Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

The orofacial mucous membrane is an appealing route for drug delivery to improve both systemic and local treatments. The aim of the present study was to develop an oral dental film loaded with curcumin hydrotropic solid dispersion for sustained drug delivery in the orofacial region. Compared to other dosage forms, films are the most elegant, palatable, and suitable systems for systemic mucosal drug delivery.

Methods

A hydrotropic solid dispersion technique utilizing 2 M sodium salicylate was developed to enhance the solubility of curcumin, addressing its poor water solubility. By forming a solid dispersion with a 1:4 ratio through solvent evaporation, the physicochemical properties of the curcumin-loaded system were evaluated.

Results

The utilization of sodium salicylate hydrotrope in a molecular dispersion significantly improved the solubility and bioavailability of curcumin. Subsequently, an oral dental film loaded with hydrotropic solid dispersion was developed using the solvent casting method with HPMC and gelatin as mucoadhesive polymers. Six different films were prepared using polymeric blends with HPMC and gelatin, which showed homogeneity, yellowish colour, and high drug content uniformity of 98.56 ± 3.24, with thickness ranging from 0.16 mm to 0.24 mm. The films exhibited excellent folding endurance and tensile strength for improved patient palatability. studies demonstrated a significant enhancement in curcumin release, reaching a maximum of 94.66% over seven days in the presence of sodium salicylate hydrotrope, following first-order kinetics. An permeation of Cur-F3 film had a significant effect on mucoadhesion.

Conclusion

Using hydrotropes in oral film formulation is a new and sustainable method for delivering clinically significant curcumin through the oral mucosa. As a result, it is recommended for use in the design of treatments for other dental diseases.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708304103240821072801
2024-08-29
2025-09-04
Loading full text...

Full text loading...

