Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Anecdotal reports describe patients with concurrent idiopathic inflammatory myopathy (IIM) and celiac disease (CeD) in whom the introduction of a gluten-free diet led to dramatic improvement of myositis. We first systematically reviewed all peer-reviewed publications on concomitant IIM and duodenal biopsy-verified CeD. The collected evidence was suggestive of associations between myositis disease activity and gluten exposure in some patients with IIM-CeD.

To investigate possible explanations for the observations, an exploratory review of basic pathophysiological relationships between IIM and gluten-related disorders was performed using a combined strategy of systematic and non-systematic literature searches and forward and backward citation tracking.

The investigations revealed close pathophysiological associations between IIM and the autoimmune gluten-related disorders CeD, dermatitis herpetiformis, and gluten ataxia. Common traits include shared genetic predisposition through HLA-DQ2.5/-DQ8, disease activity-associated autoantibodies, histopathological parallels with inflammatory cell infiltrates, and similarly distributed structural homologous transglutaminases (TGs). HLA-DQ2.5-restricted gluten-specific CD4+ T cells of a rare, uniform phenotype are reported in CeD and connective tissue disease. Expanded T-cell clones with identical phenotypes and CDR3β motifs indicate the presence of a continuous, antigen-driven T-cell response.

The investigations revealed that the main components involved in the adaptive immune response in the CeD gut may be present in HLA-DQ2.5+/-DQ8+ IIM muscle. The collected evidence supports the notion that in some genetically predisposed patients with IIM, gluten may act as an exogenous antigen driving myositis.

To test the above hypothesis, clinical trials combined with immunological studies are needed. Meanwhile, the inclusion of HLA-DQ typing may be justified, and subsequent small-intestinal biopsies in HLA-DQ2.5/8+ individuals with IIM.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708317244240919113305
2025-06-01
2025-10-22
Loading full text...

Full text loading...

/deliver/fulltext/raiad/19/2/RAIAD-19-2-08.html?itemId=/content/journals/raiad/10.2174/0127722708317244240919113305&mimeType=html&fmt=ahah

References

  1. ScottB. LosowskyM.S. Coeliac disease: A cause of various associated diseases?Lancet1975306794295695710.1016/S0140‑6736(75)90365‑753436
    [Google Scholar]
  2. HenrikssonK.G. HallertC. WalanA. Letter: Gluten-sensitive polymyositis and enteropathy.Lancet1976308798031710.1016/S0140‑6736(76)90772‑859890
    [Google Scholar]
  3. HadjivassiliouM. ChattopadhyayA.K. GrünewaldR.A. JarrattJ.A. KandlerR.H. RaoD.G. SandersD.S. WhartonS.B. Davies-JonesG.A.B. Myopathy associated with gluten sensitivity.Muscle Nerve200735444345010.1002/mus.2070917143894
    [Google Scholar]
  4. Selva-O’CallaghanA. CasellasF. de TorresI. PalouE. Grau-JunyentJ.M. Vilardell-TarrésM. Celiac disease and antibodies associated with celiac disease in patients with inflammatory myopathy.Muscle Nerve2007351495410.1002/mus.2065216967485
    [Google Scholar]
  5. DanielssonO. LindvallB. HallertC. VrethemM. DahleC. Increased prevalence of celiac disease in idiopathic inflammatory myopathies.Brain Behav.2017710e0080310.1002/brb3.80329075563
    [Google Scholar]
  6. LebwohlB. Rubio-TapiaA. Epidemiology, presentation, and diagnosis of celiac disease.Gastroenterology20211601637510.1053/j.gastro.2020.06.09832950520
    [Google Scholar]
  7. NyborgG.A. MolbergØ. Small intestinal biopsy findings consistent with celiac disease in patients with idiopathic inflammatory myopathy: Review of existing literature.Semin. Arthritis Rheum.20215151033104410.1016/j.semarthrit.2021.07.01234416625
    [Google Scholar]
  8. TriccoA.C. LillieE. ZarinW. O’BrienK.K. ColquhounH. LevacD. MoherD. PetersM.D.J. HorsleyT. WeeksL. HempelS. AklE.A. ChangC. McGowanJ. StewartL. HartlingL. AldcroftA. WilsonM.G. GarrittyC. LewinS. GodfreyC.M. MacdonaldM.T. LangloisE.V. Soares-WeiserK. MoriartyJ. CliffordT. TunçalpÖ. StrausS.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation.Ann. Intern. Med.2018169746747310.7326/M18‑085030178033
