Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Diabetes is known as one of the most important widespread diseases in the world. Diabetic ulcer is one of the main complications associated with this disease. The use of the capabilities of modern science such as nanotechnology can be effective in developing new strategies for treating diabetic ulcers. Regulating homeostasis, controlling infections, and the ability to regenerate/heal are some of the proposed mechanisms of nanomaterials in wound healing. In this regard, cuprorivaite bioceramic, as a bioceramic containing copper nanoparticles with effects on angiogenic factors and infection control, can effectively be used in the healing of diabetic ulcers. In this prospective article, we have presented the potential of this bioceramic in the design of new dressings for diabetic wound healing.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708307900240818172700
2024-08-28
2025-09-04
Loading full text...

Full text loading...

References

  1. AnsariM. KordestaniS.S. NazralizadehS. EslamiH. Biodegradable cell-seeded collagen based polymer scaffolds for wound healing and skin reconstruction.J. Macromol. Sci. Part B Phys.201857210010910.1080/00222348.2018.1435617
    [Google Scholar]
  2. Monteiro-SoaresM. HamiltonE.J. RussellD.A. SrisawasdiG. BoykoE.J. MillsJ.L. JeffcoateW. GameF. Guidelines on the classification of foot ulcers in people with diabetes (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e364810.1002/dmrr.364837179483
    [Google Scholar]
  3. MudeL. JupudiS. SwaroopA.K. TallapaneniV. KarriV.V.S.R. Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: A molecular docking and MMPB/SA based analysis of molecular dynamic simulations.J. Biomol. Struct. Dyn.20244252437244810.1080/07391102.2023.220966637160705
    [Google Scholar]
  4. RaghavS.S. KumarB. SethiyaN.K. LalD.K. Diabetic foot ulcer management and treatment: An overview of published patents.Curr. Diabetes Rev.2024203e12062321790610.2174/157339982066623061216184637309771
    [Google Scholar]
  5. GillS. ParksW. Metalloproteinases and their inhibitors: Regulators of wound healing.Int. J. Biochem. Cell Biol.2008406-71334134710.1016/j.biocel.2007.10.02418083622
    [Google Scholar]
  6. ChenP. VilorioN.C. DhatariyaK. JeffcoateW. LobmannR. McIntoshC. PiaggesiA. SteinbergJ. VasP. ViswanathanV. WuS. GameF. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e364410.1002/dmrr.364437232034
    [Google Scholar]
  7. KleefaDG HusseinbKR AbbascHJ Evaluation of procollagen 1N propeptide for predicting osteomyelitis and epithelial neutrophil activator-78 for early wound healing in patients with diabetic foot.2023Available From: https://www.echemcom.com/article_165894_2ba76034a2a95c72cba13daab078308a.pdf
  8. Monteiro-SoaresM. HamiltonE.J. RussellD.A. SrisawasdiG. BoykoE.J. MillsJ.L. JeffcoateW. GameF. Classification of foot ulcers in people with diabetes: A systematic review.Diabetes Metab. Res. Rev.2024403e364510.1002/dmrr.364537132179
    [Google Scholar]
  9. BusS.A. ArmstrongD.G. CrewsR.T. GoodayC. JarlG. Kirketerp-MollerK. ViswanathanV. LazzariniP.A. Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e364710.1002/dmrr.364737226568
    [Google Scholar]
  10. PangL. TianP. CuiX. WuX. ZhaoX. WangH. WangD. PanH. In situ photo-cross-linking hydrogel accelerates diabetic wound healing through restored hypoxia-inducible factor 1-alpha pathway and regulated inflammation.ACS Appl. Mater. Interfaces20211325293632937910.1021/acsami.1c0710334128630