References

  1. HalpernL.R. Approaches to the management of facial pain.Oral and Maxillofacial Surgery.Medicine, and Pathology for the Clinician202324325910.1002/9781119362579.ch20
    [Google Scholar]
  2. RamanS. IkutameD. OkuraK. MatsukaY. Targeted therapy for orofacial pain: A novel perspective for precision medicine.J. Pers. Med.202313356510.3390/jpm13030565 36983746
    [Google Scholar]
  3. Pavan RathodDAK Orofacial dental pain and its management – A general guide and systemic review.Int J Curr Sci Res Rev20214610.47191/ijcsrr/V4‑i6‑04
    [Google Scholar]
  4. WarnsinckC. ShemeshH. LobbezooF. Persisterende pijn na endodontische behandeling.Ned. Tijdschr. Tandheelkd.2013120
    [Google Scholar]
  5. GuptaR. MohanV. MahayP. YadavP. Orofacial pain.A review. Dentistry2016632610.4172/2161‑1122.1000367
    [Google Scholar]
  6. WhyteA. MatiasM.A.T.J. Imaging of orofacial pain.J. Oral Pathol. Med.202049649049810.1111/jop.13063 32531821
    [Google Scholar]
  7. MaulinaT. PurnomoY.Y. TasmanS.G.R. SjamsudinE. AmaliyaA. The Efficacy of curcumin patch as an adjuvant therapeutic agent in managing acute orofacial pain on the post-cleft lip and cleft palate surgery patients: A pragmatic trial.Eur. J. Dent.202317241141710.1055/s‑0042‑1750802 36096139
    [Google Scholar]
  8. SterniczukB. RossouwP.E. MichelogiannakisD. JavedF. Effectiveness of curcumin in reducing self-rated pain-levels in the orofacial region: A systematic review of randomized-controlled trials.Int. J. Environ. Res. Public Health20221911644310.3390/ijerph19116443 35682028
    [Google Scholar]
  9. HegdeM. GirisaS. BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far?ACS Omega2023812107131074610.1021/acsomega.2c07326 37008131
    [Google Scholar]
  10. ZhangJ. ZhangY. WangH. Solubilisation and enhanced oral absorption of curcumin using a natural non-nutritive sweetener Mogroside V.Int. J. Nanomedicine2023181031104510.2147/IJN.S395266 36855540
    [Google Scholar]
  11. BragaM. SeabraI. DiasA. De SousaH. Recent trends and perspectives for the extraction of natural products.RSC Green Chemistry201310.1039/9781849737579‑00231
    [Google Scholar]
  12. TripathiD. ChaudharyN. Kumar SharmaD. SahooJ. An attempt to applying hydrotropy technique for titrimetric estimation of ketoprofen using sodium salicylate as hydrotrope.Res J Pharm Technol20211442277227910.52711/0974‑360X.2021.00402
    [Google Scholar]
  13. TripathiD RamanSK SahooJ SharmaDK RaiAK Technical applications of hydrotropes: Sustainable and green carriers.Biointerface Res Appl Chem20231319110.33263/BRIAC131.091
    [Google Scholar]
  14. KarajgiS. HajeriS. PotadarS. Utilization of hydrotropic solubilisation technique for quantitative studies of dexamethasone in pharmaceutical preparations.Res J Pharm Technol202215125785578810.52711/0974‑360X.2022.00976
    [Google Scholar]
  15. AnumSaif KhanR.A. Uz ZamanS. AtifSarwar SarwarA. ArifMN. Effects of hydrotropic phenomenon on solubility enhancement of ebastine; Formulation and characterization.Pharmacol. Commun.202211556910.55627/pharma.001.001.0180
    [Google Scholar]
  16. Abdullah AliH. Kamal OmerH. Solubility enhancement of a poorly water-soluble drug using hydrotropy and mixed hydrotropy-based solid dispersion techniques.Adv. Pharmacol. Pharm. Sci.20222022111610.1155/2022/7161660 36479276
    [Google Scholar]
  17. SeenivasanR. IyerS.S. NarayanasamyV.P. KrishnanV. AnandM.I. VenkateshD.N. Solubility enhancement of terbinafine hydrochloride by hydrotropic technique.J Med Pharm Allied Sci20231255965603
    [Google Scholar]
  18. TripathiD. ChaudharyN. SharmaD.K. SahooJ. Insightful investigative account on hydrotropic solubilization practice utilized for solubility management of poorly dissolvable drugs.Curr. Drug Ther.202116539340810.2174/1574885516666210914105024
    [Google Scholar]
  19. TripathiD. SharmaD.K. SahooJ. Analytical applications of mefenamic acid by hydrotrope approach: Titrimetric estimation and ultraviolet method validation.Asian J. Pharm. Clin. Res.20211474044
    [Google Scholar]