    [Google Scholar]
  9. WohlinC. KalinowskiM. Romero FelizardoK. MendesE. Successful combination of database search and snowballing for identification of primary studies in systematic literature studies.Inf. Softw. Technol.202214710690810.1016/j.infsof.2022.106908
    [Google Scholar]
  10. EbertE.C. Review article: The gastrointestinal complications of myositis.Aliment. Pharmacol. Ther.201031335936510.1111/j.1365‑2036.2009.04190.x19886949
    [Google Scholar]
  11. McHughN.J. TansleyS.L. Autoantibodies in myositis.Nat. Rev. Rheumatol.201814529030210.1038/nrrheum.2018.5629674612
    [Google Scholar]
  12. LundbergI.E. TjärnlundA. BottaiM. WerthV.P. PilkingtonC. de VisserM. AlfredssonL. AmatoA.A. BarohnR.J. LiangM.H. SinghJ.A. AggarwalR. ArnardottirS. ChinoyH. CooperR.G. DankóK. DimachkieM.M. FeldmanB.M. Garcia-De La TorreI. GordonP. HayashiT. KatzJ.D. KohsakaH. LachenbruchP.A. LangB.A. LiY. OddisC.V. OlesinskaM. ReedA.M. Rutkowska-SakL. SannerH. Selva-O’CallaghanA. SongY.W. VencovskyJ. YtterbergS.R. MillerF.W. RiderL.G. International Myositis Classification Criteria Project Consortium, the Euromyositis Register, and the Juvenile Dermatomyositis Cohort Biomarker Study and Repository (UK and Ireland) 2017 european league against rheumatism/american college of rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups.Arthritis Rheumatol.201769122271228210.1002/art.4032029106061
    [Google Scholar]
  13. MariampillaiK. GrangerB. AmelinD. GuiguetM. HachullaE. MaurierF. MeyerA. TohméA. CharuelJ.L. MussetL. AllenbachY. BenvenisteO. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies.JAMA Neurol.201875121528153710.1001/jamaneurol.2018.259830208379
    [Google Scholar]
  14. GreenbergS.A. Inclusion body myositis: Clinical features and pathogenesis.Nat. Rev. Rheumatol.201915525727210.1038/s41584‑019‑0186‑x30837708
    [Google Scholar]
  15. EckertR.L. KaartinenM.T. NurminskayaM. BelkinA.M. ColakG. JohnsonG.V.W. MehtaK. Transglutaminase regulation of cell function.Physiol. Rev.201494238341710.1152/physrev.00019.201324692352
    [Google Scholar]
  16. ChermnykhE.S. AlpeevaE.V. VorotelyakE.A. Transglutaminase 3: The involvement in epithelial differentiation and cancer.Cells202099199610.3390/cells909199632872587
    [Google Scholar]
  17. BeninatiS. PiacentiniM. BergaminiC.M. Transglutaminase 2, a double face enzyme.Amino Acids201749341542310.1007/s00726‑017‑2394‑528204961
    [Google Scholar]
  18. SiegelM. StrnadP. WattsR.E. ChoiK. JabriB. OmaryM.B. KhoslaC. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury.PLoS One200833e186110.1371/journal.pone.000186118365016
    [Google Scholar]
  19. StamnaesJ. DorumS. FleckensteinB. AeschlimannD. SollidL.M. Gluten T cell epitope targeting by TG3 and TG6; Implications for dermatitis herpetiformis and gluten ataxia.Amino Acids20103951183119110.1007/s00726‑010‑0554‑y20300788
    [Google Scholar]
  20. IversenR. SollidL.M. The immunobiology and pathogenesis of celiac disease.Annu. Rev. Pathol.2023181477010.1146/annurev‑pathmechdis‑031521‑03263436067801
    [Google Scholar]
  21. AaronL. TorstenM. PatriciaW. Autoimmunity in celiac disease: Extra-intestinal manifestations.Autoimmun. Rev.201918324124610.1016/j.autrev.2018.09.01030639642
    [Google Scholar]
  22. Rubio-TapiaA. HillI.D. SemradC. KellyC.P. GreerK.B. LimketkaiB.N. LebwohlB. American college of gastroenterology guidelines update: Diagnosis and management of celiac disease.Am. J. Gastroenterol.20231181597610.14309/ajg.000000000000207536602836
    [Google Scholar]
  23. CollinP. SalmiT.T. HervonenK. KaukinenK. ReunalaT. Dermatitis herpetiformis: A cutaneous manifestation of coeliac disease.Ann. Med.2017491233110.1080/07853890.2016.122245027499257
    [Google Scholar]
  24. AntigaE. MaglieR. QuintarelliL. VerdelliA. BoncianiD. BoncioliniV. CaproniM. Dermatitis herpetiformis: Novel perspectives.Front. Immunol.201910129010.3389/fimmu.2019.0129031244841
    [Google Scholar]
  25. SalmiT. HervonenK. LaurilaK. CollinP. MäkiM. KoskinenO. HuhtalaH. KaukinenK. ReunalaT. Small bowel transglutaminase 2-specific IgA deposits in dermatitis herpetiformis.Acta Derm. Venereol.201494439339710.2340/00015555‑176424352382
    [Google Scholar]
