT.H. GaoL. LiZ. Fog computing: Focusing on mobile users at the edge. networking and internet architecture.arxiv2015201501815
    [Google Scholar]
  52. NadeemM.A. SaeedM.A. Fog computing: An emerging paradigm.Proceeding of the 6th International Conference on Innovative Computing Technology (INTECH)20168386
    [Google Scholar]
  53. TanejaM. DavyA. Resource aware placement of data analytics platform in fog computing.Procedia Comput. Sci.20169715315610.1016/j.procs.2016.08.295
    [Google Scholar]
  54. SarkarS. MisraS. Theoretical modelling of fog computing: a green computing paradigm to support IoT applications.IET Netw.201652232910.1049/iet‑net.2015.0034
    [Google Scholar]
  55. DastjerdiA.V. GuptaH. CalheirosR.N. Fog computing: Principles, architectures, and applications.Internet of Things: Principle & Paradigms.USAElsevier KaufmannM. 201612610.1016/B978‑0‑12‑805395‑9.00004‑6
    [Google Scholar]
  56. HosseinpourF. PlosilaJ. TenhunenH. An Approach for Smart Management of Big Data in the Fog Computing Context.Proceeding of the IEEE International Conference on Cloud Computing Technology and Science (CloudCom)201646847110.1109/CloudCom.2016.0080
    [Google Scholar]
  57. BaccarelliE. NaranjoP.G.V. ScarpinitiM. ShojafarM. AbawajyJ.H. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study.IEEE Access201759882991010.1109/ACCESS.2017.2702013
    [Google Scholar]
  58. JayaramanP.P. YangX. YavariA. GeorgakopoulosD. YiX. Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation.Future Gener. Comput. Syst.20177654054910.1016/j.future.2017.03.001
    [Google Scholar]
  59. NiJ. ZhangA. LinX. ShenX.S. Security, privacy, and fairness in fog-based vehicular crowd sensing.IEEE Commun. Mag.201755614615210.1109/MCOM.2017.1600679
    [Google Scholar]
  60. AleisaN. RenaudK. Privacy of the internet of things: A systematic literature reviewarXiv2017201710.24251/HICSS.2017.717
    [Google Scholar]
  61. SarwarK. A Brief Survey on IoT Privacy: Taxonomy, Issues and Future Trends.ICSOC 2018 Workshops201911434208219
    [Google Scholar]
  62. AbubakerN. DervishiL. AydayE. Privacy-preserving fog computing paradigm2017 IEEE Conference on Communications and Network Security (CNS)201750250910.1109/CNS.2017.8228709
    [Google Scholar]
  63. LopezJ. RiosR. BaoF. WangG. Evolving privacy: From sensors to the Internet of Things.Future Gener. Comput. Syst.201775465710.1016/j.future.2017.04.045
    [Google Scholar]
  64. ChenY. LuZ. XiongH. XuW. Privacy-preserving data aggregation protocol for fog computing-assisted vehicle-to-infrastructure scenario.Secur. Commun. Net.201811410.1155/2018/1378583
    [Google Scholar]
  65. YildirimF. OzdemirS. XiaoY. Fog computing-based privacy preserving data aggregation protocols.Emerg. Telecom. Technol.2020334e390010.1002/ett.3900
    [Google Scholar]
  66. LuR. HeungK. LashkariA.H. GhorbaniA.A. A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT.IEEE Access201753302331210.1109/ACCESS.2017.2677520
    [Google Scholar]
  67. ChenC. WangT. TianJ. Improving timing attack on RSA-CRT via error detection and correction strategy.Inf. Sci.201323246447410.1016/j.ins.2012.01.027
    [Google Scholar]
  68. LiX. SangaiahA.K. KumariS. WuF. ShenJ. KhanM.K. An efficient authentication and key agreement scheme with user anonymity for roaming service in smart city.Pers. Ubiquitous Comput.201721579180510.1007/s00779‑017‑1054‑9
    [Google Scholar]
  69. JiangQ. ChenZ. LiB. ShenJ. YangL. MaJ. Security analysis and improvement of bio-hashing based three-factor authentication scheme for telecare medical information systems.J. Ambient Intell. Humaniz. Comput.201810611073
    [Google Scholar]
  70. NdoyeM. BarkerA.M. KrogmeierJ.V. BullockD.M. A recursive multiscale correlation-averaging algorithm for an automated distributed road-condition-monitoring system.IEEE Trans. Intell. Transp. Syst.201112379580810.1109/TITS.2011.2132799
    [Google Scholar]
  71. StojmenovicI. Fog computing: A cloud to the ground support for smart things and machine-to-machine networksProceedings of the 2014 Australasian Telecommunication Networks and Applications Conference, ATNAC 2014,Australia, 2014, pp.117-122.10.1109/ATNAC.2014.7020884
    [Google Scholar]
  72. OlumofinF. GoldbergI. Privacy-preserving queries over relational databases.Privacy Enhancing TechnologiesBerlin, HeidelbergSpringer AtallahM.J. HopperN.J. 201010.1007/978‑3‑642‑14527‑8_5
    [Google Scholar]
  73. ChowS.S.M. LeeJ-H. SubramanianL. Two-party computation model for privacy-preserving queries over distributed databases.Proceedings of the Network and Distributed System Security Symposium, NDSS,San Diego, California, USA, 8-11 Feb. 2009, pp 1-16.
