Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

To analyze a broad spectrum of cytokine in the serum of patients with JDM.

Juvenile dermatomyositis (JDM) is the most common subtype of idiopathic inflammatory myopathies characterized by muscle and skin involvement. The etiology of JDM is unclear. A variety of cytokines play a role in the pathogenesis of JDM. Interferons, galectin-9, CLCX10, and neopterin are the most promising biomarkers.

This study describes the associations between clinical symptoms, cytokine, and interferon profiles in children with JDM.

Ten patients (6 girls and 4 boys) with JDM were included in the study. The clinical symptoms, disease activity (CMAS, CAT), laboratory parameters, and treatment were assessed. Forty-one cytokines levels and IFN-I scores in the serum were measured. The levels of cytokines were compared with a group of healthy controls (n=25).

Significant differences were observed in 21 of 41 analyzed cytokines between JDM patients and healthy controls. Patients with active disease (n=8) have higher levels of fractalkine ( = 0.036), IFNa ( = 0.037), IFNg ( = 0.037), GRO ( = 0.037), IL-10 ( = 0.037), IL-12p40 ( = 0.037), IL-12p70 ( = 0.048), IL-17a ( = 0.048), IL-1RA ( = 0.037), IL-1a ( = 0.037), compared to patients with inactive disease (n=2). A strong positive association was found between aCAT activity and eotaxin (r=0.753, =0.012), GRO (r=0.735, =0.015), IP-10 (r=0.805, =0.005), and MCP-1 (r=0.734, =0.016). A strong negative correlation association was observed between CMAS and eotaxin (r= -0.714, =0.020), GRO (r= -0.727, =0.017), IL-10 (r= -0.786, =0.007), IP-10 (r= - 0.719, =0.019), and MCP-1 (r= -0.800, =0.005). IFN-I scores showed a positive correlation with IFNa (r=0.790, =0.007), GRO (r=0.736, =0.015) and IL-1RA (r=0.930, <0.001).

Among the spectrum of 41 cytokines, GRO, eotaxin, IP-10, and MCP-1 have shown the strongest association with JDM activity.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708322756240820110005
2024-09-04
2025-09-04
Loading full text...

Full text loading...