  26. KalovidourisA.E. MillerF.W. LawleyT.J. Polymyositis/dermatomyositis associated with dermatitis herpetiformis.Arthritis Rheum.19893291179118110.1002/anr.17803209202789048
    [Google Scholar]
  27. WhiteS.W. TesarJ.T. Dermatomyositis and dermatitis herpetiformis.Arch. Dermatol.1982118859960110.1001/archderm.1982.016502000670207103531
    [Google Scholar]
  28. JibbeA. Brett TolkachjovS. Concurrent dermatomyositis, celiac disease, and dermatitis herpetiformis in a patient with a history of morphea.Kans. J. Med.20211420320510.17161/kjm.vol141522434367491
    [Google Scholar]
  29. RouvroyeM.D. ZisP. Van DamA.M. RozemullerA.J.M. BoumaG. HadjivassiliouM. The neuropathology of gluten-related neurological disorders: A systematic review.Nutrients202012382210.3390/nu1203082232244870
    [Google Scholar]
  30. RouvroyeM.D. BontkesH.J. BolJ.G.J.M. Lissenberg-WitteB. ByrnesV. BennaniF. JordanovaE.S. WilhelmusM.M.M. MulderC.J. van der ValkP. RozemullerA.J.M. BoumaG. Van DamA.M. Cerebellar presence of immune cells in patients with neuro-coeliac disease.Acta Neuropathol. Commun.20231115110.1186/s40478‑023‑01538‑536966322
    [Google Scholar]
  31. MitomaH. AdhikariK. AeschlimannD. ChattopadhyayP. HadjivassiliouM. HampeC.S. HonnoratJ. JoubertB. KakeiS. LeeJ. MantoM. MatsunagaA. MizusawaH. NanriK. ShanmugarajahP. YonedaM. YukiN. Consensus paper: Neuroimmune mechanisms of cerebellar ataxias.Cerebellum201615221323210.1007/s12311‑015‑0664‑x25823827
    [Google Scholar]
  32. HadjivassiliouM. SandersD.D. AeschlimannD.P. Gluten-related disorders: Gluten ataxia.Dig. Dis.201533226426810.1159/00036950925925933
    [Google Scholar]
  33. HadjivassiliouM. AeschlimannP. SandersD.S. MäkiM. KaukinenK. GrünewaldR.A. BandmannO. WoodroofeN. HaddockG. AeschlimannD.P. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia.Neurology201380191740174510.1212/WNL.0b013e318291907023576621
    [Google Scholar]
  34. HadjivassiliouM. GrünewaldR.A. SandersD.S. ShanmugarajahP. HoggardN. Effect of gluten-free diet on cerebellar MR spectroscopy in gluten ataxia.Neurology201789770570910.1212/WNL.000000000000423728724585
    [Google Scholar]
  35. Pinal-FernandezI. Casal-DominguezM. DerfoulA. PakK. MillerF.W. MilisendaJ.C. Grau-JunyentJ.M. Selva-O’CallaghanA. Carrion-RibasC. PaikJ.J. AlbaydaJ. Christopher-StineL. LloydT.E. CorseA.M. MammenA.L. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis.Ann. Rheum. Dis.20207991234124210.1136/annrheumdis‑2019‑21659932546599
    [Google Scholar]
  36. RothwellS. ChinoyH. LambJ.A. Genetics of idiopathic inflammatory myopathies: Insights into disease pathogenesis.Curr. Opin. Rheumatol.201931661161610.1097/BOR.000000000000065231415030
    [Google Scholar]
  37. RothwellS. CooperR.G. LundbergI.E. GregersenP.K. HannaM.G. MachadoP.M. HerbertM.K. PruijnG.J.M. LillekerJ.B. RobertsM. BowesJ. SeldinM.F. VencovskyJ. DankoK. LimayeV. Selva-O’CallaghanA. PlattH. MolbergØ. BenvenisteO. RadstakeT.R.D.J. DoriaA. De BleeckerJ. De PaepeB. GiegerC. MeitingerT. WinkelmannJ. AmosC.I. OllierW.E. PadyukovL. LeeA.T. LambJ.A. ChinoyH. Myositis Genetics Consortium Immune-array analysis in sporadic inclusion body myositis reveals HLA–DRB1 amino acid heterogeneity across the myositis spectrum.Arthritis Rheumatol.20176951090109910.1002/art.4004528086002
    [Google Scholar]
  38. RothwellS. AmosC.I. MillerF.W. RiderL.G. LundbergI.E. GregersenP.K. VencovskyJ. McHughN. LimayeV. Selva-O’CallaghanA. HannaM.G. MachadoP.M. PachmanL.M. ReedA.M. MolbergØ. BenvenisteO. MathiesenP. RadstakeT. DoriaA. De BleeckerJ.L. De PaepeB. MaurerB. OllierW.E. PadyukovL. O’HanlonT.P. LeeA. WedderburnL.R. ChinoyH. LambJ.A. Myositis Genetics Consortium Identification of novel associations and localization of signals in idiopathic inflammatory myopathies using genome-wide imputation.Arthritis Rheumatol.20237561021102710.1002/art.4243436580032
    [Google Scholar]
  39. RothwellS. CooperR.G. LundbergI.E. MillerF.W. GregersenP.K. BowesJ. VencovskyJ. DankoK. LimayeV. Selva-O’CallaghanA. HannaM.G. MachadoP.M. PachmanL.M. ReedA.M. RiderL.G. CobbJ. PlattH. MolbergØ. BenvenisteO. MathiesenP. RadstakeT. DoriaA. De BleeckerJ. De PaepeB. MaurerB. OllierW.E. PadyukovL. O’HanlonT.P. LeeA. AmosC.I. GiegerC. MeitingerT. WinkelmannJ. WedderburnL.R. ChinoyH. LambJ.A. Myositis Genetics Consortium Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups.Ann. Rheum. Dis.20167581558156610.1136/annrheumdis‑2015‑20811926362759