    [Google Scholar]
  11. LeeS.H. KimS.H. KimK.B. KimH.S. LeeY.K. Factors influencing wound healing in diabetic foot patients.Medicina (Kaunas)202460572310.3390/medicina6005072338792906
    [Google Scholar]
  12. LiJ. JiangC. XiaJ. The role of programmed cell death in diabetic foot ulcers.Int. Wound J.2024212e1439910.1111/iwj.1439937736955
    [Google Scholar]
  13. Seventina SiraitH. Mohd SaidF. MohamadN.A. Successful aspects and impacts of diabetic foot exercise among Indonesian type 2 diabetes mellitus patients: A literature review.Int. J. Adv. Life Sci. Res.202472091610.31632/ijalsr.2024.v07i02.002
    [Google Scholar]
  14. FranciaP. GulisanoM. AnichiniR. SeghieriG. Diabetic foot and exercise therapy: Step by step the role of rigid posture and biomechanics treatment.Curr. Diabetes Rev.2014102869910.2174/157339981066614050711253624807636
    [Google Scholar]
  15. RosyidF.N. Etiology, pathophysiology, diagnosis and management of diabetics’ foot ulcer.Int J Res Med Sci20175104206421310.18203/2320‑6012.ijrms20174548
    [Google Scholar]
  16. Perez-FavilaA Martinez-FierroML Current therapeutic strategies in diabetic foot ulcers.Medicina2019551171410.3390/medicina55110714
    [Google Scholar]
  17. KimJ. NomkhondorjO. AnC.Y. ChoiY.C. ChoJ. Management of diabetic foot ulcers: A narrative review.J Yeungnam Med Sci202340433534210.12701/jyms.2023.0068237735855
    [Google Scholar]
  18. Rezvani GhomiE. NiaziM. RamakrishnaS. The evolution of wound dressings: From traditional to smart dressings.Polym. Adv. Technol.202334252053010.1002/pat.5929
    [Google Scholar]
  19. ZahediP. RezaeianI. Ranaei-SiadatS.O. JafariS.H. SupapholP. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages.Polym. Adv. Technol.2010212779510.1002/pat.1625
    [Google Scholar]
  20. NorahanM.H. Pedroza-GonzálezS.C. Sánchez-SalazarM.G. ÁlvarezM.M. Trujillo de SantiagoG. Structural and biological engineering of 3D hydrogels for wound healing.Bioact. Mater.20232419723510.1016/j.bioactmat.2022.11.01936606250
    [Google Scholar]
  21. PreteS. DattiloM. PatitucciF. PezziG. ParisiO.I. PuociF. Natural and synthetic polymeric biomaterials for application in wound management.J. Funct. Biomater.202314945510.3390/jfb1409045537754869
    [Google Scholar]
  22. ZhangW. LiuL. ChengH. ZhuJ. LiX. YeS. LiX. Hydrogel-based dressings designed to facilitate wound healing.Mater Advances2024541364139410.1039/D3MA00682D
    [Google Scholar]
  23. NguyenH.M. Ngoc LeT.T. NguyenA.T. Thien LeH.N. PhamT.T. Biomedical materials for wound dressing: Recent advances and applications.RSC Advances20231385509552810.1039/D2RA07673J36793301
    [Google Scholar]
  24. WangW. UmmartyotinS. NarainR. Advances and challenges on hydrogels for wound dressing.Curr. Opin. Biomed. Eng.20232610044310.1016/j.cobme.2022.100443
    [Google Scholar]
  25. KuddushiM ShahAA Recent advances in novel materials and techniques for developing transparent wound dressings.J Mater Chem B2023114639E10.1039/D3TB00639E
    [Google Scholar]
  26. HerrodP.J. DolemanB. HardyE.J. HardyP. MaloneyT. WilliamsJ.P. LundJ.N. Dressings and topical agents for the management of open wounds after surgical treatment for sacrococcygeal pilonidal sinus.Cochrane Database Syst. Rev.202255CD01343935593897
    [Google Scholar]
  27. Rezvani GhomiE. KhaliliS. Nouri KhorasaniS. Esmaeely NeisianyR. RamakrishnaS. Wound dressings: Current advances and future directions.J. Appl. Polym. Sci.2019136274773810.1002/app.47738
    [Google Scholar]