References

  1. PapadopoulouC. ChewC. WilkinsonM.G.L. McCannL. WedderburnL.R. Juvenile idiopathic inflammatory myositis: An update on pathophysiology and clinical care.Nat. Rev. Rheumatol.202319634336210.1038/s41584‑023‑00967‑937188756
    [Google Scholar]
  2. MendezE.P. LiptonR. Ramsey-GoldmanR. RoettcherP. BowyerS. DyerA. PachmanL.M. NIAMS Juvenile DM Registry Physician Referral Group US incidence of juvenile dermatomyositis, 1995–1998: Results from the national institute of arthritis and musculoskeletal and skin diseases registry.Arthritis Care Res.200349330030510.1002/art.1112212794783
    [Google Scholar]
  3. FeldmanB.M. RiderL.G. ReedA.M. PachmanL.M. Juvenile dermatomyositis and other idiopathic inflammatory myopathies of childhood.Lancet200837196312201221210.1016/S0140‑6736(08)60955‑118586175
    [Google Scholar]
  4. Pinal-FernandezI. MammenA.L. Dermatomyositis etiopathogenesis: A rebel soldier in the muscle.Curr. Opin. Rheumatol.201830662362910.1097/BOR.000000000000054030148802
    [Google Scholar]
  5. BetteridgeZ. McHughN. Myositis-specific autoantibodies: An important tool to support diagnosis of myositis.J. Intern. Med.2016280182310.1111/joim.1245126602539
    [Google Scholar]
  6. RoderoM.P. DecalfJ. BondetV. HuntD. RiceG.I. WernekeS. McGlassonS.L. AlyanakianM.A. Bader-MeunierB. BarneriasC. BellonN. BelotA. BodemerC. BriggsT.A. DesguerreI. FrémondM.L. HullyM. van den MaagdenbergA.M.J.M. MelkiI. MeytsI. MussetL. PelzerN. QuartierP. TerwindtG.M. WardlawJ. WisemanS. Rieux-LaucatF. RoseY. NevenB. HertelC. HaydayA. AlbertM.L. RozenbergF. CrowY.J. DuffyD. Detection of interferon alpha protein reveals differential levels and cellular sources in disease.J. Exp. Med.201721451547155510.1084/jem.2016145128420733
    [Google Scholar]
  7. RiceG.I. MelkiI. FrémondM.L. BriggsT.A. RoderoM.P. KitabayashiN. OojageerA. Bader-MeunierB. BelotA. BodemerC. QuartierP. CrowY.J. Assessment of type I interferon signaling in pediatric inflammatory disease.J. Clin. Immunol.201737212313210.1007/s10875‑016‑0359‑127943079
    [Google Scholar]
  8. FallN. BoveK.E. StringerK. LovellD.J. BrunnerH.I. WeissJ. HigginsG.C. BowyerS.L. GrahamT.B. ThorntonS. GromA.A. Association between lack of angiogenic response in muscle tissue and high expression of angiostatic ELR-negative CXC chemokines in patients with juvenile dermatomyositis: Possible link to vasculopathy.Arthritis Rheum.200552103175318010.1002/art.2130316200621
    [Google Scholar]
  9. RiderL.G. SchiffenbauerA.S. ZitoM. LimK.L. AhmedA. ZemelL.S. RennebohmR.M. PassoM.H. SummersR.M. HicksJ.E. LachenbruchP.A. HeyesM.P. MillerF.W. Juvenile Dermatomyositis Disease Activity Collaboration Study Group Neopterin and quinolinic acid are surrogate measures of disease activity in the juvenile idiopathic inflammatory myopathies.Clin. Chem.200248101681168812324484
    [Google Scholar]
  10. Bellutti EndersF. van WijkF. ScholmanR. HoferM. PrakkenB.J. van Royen-KerkhofA. de JagerW. Correlation of CXCL10, tumor necrosis factor receptor type II, and galectin 9 with disease activity in juvenile dermatomyositis.Arthritis Rheumatol.20146682281228910.1002/art.3867624756983
    [Google Scholar]
  11. TangYY WangDC ChenYY XuWD HuangAF Th1-related transcription factors and cytokines in systemic lupus erythematosus.Front Immunol202314130559010.3389/fimmu.2023.1305590
    [Google Scholar]
  12. BohanA. PeterJ.B. Polymyositis and dermatomyositis.N. Engl. J. Med.1975292734434710.1056/NEJM1975021329207061090839
    [Google Scholar]
  13. GreenbergS.A. HiggsB.W. MorehouseC. WalshR.J. Won KongS. BrohawnP. ZhuW. AmatoA. SalajeghehM. WhiteB. KienerP.A. JallalB. YaoY. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis.Genes Immun.201213320721310.1038/gene.2011.6121881594
    [Google Scholar]
  14. Pinal-FernandezI. Casal-DominguezM. DerfoulA. PakK. PlotzP. MillerF.W. MilisendaJ.C. Grau-JunyentJ.M. Selva-O’CallaghanA. PaikJ. AlbaydaJ. Christopher-StineL. LloydT.E. CorseA.M. MammenA.L. Identification of distinctive interferon gene signatures in different types of myositis.Neurology20199312e1193e120410.1212/WNL.000000000000812831434690
    [Google Scholar]
  15. O’ConnorK.A. AbbottK.A. SabinB. KurodaM. PachmanL.M. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: Association with muscle involvement.Clin. Immunol.2006120331932510.1016/j.clim.2006.05.01116859997
    [Google Scholar]
  16. BaechlerE.C. BauerJ.W. SlatteryC.A. OrtmannW.A. EspeK.J. NovitzkeJ. YtterbergS.R. GregersenP.K. BehrensT.W. ReedA.M. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity.Mol. Med.2007131-2596810.2119/2006‑00085.Baechler17515957
    [Google Scholar]
  17. KhojahA MorganG PachmanLM Clues to disease activity in juvenile dermatomyositis: Neopterin and other biomarkers.Diagnostics2021121810.3390/diagnostics12010008
    [Google Scholar]
  18. YadavA. SainiV. AroraS. MCP-1: Chemoattractant with a role beyond immunity: A review.Clin. Chim. Acta201041121-221570157910.1016/j.cca.2010.07.00620633546
    [Google Scholar]
  19. MartinelliR. SabroeI. LaRosaG. WilliamsT.J. PeaseJ.E. The CC chemokine eotaxin (CCL11) is a partial agonist of CC chemokine receptor 2b.J. Biol. Chem.200127646429574296410.1074/jbc.M10393320011559700
    [Google Scholar]
  20. SannerH SchwartzT FlatøB VistnesM ChristensenG SjaastadI Increased levels of eotaxin and MCP-1 in juvenile dermatomyositis median 16.8 years after disease onset; Associations with disease activity, duration and organ damage.PLoS One201493e9217110.1371/journal.pone.0092171
    [Google Scholar]
  21. SchwartzT. SjaastadI. FlatøB. VistnesM. ChristensenG. SannerH. In active juvenile dermatomyositis, elevated eotaxin and MCP-1 and cholesterol levels in the upper normal range are associated with cardiac dysfunction.Rheumatology201453122214222210.1093/rheumatology/keu25624996906
    [Google Scholar]
  22. LiuM. GuoS. StilesJ.K. The emerging role of CXCL10 in cancer (Review).Oncol. Lett.20112458358910.3892/ol.2011.30022848232
    [Google Scholar]
  23. CollisonJ. Serum biomarkers of disease activity in JDM.Nat. Rev. Rheumatol.201915525010.1038/s41584‑019‑0210‑130914772
    [Google Scholar]
  24. CrowsonCS HeinMS PendegraftRS Interferon chemokine score and other cytokine measures track with changes in disease activity in patients with juvenile and adult dermatomyositis.ACR Open Rheumatol201912838910.1002/acr2.1011
    [Google Scholar]
  25. PaikJ.J. LubinG. GromatzkyA. MuddP.N.Jr PondaM.P. Christopher-StineL. Use of Janus kinase inhibitors in dermatomyositis: A systematic literature review.Clin. Exp. Rheumatol.202241234835810.55563/clinexprheumatol/hxin6o35766013
    [Google Scholar]
  26. BlumF.R. SampathA.J. FoulkeG.T. Anifrolumab for treatment of refractory cutaneous lupus erythematosus.Clin. Exp. Dermatol.202247111998200110.1111/ced.1533535844070
    [Google Scholar]
  27. ZengFAP MurrellDF Bullous pemphigoid-What do we know about the most recent therapies?Front Med20229105709610.3389/fmed.2022.1057096
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708322756240820110005
Loading
/content/journals/raiad/10.2174/0127722708322756240820110005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test