    [Google Scholar]
  40. RothwellS. ChinoyH. LambJ.A. MillerF.W. RiderL.G. WedderburnL.R. McHughN.J. MammenA.L. BetteridgeZ.E. TansleyS.L. BowesJ. VencovskýJ. DeakinC.T. DankóK. VidyaL. Selva-O’CallaghanA. PachmanL.M. ReedA.M. MolbergØ. BenvenisteO. MathiesenP.R. RadstakeT.R.D.J. DoriaA. de BleeckerJ. LeeA.T. HannaM.G. MachadoP.M. OllierW.E. GregersenP.K. PadyukovL. O’HanlonT.P. CooperR.G. LundbergI.E. Myositis Genetics Consortium (MYOGEN) Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups.Ann. Rheum. Dis.2019787996100210.1136/annrheumdis‑2019‑21504631138531
    [Google Scholar]
  41. SollidL.M. The roles of MHC class II genes and post-translational modification in celiac disease.Immunogenetics2017698-960561610.1007/s00251‑017‑0985‑728695286
    [Google Scholar]
  42. LeclairV. Galindo-FeriaA.S. RothwellS. KryštůfkováO. ZargarS.S. MannH. DiederichsenL.P. AnderssonH. KleinM. TansleyS. RönnblomL. Lindblad-TohK. SyvänenA.C. Wahren-HerleniusM. SandlingJ.K. McHughN. LambJ.A. VencovskýJ. ChinoyH. HolmqvistM. BianchiM. PadyukovL. LundbergI.E. Diaz-GalloL.M. BianchiM. KozyrevS.V. SandlingJ.K. RönnblomL. ElorantaM-L. SyvänenA-C. LeonardD. DahlqvistJ. LidénM. MathioudakiA. MeadowsJ.R.S. NordinJ. NordmarkG. LundbergI.E. NotarnicolaA. PadyukovL. TjärnlundA. DastmalchiM. ErikssonD. MolbergØ. AnderssonH. Lindblad-TohK. FariasF.H.G. Wahren-HerleniusM. JalalA. HannaB. HellströmH. HusmarkT. HäggströmÅ. SvärdA. SkoghT. DiederichsenL.P. LambJ.A. RothwellS. ChinoyH. CooperR.G. Lindblad-TohK. PielbergG.R. LobellA. KarlssonÅ. MurénE. AhlgrenK.M. RönnblomL. ElorantaM-L. AnderssonG. LandegrenN. KämpeO. SöderkvisP. Dissect Consortium and The Immunoarray Development Consortium Distinct HLA associations with autoantibody-defined subgroups in idiopathic inflammatory myopathies.EBioMedicine20239610480410.1016/j.ebiom.2023.10480437769433
    [Google Scholar]
  43. OhnukiY. SuzukiS. UruhaA. OyamaM. SuzukiS. KulskiJ.K. NishinoI. ShiinaT. Association of immune-mediated necrotizing myopathy with HLA polymorphisms.HLA2023101544945710.1111/tan.1495036565042
    [Google Scholar]
  44. MillerF.W. LambJ.A. SchmidtJ. NagarajuK. Risk factors and disease mechanisms in myositis.Nat. Rev. Rheumatol.201814525526810.1038/nrrheum.2018.4829674613
    [Google Scholar]
  45. JaniM. MasseyJ. WedderburnL.R. VencovskýJ. DankoK. LundbergI.E. PadyukovL. Selva-O’CallaghanA. RadstakeT. PlattH. WarrenR.B. GriffithsC.E. LeeA. GregersenP.K. MillerF.W. OllierW.E. CooperR.G. ChinoyH. LambJ.A. EUMYONET Genotyping of immune-related genetic variants identifies TYK2 as a novel associated locus for idiopathic inflammatory myopathies.Ann. Rheum. Dis.20147391750175210.1136/annrheumdis‑2014‑20544024812289
    [Google Scholar]
  46. LindforsK. CiacciC. KurppaK. LundinK.E.A. MakhariaG.K. MearinM.L. MurrayJ.A. VerduE.F. KaukinenK. Coeliac disease.Nat. Rev. Dis. Primers201951310.1038/s41572‑018‑0054‑z30631077
    [Google Scholar]
  47. MittelbronnM. SchittenhelmJ. BakosG. de VosR.A. WehrmannM. MeyermannR. BürkK. CD8 + /perforin + /granzyme B + effector cells infiltrating cerebellum and inferior olives in gluten ataxia.Neuropathology2010301929610.1111/j.1440‑1789.2009.01042.x19622110
    [Google Scholar]
  48. NelkeC. SchmidS. KleefeldF. SchroeterC.B. GoebelH.H. HoffmannS. PreußeC. KölbelH. MeuthS.G. RuckT. StenzelW. Complement and MHC patterns can provide the diagnostic framework for inflammatory neuromuscular diseases.Acta Neuropathol.202414711510.1007/s00401‑023‑02669‑838214778
    [Google Scholar]
  49. VattemiG. MirabellaM. GuglielmiV. LucchiniM. TomelleriG. GhirardelloA. DoriaA. Muscle biopsy features of idiopathic inflammatory myopathies and differential diagnosis.Auto Immun. Highlights201453778510.1007/s13317‑014‑0062‑226000159
    [Google Scholar]
  50. FrancoC. GattoM. IaccarinoL. GhirardelloA. DoriaA. Lymphocyte immunophenotyping in inflammatory myositis: A review.Curr. Opin. Rheumatol.202133652252810.1097/BOR.000000000000083134402455
    [Google Scholar]
  51. Rodríguez CruzP.M. LuoY.B. MillerJ. JunckerstorffR.C. MastagliaF.L. FabianV. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies.Neuromuscul. Disord.201424121025103510.1016/j.nmd.2014.06.43625153265