    [Google Scholar]
  74. De CristofaroE. LuY. TsudikG. Efficient techniques for privacy-preserving sharing of sensitive information.Trust and Trustworthy ComputingBerlin, HeidelbergSpringer McCuneJ.M. BalacheffB. PerrigA. SadeghiA.R. SasseA. BeresY. 201123925310.1007/978‑3‑642‑21599‑5_18
    [Google Scholar]
  75. HoreB. MehrotraS. TsudikG. A Privacy-Preserving Index for Range QueriesVLDB ’04: Proceedings of the Thirtieth international conference on Very large data bases2004720731
    [Google Scholar]
  76. TonyaliS. AkkayaK. SaputroN. UluagacA.S. NojoumianM. Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled Smart Metering systems.Future Gener. Comput. Syst.20187854755710.1016/j.future.2017.04.031
    [Google Scholar]
  77. AndroulakiE. CoccoS. FerrisC. Private and confdential transactions with Hyperledger Fabric.2018Available from:https://developer.ibm.com/tutorials/cl-blockchainprivate-confdential-transactions-hyperledger-fabric-zero-knowledge-proof/
  78. Ben-SassonE. BentovI. HoreshY. RiabzevM. Scalable, transparent, and post-quantum secure computational integrity.2018Available from: https://eprint.iacr.org/2018/46
  79. BonehD. Twenty years of attacks on the RSA cryptosystem.2018Available from: https://crypto.stanford.edu/%7Edabo/pubs/papers/RSA-survey.pdf
  80. Ben-SassonE. ChiesaA. GarmanC. GreenM. MiersI. TromerE. VirzaM. Zerocash: Decentralized anonymous payments from bitcoin.IEEE Symposium on Security and Privacy2014
    [Google Scholar]
  81. NuñezD. AgudoI. BlindIdM: A privacy-preserving approach for identity management as a service.Int. J. Inf. Secur.201413219921510.1007/s10207‑014‑0230‑4
    [Google Scholar]
  82. ChowS. HeY.J. HuiL. YiuS. SPICE–simple privacy-preserving identity-management for cloud environment.Applied Cryptography and Network SecurityBerlin, HeidelbergSpringer BaoF. SamaratiP. ZhouJ. 201252654310.1007/978‑3‑642‑31284‑7_31
    [Google Scholar]
  83. BertinoE. PaciF. FerriniR. ShangN. Privacy preserving digital identity management for cloud computing.Q. Bull. Comput. Soc. IEEE Tech. Comm. Data Eng.20093212127
    [Google Scholar]
  84. DeyA. WeisS. PseudoID: Enhancing privacy for federated login.3rd Hot Topics in Privacy Enhancing Technologies - HotPETs,Berlin, Germany, July 23, 2010, pp. 1-13.