  20. TripathiD SahooJ SharmaDK RamanSK Ecologically validated UV method for etodolac estimation in pharmaceutical formulation using green hydrotropic solution and forced degradation study for stability detection.Letters in Applied NanoBioScience20241311410.33263/LIANBS131.014
    [Google Scholar]
  21. MartinsA.C. BenficaJ. Peréz-SanchézG. Assessing the hydrotropic effect in the presence of electrolytes: Competition between solute salting-out and salt-induced hydrotrope aggregation.Phys. Chem. Chem. Phys.20222436216452165410.1039/D2CP00749E 36065900
    [Google Scholar]
  22. LimB. ThengM.W. Buccal delivery of curcumin to address its poor gastrointestinal stability.IRC-SET.201832132310.1007/978‑981‑32‑9828‑6_26
    [Google Scholar]
  23. GujjariS.K. AnilA. VenkateshM. Evaluation of a curcumin-containing mucoadhesive film for periodontal postsurgical pain control.J. Indian Soc. Periodontol.201923546146810.4103/jisp.jisp_700_18 31543620
    [Google Scholar]
  24. PradoB NascimentoL CostaJ Development of biopolymer wafers for bucal administration of curcumin.Journal of Scientific Initiation Work at UNICAMP201910.20396/revpibic2720192923
    [Google Scholar]
  25. NawazA. FaridA. SafdarM. Formulation development and ex-vivo permeability of curcumin hydrogels under the influence of natural chemical enhancers.Gels20228638410.3390/gels8060384 35735728
    [Google Scholar]
  26. FanW. ZhuW. ZhangX. DiL. The preparation of curcumin sustained-release solid dispersion by hot melt Extrusion—I. Optimization of the formulation.J. Pharm. Sci.202010931242125210.1016/j.xphs.2019.11.019 31809744
    [Google Scholar]
  27. LimL.M. HadinotoK. High-payload buccal delivery system of amorphous curcumin–chitosan nanoparticle complex in hydroxypropyl methylcellulose and starch films.Int. J. Mol. Sci.20212217939910.3390/ijms22179399 34502305
    [Google Scholar]
  28. GuptaJ. GuptaR. RoyS. Green technologies: Smart approaches for extraction of phytobioactive constituents using hydrotropic solvents.Eur. J. Mol. Clin. Med.202297
    [Google Scholar]
  29. SalesI. AbranchesD.O. CostaP. Enhancing artemisinin solubility in aqueous solutions: Searching for hydrotropes based on ionic liquids.Fluid Phase Equilib.202153411296110.1016/j.fluid.2021.112961
    [Google Scholar]
  30. DegotP. HuberV. El MaangarA. Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa.J. Mol. Liq.202132911553810.1016/j.molliq.2021.115538
    [Google Scholar]
  31. OliveiraG. FariasF.O. SosaF.H.B. Igarashi-MafraL. MafraM.R. Green solvents to tune the biomolecules’ solubilization in aqueous media: An experimental and in silico approach by COSMO-RS.J. Mol. Liq.202134111731410.1016/j.molliq.2021.117314
    [Google Scholar]
  32. Sheetal ChauhanSC Monika BansalMB Gayasuddin KhanGK YadavS SinghA Pradyot PrakashPP Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis.Drug Dev Ind Pharm20184471212122110.1080/03639045.2018.1439501
    [Google Scholar]
  33. HuangS. WilliamsR.O.III Effects of the preparation process on the properties of amorphous solid dispersions.AAPS PharmSciTech20181951971198410.1208/s12249‑017‑0861‑7 28924730
    [Google Scholar]
  34. MendonsaN. AlmutairyB. KallakuntaV.R. Manufacturing strategies to develop amorphous solid dispersions: An overview.J. Drug Deliv. Sci. Technol.20205510145910.1016/j.jddst.2019.101459 32863891
    [Google Scholar]
  35. KamaliH. FarzadniaP. MovaffaghJ. AbbaspourM. Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design.J. Drug Deliv. Sci. Technol.20227510371410.1016/j.jddst.2022.103714
    [Google Scholar]
  36. Chandrakant JadhavK. Sukumar HegajeS. Uttam JadhavS. Sopanrao VaidhyaR. Ramesh RedkarM. Formulation and evaluation of solid dispersion of poorly soluble drugs.Asian J Pharm Technol202212430931210.52711/2231‑5713.2022.00050
    [Google Scholar]
  37. AlsayadR IahamA Preparation and in vitro evaluation for amorphous solid dispersion of azithromycin.202310.21203/rs.3.rs‑2446889/v1
    [Google Scholar]
  38. GuliaR. SinghS. SharmaN. AroraS. Hydrotropic solid dispersions: A robust application to undertake solubility challenges.Plant Arch.202020132793284