    [Google Scholar]
  52. NagarajuK. RabenN. LoefflerL. ParkerT. RochonP.J. LeeE. DanningC. WadaR. ThompsonC. BahtiyarG. CraftJ. Hooft van HuijsduijnenR. PlotzP. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies.Proc. Natl. Acad. Sci. USA200097169209921410.1073/pnas.97.16.920910922072
    [Google Scholar]
  53. EnglundP. LindroosE. NennesmoI. KlareskogL. LundbergI.E. Skeletal muscle fibers express major histocompatibility complex class II antigens independently of inflammatory infiltrates in inflammatory myopathies.Am. J. Pathol.200115941263127310.1016/S0002‑9440(10)62513‑811583954
    [Google Scholar]
  54. JainA. SharmaM.C. SarkarC. BhatiaR. SinghS. HandaR. Major histocompatibility complex class I and II detection as a diagnostic tool in idiopathic inflammatory myopathies.Arch. Pathol. Lab. Med.200713171070107610.5858/2007‑131‑1070‑MHCCIA17616993
    [Google Scholar]
  55. van der PasJ. HengstmanG.J. ter LaakH.J. BormG.F. van EngelenB.G. Diagnostic value of MHC class I staining in idiopathic inflammatory myopathies.J. Neurol. Neurosurg. Psychiatry200475113613914707323
    [Google Scholar]
  56. AouizerateJ. De AntonioM. BassezG. GherardiR.K. BerenbaumF. GuillevinL. BerezneA. ValeyreD. MaisonobeT. DubourgO. CosnesA. BenvenisteO. AuthierF.J. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy.Acta Neuropathol. Commun.20142115410.1186/s40478‑014‑0154‑225339355
    [Google Scholar]
  57. GoebelsN. MichaelisD. WekerleH. HohlfeldR. Human myoblasts as antigen-presenting cells.J. Immunol.1992149266166710.4049/jimmunol.149.2.6611352532
    [Google Scholar]
  58. ChoiY.C. ParkG.T. KimT.S. SunwooI.N. SteinertP.M. KimS.Y. Sporadic inclusion body myositis correlates with increased expression and cross-linking by transglutaminases 1 and 2.J. Biol. Chem.2000275128703871010.1074/jbc.275.12.870310722712
    [Google Scholar]
  59. ChoiY.C. KimT.S. KimS.Y. Increase in transglutaminase 2 in idiopathic inflammatory myopathies.Eur. Neurol.2004511101410.1159/00007491114631123
    [Google Scholar]
  60. GendekE.G. KędzioraJ. Gendek-KubiakH. Can tissue transglutaminase be a marker of idiopathic inflammatory myopathies?Immunol. Lett.200597224524910.1016/j.imlet.2004.11.01715752564
    [Google Scholar]
  61. LeeS.K. ChiJ.G. ParkS.C. ChungS.I. Transient expression of transglutaminase C during prenatal development of human muscles.J. Histochem. Cytochem.200048111565157410.1177/00221554000480111311036099
    [Google Scholar]
  62. Korponay-SzabóI.R. HalttunenT. SzalaiZ. LaurilaK. KirályR. KovácsJ.B. FésüsL. MäkiM. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies.Gut200453564164810.1136/gut.2003.02483615082580
    [Google Scholar]
  63. HadjivassiliouM. MäkiM. SandersD.S. WilliamsonC.A. GrünewaldR.A. WoodroofeN.M. Korponay-SzabóI.R. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia.Neurology200666337337710.1212/01.wnl.0000196480.55601.3a16476935
    [Google Scholar]
  64. RostomA. DubéC. CranneyA. SaloojeeN. SyR. GarrittyC. SampsonM. ZhangL. YazdiF. MamaladzeV. PanI. MacNeilJ. MackD. PatelD. MoherD. The diagnostic accuracy of serologic tests for celiac disease: A systematic review.Gastroenterology20051284Suppl. 1S38S4610.1053/j.gastro.2005.02.02815825125
    [Google Scholar]
  65. MolbergØ. McadamS.N. KörnerR. QuarstenH. KristiansenC. MadsenL. FuggerL. ScottH. NorénO. RoepstorffP. LundinK.E.A. SjöströmH. SollidL.M. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease.Nat. Med.19984671371710.1038/nm0698‑7139623982
    [Google Scholar]
  66. OrbachH. AmitaiN. BarzilaiO. BoazM. RamM. Zandman-GoddardG. ShoenfeldY. Autoantibody screen in inflammatory myopathies high prevalence of antibodies to gliadin.Ann. N. Y. Acad. Sci.20091173117417910.1111/j.1749‑6632.2009.04810.x19758147
    [Google Scholar]
  67. MalmströmV. VenalisP. AlbrechtI. T cells in myositis.Arthritis Res. Ther.201214623010.1186/ar411623270751
    [Google Scholar]
  68. GreenbergS.A. PinkusJ.L. KongS.W. Baecher-AllanC. AmatoA.A. DorfmanD.M. Highly differentiated cytotoxic T cells in inclusion body myositis.Brain201914292590260410.1093/brain/awz20731326977
    [Google Scholar]