    [Google Scholar]
  85. ShivaprasadS. LiH. ZouX. Privacy Preservation in Location Based Services.J. Comput. (Taipei)2016115411ep2
    [Google Scholar]
  86. JiaX. XingL. GaoJ. WuH. A Survey of Location Privacy Preservation in Social Internet of Vehicles.IEEE Access2020820196620198410.1109/ACCESS.2020.3036044
    [Google Scholar]
  87. DietzelS. PetitJ. KarglF. ScheuermannB. In-network aggregation for vehicular Ad hoc networks.IEEE Commun. Surv. Tutor.20141641909193210.1109/COMST.2014.2320091
    [Google Scholar]
  88. Caballero-GilC. Molina-GilJ. Hernández-SerranoJ. LeónO. Soriano-IbañezM. Providing k-anonymity and revocation in ubiquitous VANETs.Ad Hoc Netw.20163648249410.1016/j.adhoc.2015.05.016
    [Google Scholar]
  89. MeiY. CuiY.Q. JiangG.Z. A privacy preserving communication scheme for VANETs.Applied Mechanics and MaterialsTrans Tech Publications, Ltd.2014556-5625133513810.4028/www.scientific.net/AMM.556‑562.5133
    [Google Scholar]
  90. GopeP. Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment.Future Gener. Comput. Syst.2017
    [Google Scholar]
  91. YangX. RenX. YangS. McCannJ. A novel temporal perturbation based privacy-preserving scheme for real-time monitoring systems.Comput. Netw.201588728810.1016/j.comnet.2015.06.007
    [Google Scholar]
  92. AraA. Al-RodhaanM. TianY. Al-DhelaanA. A secure privacy-preserving data aggregation scheme based on bilinear ElGamal cryptosystem for remote health monitoring systems.IEEE Access20175126011261710.1109/ACCESS.2017.2716439
    [Google Scholar]
  93. ZhouJ. CaoZ. DongX. VasilakosA.V. Security and privacy for cloud-based IoT: challenges.IEEE Commun. Mag.2017551263310.1109/MCOM.2017.1600363CM
    [Google Scholar]
  94. HenzeM. HermerschmidtL. KerpenD. HäußlingR. RumpeB. WehrleK. A comprehensive approach to privacy in the cloud-based Internet of Things.Future Gener. Comput. Syst.20165670171810.1016/j.future.2015.09.016
    [Google Scholar]
  95. LeJ. LiaoX. YangB. Full autonomy: A novel individualized anonymity model for privacy preserving.Comput. Secur.20176620421710.1016/j.cose.2016.12.010
    [Google Scholar]
  96. NeisseR. SteriG. FovinoI.N. BaldiniG. SecKit: a model-based security toolkit for the internet of things.Comput. Secur.201554607610.1016/j.cose.2015.06.002
    [Google Scholar]
  97. HuangQ. YangY. WangL. Secure data access control with ciphertext update and computation outsourcing in fog computing for internet of things.IEEE Access20175129411295010.1109/ACCESS.2017.2727054
    [Google Scholar]
  98. IvascuT. FrîncuM. NegruV. Considerations towards security and privacy in Internet of Things based eHealth applications.IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY),Subotica, Serbia, 2016, pp. 275-280.10.1109/SISY.2016.7601512
    [Google Scholar]
  99. SarwarK. YongchareonS. YuJ. ur RehmanS. Lightweight, Divide-and-Conquer privacy-preserving data aggregation in fog computing.Future Gener. Comput. Syst.202111918819910.1016/j.future.2021.02.013
    [Google Scholar]
  100. BaniataH. AlmobaideenW. KerteszA. A Privacy Preserving Model for Fog-enabled MCC systems using 5G Connection2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC)202022323010.1109/FMEC49853.2020.9144814
    [Google Scholar]
  101. RanaS. MishraD. AroraR. Privacy-Preserving Key Agreement Protocol for Fog Computing Supported Internet of Things Environment.Wirel. Pers. Commun.2021119172774710.1007/s11277‑021‑08234‑4
    [Google Scholar]
  102. ShenX. ZhuL. XuC. SharifK. LuR. A privacy-preserving data aggregation scheme for dynamic groups in fog computing.Inf. Sci.202051411813010.1016/j.ins.2019.12.007
    [Google Scholar]
  103. KhanS. ParkinsonS. QinY. Fog computing security: a review of current applications and security solutions.J. Cloud Comput. (Heidelb.)2017611910.1186/s13677‑017‑0090‑3
    [Google Scholar]
  104. PiaoC. ShiY. YanJ. ZhangC. LiuL. Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach.Future Gener. Comput. Syst.20199015817410.1016/j.future.2018.07.038
    [Google Scholar]
  105. WangX. GuB. QuY. RenY. XiangY. GaoL. Reliable Customized Privacy-Preserving in Fog ComputingICC 2020 - 2020 IEEE International Conference on Communications (ICC)20201610.1109/ICC40277.2020.9148989