    [Google Scholar]
  39. PatelM. IndurkhyaA. KhanM.A. Improvement of dissolution rate of repaglinide by utilizing solid dispersion technique.Curr Res Pharm SCi20231317882
    [Google Scholar]
  40. GierkeH. SchaeferK. GerlichL. An in vitro model to investigate the potential of solid dispersions to form pharmacobezoars.Pharmaceutics20221412260810.3390/pharmaceutics14122608 36559103
    [Google Scholar]
  41. ChiaoprakobkijN. SuwanmajoT. SanchavanakitN. PhisalaphongM. Curcumin-loaded bacterial cellulose/alginate/gelatin as a multifunctional biopolymer composite film.Molecules20202517380010.3390/molecules25173800 32825570
    [Google Scholar]
  42. KöseM.D. BayraktarO. HelvacıoğluM. EnginB. Preparation and characterization of biopolymer based bioactive mucoadhesive films with turmeric extract.J Pharm Appl Chem201841414510.18576/jpac/040106
    [Google Scholar]
  43. SrilathaK. KulkaraniS.V. ShringiM. KumarP.A. GopalakrishnaB. Formulation and charaterization of curcumin perio dontal films for local delivery of antimicrobials.J. Pharm. Negat. Results202218011814
    [Google Scholar]
  44. Rohani ShirvanA. BashariA. HemmatinejadN. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system.Eur. Polym. J.201911954155010.1016/j.eurpolymj.2019.07.010
    [Google Scholar]
  45. PostolovićK LjujićB KovačevićMM Optimization, characterization, and evaluation of carrageenan/alginate/poloxamer/ curcumin hydrogel film as a functional wound dressing material.Mater Today Commun20223110352810.1016/j.mtcomm.2022.103528
    [Google Scholar]
  46. AnsariM. SadaraniB. MajumdarA. Optimization and evaluation of mucoadhesive buccal films loaded with resveratrol.J. Drug Deliv. Sci. Technol.20184427828810.1016/j.jddst.2017.12.007
    [Google Scholar]
  47. MuzibY.I. KumariK.S. Mucoadhesive buccal films of glibenclamide: Development and evaluation.Int. J. Pharm. Investig.201111424710.4103/2230‑973X.76728 23071919
    [Google Scholar]
  48. WuW. ChenW. JinQ. Oral mucoadhesive buccal film of ciprofloxacin for periodontitis: Preparation and characterization.Trop. J. Pharm. Res.201615344745110.4314/tjpr.v15i3.3
    [Google Scholar]
  49. LiX-Q. YeZ-M. WangJ-B. Mucoadhesive buccal films of tramadol for effective pain management.Rev. Bras. Anestesiol.201767323123710.1016/j.bjan.2016.10.006 27899200
    [Google Scholar]
  50. NarayananA.V. BanuS. Curcumin intra-oral controlled release films for oral candidiasis: A comparative study with fluconazole, elucidation of release mechanism.Curr. Drug Ther.2018131435510.2174/1574885512666171006162948
    [Google Scholar]
  51. PattewarS. PatilD. SharmaS. Fabrication and characterization of self-microemulsifying mouth dissolving film for effective delivery of piroxicam.Indian J. Pharm. Sci.201981503513
    [Google Scholar]
  52. SamalH.B. Design and in vitro evaluation of curcumin dental films for the treatment of periodontitis.Asian J. Pharm.20171103
    [Google Scholar]
  53. SinhaS Sonali GargV Empagliflozin containing chitosan-alginate nanoparticles in orodispersible film: preparation, characterization, pharmacokinetic evaluation and its in-vitro anticancer activity.Drug Dev. Ind. Pharm.202248727929110.1080/03639045.2022.2108829 35913103
    [Google Scholar]
  54. AhmedT.A. BawazirA.O. AlharbiW.S. SafoM.K. Enhancement of simvastatin ex vivo permeation from mucoadhesive buccal films loaded with dual drug release carriers.Int. J. Nanomedicine2020154001402010.2147/IJN.S256925 32606661
    [Google Scholar]
  55. ChroniA. MavromoustakosT. PispasS. Curcumin-loaded PnBA-b-POEGA Nanoformulations: A study of drug-polymer interactions and release behavior.Int. J. Mol. Sci.2023245462110.3390/ijms24054621 36902057
    [Google Scholar]
  56. IshtiaqM. AsgharS. KhanI.U. IqbalM.S. KhalidS.H. Development of the amorphous solid dispersion of curcumin: A rational selection of polymers for enhanced solubility and dissolution.Crystals (Basel)20221211160610.3390/cryst12111606
    [Google Scholar]