  69. KamiyaM. MizoguchiF. TakamuraA. KimuraN. KawahataK. KohsakaH. A new in vitro model of polymyositis reveals CD8+ T cell invasion into muscle cells and its cytotoxic role.Rheumatology202059122423210.1093/rheumatology/kez24831257434
    [Google Scholar]
  70. HoutmanM. EkholmL. HesselbergE. CheminK. MalmströmV. ReedA.M. LundbergI.E. PadyukovL. T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients.Arthritis Res. Ther.201820118810.1186/s13075‑018‑1688‑730157932
    [Google Scholar]
  71. PandyaJ.M. VenalisP. Al-KhaliliL. Shahadat HossainM. StacheV. LundbergI.E. MalmströmV. FasthA.E.R. CD4+ and CD8+ CD28 null T cells are cytotoxic to autologous muscle cells in patients with polymyositis.Arthritis Rheumatol.20166882016202610.1002/art.3965026895511
    [Google Scholar]
  72. PandyaJ.M. FasthA.E.R. ZongM. ArnardottirS. DaniL. LindroosE. MalmströmV. LundbergI.E. Expanded T cell receptor V β –restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28 null T cells.Arthritis Rheum.201062113457346610.1002/art.2766520662057
    [Google Scholar]
  73. FasthA.E.R. DastmalchiM. RahbarA. SalomonssonS. PandyaJ.M. LindroosE. NennesmoI. MalmbergK.J. Söderberg-NauclérC. TrollmoC. LundbergI.E. MalmströmV. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28 null T cells.J. Immunol.200918374792479910.4049/jimmunol.080368819752224
    [Google Scholar]
  74. SalajeghehM. RakocevicG. RajuR. ShatunovA. GoldfarbL.G. DalakasM.C. T cell receptor profiling in muscle and blood lymphocytes in sporadic inclusion body myositis.Neurology200769171672167910.1212/01.wnl.0000265398.77681.0917954782
    [Google Scholar]
  75. DimitriD. BenvenisteO. DubourgO. MaisonobeT. EymardB. AmouraZ. JeanL. TievK. PietteJ.C. KlatzmannD. HersonS. BoyerO. Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis.Brain2006129498699510.1093/brain/awl02016455793
    [Google Scholar]
  76. HofbauerM. WiesenerS. BabbeH. RoersA. WekerleH. DornmairK. HohlfeldR. GoebelsN. Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis.Proc. Natl. Acad. Sci. USA200310074090409510.1073/pnas.023618310012651958
    [Google Scholar]
  77. MizunoK. YachieA. NagaokiS. WadaH. OkadaK. KawachiM. TomaT. KonnoA. OhtaK. KasaharaY. KoizumiS. Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T Cells with killer/effector phenotypes in juvenile dermatomyositis syndrome.Clin. Exp. Immunol.2004137118719410.1111/j.1365‑2249.2004.02500.x15196261
    [Google Scholar]
  78. ArgyriouA. HoruluogluB. Galindo-FeriaA.S. Diaz-BoadaJ.S. SijbrandaM. NotarnicolaA. DaniL. van VollenhovenA. RamsköldD. NennesmoI. DastmalchiM. LundbergI.E. Diaz-GalloL.M. CheminK. Single-cell profiling of muscle-infiltrating T cells in idiopathic inflammatory myopathies.EMBO Mol. Med.20231510e1724010.15252/emmm.20221724037522383
    [Google Scholar]
  79. GoyalN.A. CoulisG. DuarteJ. FarahatP.K. MannaaA.H. CauchiiJ. IraniT. AraujoN. WangL. WencelM. LiV. ZhangL. GreenbergS.A. MozaffarT. VillaltaS.A. Immunophenotyping of inclusion body myositis blood T and NK cells.Neurology20229813e1374e138310.1212/WNL.000000000020001335131904
    [Google Scholar]
  80. ChristophersenA. ZühlkeS. LundE.G. SnirO. Dahal-KoiralaS. RisnesL.F. JahnsenJ. LundinK.E.A. SollidL.M. Pathogenic T cells in celiac disease change phenotype on gluten challenge: Implications for T-cell-directed therapies.Adv. Sci.2021821210277810.1002/advs.20210277834495570
    [Google Scholar]
  81. ChristophersenA. RisnesL.F. BergsengE. LundinK.E.A. SollidL.M. QiaoS.W. Healthy HLA-DQ2.5+ subjects lack regulatory and memory T cells specific for immunodominant gluten epitopes of celiac disease.J. Immunol.201619662819282610.4049/jimmunol.150115226895834
    [Google Scholar]
  82. ChristophersenA. LundE.G. SnirO. SolàE. KanduriC. Dahal-KoiralaS. ZühlkeS. MolbergØ. UtzP.J. Rohani-PichavantM. SimardJ.F. DekkerC.L. LundinK.E.A. SollidL.M. DavisM.M. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions.Nat. Med.201925573473710.1038/s41591‑019‑0403‑930911136
    [Google Scholar]
  83. RaoD.A. The rise of peripheral T helper cells in autoimmune disease.Nat. Rev. Rheumatol.201915845345410.1038/s41584‑019‑0241‑731138905
    [Google Scholar]
  84. RisnesL.F. ChristophersenA. Dahal-KoiralaS. NeumannR.S. SandveG.K. SarnaV.K. LundinK.E.A. QiaoS.W. SollidL.M. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease.J. Clin. Invest.201812862642265010.1172/JCI9881929757191