  28. YadavS AryaDK ECM mimicking biodegradable nanofibrous scaffold enriched with curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity.Int J Nanomedicine20221768436859
    [Google Scholar]
  29. SuL. JiaY. FuL. GuoK. XieS. The emerging progress on wound dressings and their application in clinic wound management.Heliyon2023912e2252010.1016/j.heliyon.2023.e2252038076148
    [Google Scholar]
  30. YaşayanG. AlarçinE. Bal-ÖztürkA. Avci-AdaliM. Natural polymers for wound dressing applications. Bioactive Natural ProductsAmsterdamElsevier2023367441
    [Google Scholar]
  31. SheokandB. VatsM. KumarA. SrivastavaC.M. BahadurI. PathakS.R. Natural polymers used in the dressing materials for wound healing: Past, present and future.J. Polym. Sci.202361141389141410.1002/pol.20220734
    [Google Scholar]
  32. BrumbergV AstrelinaT. Modern wound dressings: Hydrogel dressings.Biomedicines2021991235
    [Google Scholar]
  33. TatarusanuS.M. LupascuF.G. ProfireB.S. SzilagyiA. GardikiotisI. IacobA.T. CaluianI. HerciuL. GiscăT.C. BaicanM.C. CrivoiF. ProfireL. Modern approaches in wounds management.Polymers (Basel)20231517364810.3390/polym1517364837688274
    [Google Scholar]
  34. Op ’t VeldR.C. WalboomersX.F. JansenJ.A. WagenerF.A.D.T.G. Design considerations for hydrogel wound dressings: Strategic and molecular advances.Tissue Eng. Part B Rev.202026323024810.1089/ten.teb.2019.028131928151
    [Google Scholar]
  35. Pilehvar-SoltanahmadiY. DadashpourM. MohajeriA. FattahiA. SheervalilouR. ZarghamiN. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings.Mini Rev. Med. Chem.201818541442710.2174/138955751766617030811214728271816
    [Google Scholar]
  36. RashdanH.R. El-NaggarM.E. Traditional and modern wound dressings-Characteristics of ideal wound dressings.Antimicrobial DressingsAmsterdamElsevier20232142
    [Google Scholar]
  37. MishraA. KushareA. GuptaM.N. AmbreP. Advanced dressings for chronic wound management.ACS Appl. Bio Mater.2024752660267610.1021/acsabm.4c0013838723276
    [Google Scholar]
  38. BrowningP. Modern management in acute wound care.British J Healthcare Manag2017231047748310.12968/bjhc.2017.23.10.477
    [Google Scholar]
  39. KalashnikovaI. DasS. SealS. Nanomaterials for wound healing: Scope and advancement.Nanomedicine201510162593261210.2217/nnm.15.8226295361
    [Google Scholar]
  40. RajaeiM. EslamiH. Zare-ZardiniH. AnsariM. AkbariN. Efficiency of silicate-based composites in the healing process of diabetic wound.Bionanoscience2024202412110.1007/s12668‑024‑01314‑2
    [Google Scholar]
  41. PanA. ZhongM. WuH. PengY. XiaH. TangQ. HuangQ. WeiL. XiaoL. PengC. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing.Nanomedicine20181451619162810.1016/j.nano.2018.04.00729698728
    [Google Scholar]
  42. de la HarpeK. KondiahP. ChoonaraY. MarimuthuT. du ToitL. PillayV. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis.Cells2019810120910.3390/cells810120931591302
    [Google Scholar]
  43. OnwukweC. MaishaN. HollandM. VarleyM. GroynomR. HickmanD. UppalN. ShoffstallA. UstinJ. LavikE. Engineering intravenously administered nanoparticles to reduce infusion reaction and stop bleeding in a large animal model of trauma.Bioconjug. Chem.20182972436244710.1021/acs.bioconjchem.8b0033529965731
    [Google Scholar]
  44. WangM. HuangX. ZhengH. TangY. ZengK. ShaoL. LiL. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives.J. Control. Release202133723624710.1016/j.jconrel.2021.07.01734273419
    [Google Scholar]
  45. PormohammadA MonychNK GhoshS Nanomaterials in wound healing and infection control.Antibiotics202110547310.3390/antibiotics10050473