  57. LiT. ZhaoY. MatthewsK. Antibacterial activity against Staphylococcus aureus of curcumin-loaded chitosan spray coupled with photodynamic treatment.Lebensm. Wiss. Technol.202013411007310.1016/j.lwt.2020.110073
    [Google Scholar]
  58. KarkiD. KulkarniG.S. SwamyS. SheebaF.R. Formulation and evaluation of mucoadhesive buccal tablets of curcumin and its bioavailability study.Res J Pharm Technol201710124121412810.5958/0974‑360X.2017.00750.8
    [Google Scholar]
  59. RojaY. AhadH.A. ChinthaginjalaH. SoumyaM. MuskanS. A glance at the literature review on buccal films.RJPDFT202214218919210.52711/0975‑4377.2022.00030
    [Google Scholar]
  60. GaberD.A. AlburaykanA.I. AlrutheaL.M. Development, in vitro evaluation, and in vivo study of adhesive buccal films for the treatment of diabetic pediatrics via trans mucosal delivery of Gliclazide.Drug Des. Devel. Ther.2022164235425010.2147/DDDT.S394523 36536629
    [Google Scholar]
  61. MorrisB. End-use factors influencing the design of flexible packaging.The Science and Technology of Flexible Packaging.Oxford, UK; Cambridge, MA, USAElsevier201761765410.1016/B978‑0‑323‑24273‑8.00016‑2
    [Google Scholar]
  62. MoralesJ.M.H. GaudeC. RatelD. SouriauJ-C. SimonG. BergerF. Quantifying the biodegradation of packaging thin films intended for medical micro devices.Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015)Barcelona, Spain2015134
    [Google Scholar]
  63. PrezottiF.G. SiedleI. BoniF.I. ChorilliM. MüllerI. CuryB.S.F. Mucoadhesive films based on gellan gum/pectin blends as potential platform for buccal drug delivery.Pharm. Dev. Technol.202025215916710.1080/10837450.2019.1682608 31623500
    [Google Scholar]
  64. ShanmugamK. ChandrasekarN. BalajiR. Water vapor permeability of smooth cellulose nanofiber film prepared via spraying.Charact Appl202361206810.24294/can.v6i1.2068
    [Google Scholar]
  65. SantadkhaT. SkolpapW. ThitapakornV. Diffusion modeling and in vitro release kinetics studies of curcuminloaded superparamagnetic nanomicelles in cancer drug delivery system.J. Pharm. Sci.202211161690169910.1016/j.xphs.2021.11.015 34838781
    [Google Scholar]
  66. GirisaS. KumarA. RanaV. From simple mouth cavities to complex oral mucosal disorders—Curcuminoids as a promising therapeutic approach.ACS Pharmacol. Transl. Sci.20214264766510.1021/acsptsci.1c00017 33860191
    [Google Scholar]
  67. BegumM.Y. AlqahtaniA. GhazwaniM. Preparation of Carbopol 934 based ketorolac tromethamine buccal mucoadhesive film: In vitro, ex vivo, and in vivo assessments.Int. J. Polym. Sci.20212021111110.1155/2021/4786488
    [Google Scholar]
  68. SarkarP. DasS. MajeeS.B. Solid dispersion tablets in improving oral bioavailability of poorly soluble drugs.Int. J. Curr. Pharm. Res.2022142152010.22159/ijcpr.2022v14i2.1961
    [Google Scholar]
  69. DeshkarS. SatputeA. Formulation and optimization of curcumin solid dispersion pellets for improved solubility.Int J Appl Pharm20201223646
    [Google Scholar]
  70. WangY. LinH. HuangW. Curcumin attenuates periodontal injury via inhibiting Ferroptosis of ligature-induced periodontitis in mice.Int. J. Mol. Sci.20232412983510.3390/ijms24129835 37372983
    [Google Scholar]
  71. Wendorff-TobollaL.M. WolginM. WagnerG. KleringsI. DvornykA. KielbassaA.M. A systematic review and meta-analysis on the efficacy of locally delivered adjunctive curcumin (Curcuma longa L.) in the treatment of periodontitis.Biomedicines202311248110.3390/biomedicines11020481 36831018
    [Google Scholar]
  72. KaziM.R. GandhiS. DesaiS.V. BarseR. JagtapV. Review: Hydrotropy as prominent approach for enhancement of aqueous solubility of drugs.J. Drug Deliv. Ther.202212423123610.22270/jddt.v12i4.5461
    [Google Scholar]
  73. TripathiD. MishraS. RaiA.K. SahooJ. SharmaD.K. SinghY. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards Transdermal delivery of drugs.Curr. Green Chem.202291263910.2174/2213346110666221020121020
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708304103240821072801
Loading
/content/journals/raiad/10.2174/0127722708304103240821072801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test