    [Google Scholar]
  85. RisnesL.F. EggesbøL.M. ZühlkeS. Dahal-KoiralaS. NeumannR.S. LundinK.E.A. ChristophersenA. SollidL.M. Circulating CD103+ γδ and CD8+ T cells are clonally shared with tissue-resident intraepithelial lymphocytes in celiac disease.Mucosal Immunol.202114484285110.1038/s41385‑021‑00385‑833654213
    [Google Scholar]
  86. RisnesL.F. ChlubnováM. MagistrelliE. KemppainenE. HervonenK. MansikkaE. LindforsK. SalmiT. Dahal-KoiralaS. SollidL.M. Phenotypic analysis of disease-relevant T cells in dermatitis herpetiformis.J. Invest. Dermatol.20231431163166.e210.1016/j.jid.2022.07.00735961617
    [Google Scholar]
  87. SalmiT.T. HervonenK. KurppaK. CollinP. KaukinenK. ReunalaT. Celiac disease evolving into dermatitis herpetiformis in patients adhering to normal or gluten-free diet.Scand. J. Gastroenterol.201550438739210.3109/00365521.2014.97420425639558
    [Google Scholar]
  88. KárpátiS. SárdyM. NémethK. MayerB. SmythN. PaulssonM. TraupeH. Transglutaminases in autoimmune and inherited skin diseases: The phenomena of epitope spreading and functional compensation.Exp. Dermatol.201827880781410.1111/exd.1344928940785
    [Google Scholar]
  89. De LeoL. AeschlimannD. HadjivassiliouM. AeschlimannP. SalceN. VattaS. ZibernaF. CozziG. MartelossiS. VenturaA. NotT. Anti-transglutaminase 6 antibody development in children with celiac disease correlates with duration of gluten exposure.J. Pediatr. Gastroenterol. Nutr.2018661646810.1097/MPG.000000000000164228542044
    [Google Scholar]
  90. SollidL.M. JabriB. Triggers and drivers of autoimmunity: Lessons from coeliac disease.Nat. Rev. Immunol.201313429430210.1038/nri340723493116
    [Google Scholar]
  91. LindforsK. LinJ. LeeH.S. HyötyH. NykterM. KurppaK. LiuE. KoletzkoS. RewersM. HagopianW. ToppariJ. ZieglerA.G. AkolkarB. KrischerJ.P. PetrosinoJ.F. LloydR.E. AgardhD. TEDDY Study Group Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study.Gut20206981416142210.1136/gutjnl‑2019‑31980931744911
    [Google Scholar]
  92. ChangR. Yen-Ting ChenT. WangS.I. HungY.M. ChenH.Y. WeiC.C.J. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study.EClinicalMedicine20235610178310.1016/j.eclinm.2022.10178336643619
    [Google Scholar]
  93. AmundsenS.F. StamnaesJ. LundinK.E.A. SollidL.M. Expression of transglutaminase 2 in human gut epithelial cells: Implications for coeliac disease.PLoS One2023186e028766210.1371/journal.pone.028766237368893
    [Google Scholar]
  94. ChinoY. MurataH. GotoD. MatsumotoI. TsutsumiA. SakamotoT. OhtsukaM. SekisawaK. ItoS. SumidaT. T cell receptor BV gene repertoire of lymphocytes in bronchoalveolar lavage fluid of polymyositis/dermatomyositis patients with interstitial pneumonitis.Int. J. Mol. Med.200617110110910.3892/ijmm.17.1.10116328018
    [Google Scholar]
  95. OlsenK.C. SapinoroR.E. KottmannR.M. KulkarniA.A. IismaaS.E. JohnsonG.V.W. ThatcherT.H. PhippsR.P. SimeP.J. Transglutaminase 2 and its role in pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2011184669970710.1164/rccm.201101‑0013OC21700912
    [Google Scholar]
  96. FellS. WangZ. BlanchardA. NanthakumarC. GriffinM. Transglutaminase 2: A novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors.Amino Acids202153220521710.1007/s00726‑020‑02938‑w33474654
    [Google Scholar]
  97. SuC.C. SuT.R. LaiJ.C. TsayG.J. LinH.K. Elevated transglutaminase-2 expression in the epidermis of psoriatic skin and its role in the skin lesion development.J. Dermatol.201744669970210.1111/1346‑8138.1374228150335
    [Google Scholar]
  98. ShinJ.W. KwonM. HwangJ. LeeS.J. LeeJ.H. KimH.J. LeeK.B. LeeS.J. JeongE.M. ChungJ.H. KimI.G. Keratinocyte transglutaminase 2 promotes CCR6+ γδT-cell recruitment by upregulating CCL20 in psoriatic inflammation.Cell Death Dis.202011430110.1038/s41419‑020‑2495‑z32355189
    [Google Scholar]
  99. UngprasertP. WijarnpreechaK. KittanamongkolchaiW. Psoriasis and risk of celiac disease: A systematic review and meta-analysis.Indian J. Dermatol.2017621414610.4103/0019‑5154.19803128216724
    [Google Scholar]
  100. LoveL.A. WeinbergC.R. McConnaugheyD.R. OddisC.V. MedsgerT.A.Jr ReveilleJ.D. ArnettF.C. TargoffI.N. MillerF.W. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women.Arthritis Rheum.20096082499250410.1002/art.2470219644877