    [Google Scholar]
  46. NandhiniJ. KarthikeyanE. RajeshkumarS. Nanomaterials for wound healing: Current status and futuristic frontier.Biomed Technol20246264510.1016/j.bmt.2023.10.001
    [Google Scholar]
  47. SangnimT. PuriV. DheerD. VenkateshD.N. HuanbuttaK. SharmaA. Nanomaterials in the wound healing process: New insights and advancements.Pharmaceutics202416330010.3390/pharmaceutics1603030038543194
    [Google Scholar]
  48. DukhinovaM.S. PrilepskiiA.Y. ShtilA.A. VinogradovV.V. Metal oxide nanoparticles in therapeutic regulation of macrophage functions.Nanomaterials (Basel)2019911163110.3390/nano911163131744137
    [Google Scholar]
  49. BaiQ. HanK. DongK. ZhengC. ZhangY. LongQ. LuT. Potential applications of nanomaterials and technology for diabetic wound healing.Int. J. Nanomedicine2020159717974310.2147/IJN.S27600133299313
    [Google Scholar]
  50. DamP CelikM UstunM SahaS SahaC KacarEA Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches.RSC Adv.20231331477A10.1039/D3RA03477A
    [Google Scholar]
  51. MendesC. ThirupathiA. CorrêaM.E.A.B. GuY. SilveiraP.C.L. The use of metallic nanoparticles in wound healing: New perspectives.Int. J. Mol. Sci.202223231537610.3390/ijms23231537636499707
    [Google Scholar]
  52. AminzaiMT PatanA Recent applications and evaluation of metal nanoparticle–polymer hybrids as chronic wound dressings.J. Nanomater.2024202428034910.1155/2024/3280349
    [Google Scholar]
  53. RybkaM. MazurekŁ. KonopM. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice.Life (Basel)20221316910.3390/life1301006936676019
    [Google Scholar]
  54. DinizF. MaiaR. de AndradeL.R. AndradeL. Vinicius ChaudM. da SilvaC. CorrêaC. de Albuquerque JuniorR. Pereira da CostaL. ShinS. HassanS. Sanchez-LopezE. SoutoE. SeverinoP. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo.Nanomaterials (Basel)202010239010.3390/nano1002039032102229
    [Google Scholar]
  55. HassanM.M. HeinsK. ZhengH. Wound Dressing based on silver nanoparticle embedded wool keratin electrospun nanofibers deposited on cotton fabric: Preparation, characterization, antimicrobial activity, and cytocompatibility.ACS Appl. Bio Mater.2024742164217410.1021/acsabm.3c0111138493449
    [Google Scholar]
  56. HusseinJ. El BanaM. LatifY.A. SalehS. tolbaE. Wound healing activity of cotton fabrics loaded with silver nanoparticles in experimental model of diabetes.Biomed. Pharmacol. J.2023161536510.13005/bpj/2587
    [Google Scholar]
  57. LuuN.D.H. NguyenM.N. DangL.H. LeT.P. DoanT.L. NguyenT.T.T. LeH.K. NguyenM-T. HoangL.S. TranN.Q. Antibacterial and biocompatible wound dressing based on green-synthesized copper nanoparticles and alginate.J. Mater. Res.202439695596710.1557/s43578‑024‑01283‑y
    [Google Scholar]
  58. NangareS. PantwalawalkarJ. JadhavN. KhanZ. PatilG. MahajanM. Nanotherapeutics for diabetic foot ulcer and wound healing using metal nanocomposites.Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic DisordersBoca Raton, FloridaCRC Press2024190210
    [Google Scholar]
  59. EslaminezhadS. MoradiF. HojjatiM.R. Evaluation of the wound healing efficacy of new antibacterial polymeric nanofiber based on polyethylene oxide coated with copper nanoparticles and defensin peptide: An in-vitro to in-vivo assessment.Heliyon2024108e2954210.1016/j.heliyon.2024.e2954238628749
    [Google Scholar]
  60. ZhengQ. ChenC. LiuY. GaoJ. LiL. YinC. YuanX. Metal nanoparticles: Advanced and promising technology in diabetic wound therapy.Int. J. Nanomedicine20241996599210.2147/IJN.S43469338293611