    [Google Scholar]
  106. TongQ. MiaoY. LiH. LiuX. DengR.H. Privacy-preserving ranked spatial keyword query in mobile cloud-assisted fog computing.IEEE Trans. Mobile Comput.20232263604361810.1109/TMC.2021.3134711
    [Google Scholar]
  107. KaurA. AuluckN. Real‐time trust aware scheduling in fog‐cloud systems.Concurr. Comput.20233510e768010.1002/cpe.7680
    [Google Scholar]
  108. BianM. LiuJ. SunS. ZhangX. RenY. Verifiable privacy-enhanced rotation invariant LBP feature extraction in fog computing.IEEE Trans. Industr. Inform.20231912115181153010.1109/TII.2023.3246992
    [Google Scholar]
  109. BaiW. HuangA. Privacy-preserving collaborative sharing for sharing economy in fog-enhanced IoT.IEEE Access202311952959530610.1109/ACCESS.2023.3280637
    [Google Scholar]
  110. GuifangZ. A novel approach for privacy preserving technique in IoT fog and cloud environment.Intelligent Sustainable SystemSingaporeSpringer RajJ.S. PerikosI. BalasV.E. 202311713610.1007/978‑981‑99‑1726‑6_10
    [Google Scholar]
  111. SendhilR. AmuthanA. Verifiable quaternion fully homomorphic encryption scheme for mitigating false data injection attacks by privacy preservation in fog environment.J. Inf. Secur. Appl.20227110338310.1016/j.jisa.2022.103383
    [Google Scholar]
  112. YuZ. Privacy-preserving federated deep learning for cooperative hierarchical caching in fog computing.IEEE Internet Things J.202292210.1109/JIOT.2021.3081480
    [Google Scholar]
  113. KimH-J. KimY-K. LeeH-J. ChangJ-W. Privacy-preserving top-k query processing algorithms using efficient secure protocols over encrypted database in cloud computing environment.Electronics (Basel)20221118287010.3390/electronics11182870
    [Google Scholar]
  114. GowdaN.C. ManviS.S. MalakreddyB. Blockchain-based access control model with privacy preservation in a fog computing environment.IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT),Bangalore, India, 08-10 July 2022, pp. 1-6.10.1109/CONECCT55679.2022.9865845
    [Google Scholar]
  115. Li Y. Practical Privacy-Preserving Federated Learning in Vehicular Fog Computing.IEEE Trans. Vehicular Technol.2022715110.1109/TVT.2022.3150806
    [Google Scholar]
  116. WanJ. An efficient impersonation attack detection method in fog computing.Comput. Mater. Contin.202168126728110.32604/cmc.2021.016260
    [Google Scholar]
  117. TuS. WaqasM. RehmanS.U. AamirM. RehmanO.U. JianbiaoZ. ChangC-C. Security in fog computing: A novel technique to tackle an impersonation attack.IEEE Access20186749937500110.1109/ACCESS.2018.2884672
    [Google Scholar]
  118. ArringtonM. In our inbox: Hundreds of confidential Twitter documents.2009Available from: http://techcrunch.com/2009/07/14/ in-our-inbox-hundreds-of-confidential-twitter-documents/
  119. TakahashiD. French hacker who leaked twitter documents to techcrunch is busted.2010Available from: http://venturebeat.com/2010/03/24/ french-hacker-who-leaked-twitter-documents-to-techcrunch-is-busted/
  120. AllenP. Obamas Twitter password revealed after french hacker arrested for breaking into U.S. presidents account.2010Available from: http://www.dailymail.co.uk/news/article-1260488/ Barack-Obamas-Twitter-password-revealed-French-hacker-arrested. html
  121. RochaF. CorreiaM. Lucy in the sky without diamonds: Stealing confidential data in the cloud201110.1109/DSNW.2011.5958798
    [Google Scholar]
  122. PepitoneJ. Dropbox’s password nightmare highlights cloud risks.2011Available from: http://money.cnn.com/ 2011/06/22/technology/dropbox passwords/index.html
  123. StolfoS.J. SalemM.B. KeromytisA.D. Fog computing: Mitigating insider data theft attacks in the CloudProc. IEEE Symp. on Security and Privacy Workshops201212512810.1109/SPW.2012.19
    [Google Scholar]
  124. AbdulkareemK.H. MohammedM.A. GunasekaranS.S. Al-MhiqaniM.N. MutlagA.A. MostafaS.A. AliN.S. IbrahimD.A. A review of fog computing and machine learning: Concepts, applications, challenges, and open issues.IEEE Access2019715312315314010.1109/ACCESS.2019.2947542
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558283303250103030013
Loading
/content/journals/rascs/10.2174/0126662558283303250103030013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test