    [Google Scholar]
  101. BurdC.J. KinyamuH.K. MillerF.W. ArcherT.K. UV radiation regulates Mi-2 through protein translation and stability.J. Biol. Chem.200828350349763498210.1074/jbc.M80538320018922793
    [Google Scholar]
  102. LeeS.J. LeeK.B. SonY.H. ShinJ. LeeJ.H. KimH.J. HongA.Y. BaeH.W. KwonM. LeeW.J. KimJ.H. LeeD.H. JeongE.M. KimI.G. Transglutaminase 2 mediates UV-induced skin inflammation by enhancing inflammatory cytokine production.Cell Death Dis.2017810e314810.1038/cddis.2017.55029072680
    [Google Scholar]
  103. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature1282024336217
    [Google Scholar]
  104. KaliciakI. DrogowskiK. GarczykA. KopećS. HorwatP. BogdańskiP. Stelmach-MardasM. MardasM. Influence of gluten-free diet on gut microbiota composition in patients with coeliac disease: A systematic review.Nutrients20221410208310.3390/nu1410208335631222
    [Google Scholar]
  105. CamineroA. McCarvilleJ.L. ZevallosV.F. PigrauM. YuX.B. JuryJ. GalipeauH.J. ClarizioA.V. CasqueiroJ. MurrayJ.A. CollinsS.M. AlaediniA. BercikP. SchuppanD. VerduE.F. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins.Gastroenterology201915682266228010.1053/j.gastro.2019.02.02830802444
    [Google Scholar]
  106. Cardoso-SilvaD. DelbueD. ItzlingerA. MoerkensR. WithoffS. BranchiF. SchumannM. Intestinal barrier function in gluten-related disorders.Nutrients20191110232510.3390/nu1110232531581491
    [Google Scholar]
  107. PetersenJ. CiacchiL. TranM.T. LohK.L. Kooy-WinkelaarY. CroftN.P. HardyM.Y. ChenZ. McCluskeyJ. AndersonR.P. PurcellA.W. Tye-DinJ.A. KoningF. ReidH.H. RossjohnJ. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease.Nat. Struct. Mol. Biol.2020271496110.1038/s41594‑019‑0353‑431873306
    [Google Scholar]
  108. LiY. XuJ. HongY. LiZ. XingX. ZhufengY. LuD. LiuX. HeJ. LiY. SunX. Metagenome-wide association study of gut microbiome features for myositis.Clin. Immunol.202325510973810.1016/j.clim.2023.10973837595937
    [Google Scholar]
  109. LiangX. LiY. ChengL. WuY. WuT. WenJ. HuangD. LiaoZ. TanC. LuoY. LiuY. Gut microbiota dysbiosis characterized by abnormal elevation of Lactobacillus in patients with immune-mediated necrotizing myopathy.Front. Cell. Infect. Microbiol.202313124351210.3389/fcimb.2023.124351237692165
    [Google Scholar]
  110. BaeS.S. DongT.S. WangJ. LagishettyV. KatzkaW. JacobsJ.P. Charles-SchoemanC. Altered gut microbiome in patients with dermatomyositis.ACR Open Rheumatol.20224865867010.1002/acr2.1143635615912
    [Google Scholar]
  111. LuoY.B. LiuY. LiQ. DuanH. LuoZ. YangH. XuL. Integrating 16S RRNA gene sequencing and metabolomics to evaluate the association between gut microbiota and serum metabolites in patients with myositis.J. Appl. Microbiol.202213342547255910.1111/jam.1572435858765
    [Google Scholar]
  112. LiuL. AB0153 genetic evidence supports causal effect of gut microbiota and dermatomyositis.Ann. Rheum. Dis.202382133144296
    [Google Scholar]
  113. MiaoM. LiY. HuangB. ChenJ. JinY. ShaoM. ZhangX. SunX. HeJ. LiZ. Treatment of active idiopathic inflammatory myopathies by low-dose interleukin-2: A prospective cohort pilot study.Rheumatol. Ther.20218283584710.1007/s40744‑021‑00301‑333852146
    [Google Scholar]
  114. ZhufengY. XuJ. MiaoM. WangY. LiY. HuangB. GuoY. TianJ. SunX. LiJ. LuD. LiZ. LiY. HeJ. Modification of intestinal microbiota dysbiosis by low-dose interleukin-2 in dermatomyositis: A post hoc analysis from a clinical trial study.Front. Cell. Infect. Microbiol.20221275709910.3389/fcimb.2022.75709935360108
    [Google Scholar]
  115. GadiparthiC. HansA. PottsK. IsmailM.K. Gastrointestinal and hepatic disease in the inflammatory myopathies.Rheum. Dis. Clin. North Am.201844111312910.1016/j.rdc.2017.09.00629149920
    [Google Scholar]
  116. ChristophersenA. RákiM. BergsengE. LundinK.E.A. JahnsenJ. SollidL.M. QiaoS.W. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge.United European Gastroenterol. J.20142426827810.1177/205064061454015425083284
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708317244240919113305
Loading
/content/journals/raiad/10.2174/0127722708317244240919113305
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test