    [Google Scholar]
  61. ChenY.H. RaoZ.F. LiuY.J. LiuX.S. LiuY.F. XuL.J. WangZ.Q. GuoJ.Y. ZhangL. DongY.S. QiC.X. YangC. WangS.F. Multifunctional injectable hydrogel loaded with cerium-containing bioactive glass nanoparticles for diabetic wound healing.Biomolecules202111570210.3390/biom1105070234066859
    [Google Scholar]
  62. BargaviP. BalakumarS. RaghunandhakumarS. Multi-functional bandage - bioactive glass/metal oxides/alginate composites based regenerative membrane facilitating re-epithelialization in diabetic wounds with sustained drug delivery and anti-bactericidal efficacy.Int. J. Biol. Macromol.2024262Pt 213005410.1016/j.ijbiomac.2024.13005438342258
    [Google Scholar]
  63. Vargas GuerreroM. AendekerkF.M.A. de BoerC. GeurtsJ. LucchesiJ. ArtsJ.J.C. Bioactive-Glass-Based Materials with Possible Application in Diabetic Wound Healing: A Systematic Review.Int. J. Mol. Sci.2024252115210.3390/ijms2502115238256225
    [Google Scholar]
  64. FanC. XuQ. HaoR. WangC. QueY. ChenY. YangC. ChangJ. Multi-functional wound dressings based on silicate bioactive materials.Biomaterials202228712165210.1016/j.biomaterials.2022.12165235785753
    [Google Scholar]
  65. TianT. WuC. ChangJ. Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi 4 O 10, Cup) bioceramics.RSC Advances2016651458404584910.1039/C6RA08145B
    [Google Scholar]
  66. YangC. YounisM.R. ZhangJ. QuJ. LinJ. HuangP. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets.Small20201625200151810.1002/smll.20200151832468633
    [Google Scholar]
  67. QiuY TianJ KongS FengY LuY SuL SrCuSi4 O10 /GelMA composite hydrogel-mediated vital pulp therapy: Integrating antibacterial property and enhanced pulp regeneration activity.Adv Healthc Mater20231224e2300546
    [Google Scholar]
  68. YangC. ZhengR. YounisM.R. ShaoJ. FuL.H. ZhangD.Y. LinJ. LiZ. HuangP. NIR-II light-responsive biodegradable shape memory composites based on cuprorivaite nanosheets for enhanced tissue reconstruction.Chem. Eng. J.202141912943710.1016/j.cej.2021.129437
    [Google Scholar]
  69. XiaY. ZhangZ. ZhouK. LinZ. ShuR. XuY. ZengZ. ChangJ. XieY. Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion.Regen. Biomater.202411rbae02810.1093/rb/rbae02838605852
    [Google Scholar]
  70. BainoF. Copper-doped ordered mesoporous bioactive glass: A promising multifunctional platform for bone tissue engineering.Bioengineering (Basel)2020724510.3390/bioengineering702004532455606
    [Google Scholar]
  71. FengY. SuL. ZhangZ. ChenY. YounisM.R. ChenD. XuJ. DongC. QueY. FanC. JiaoY. ZhuH. ChangJ. DongZ. YangC. pH-responsive wound dressing based on biodegradable cup nanozymes for treating infected and diabetic wounds.ACS Appl. Mater. Interfaces20241619511010.1021/acsami.3c1299738157482
    [Google Scholar]
  72. YuQ. HanY. TianT. ZhouQ. YiZ. ChangJ. WuC. Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction.Biomaterials2019194253510.1016/j.biomaterials.2018.12.01230572284
    [Google Scholar]
  73. ZhangZ. DaiQ. ZhangY. ZhuangH. WangE. XuQ. MaL. WuC. HuanZ. GuoF. ChangJ. Design of a multifunctional biomaterial inspired by ancient Chinese medicine for hair regeneration in burned skin.ACS Appl. Mater. Interfaces20201211124891249910.1021/acsami.9b2276932118402
    [Google Scholar]
  74. DongC. YangC. YounisM.R. ZhangJ. HeG. QiuX. FuL.H. ZhangD.Y. WangH. HongW. LinJ. WuX. HuangP. Bioactive NIR-II Light-Responsive shape memory composite based on cuprorivaite nanosheets for endometrial regeneration.Adv. Sci. (Weinh.)2022912210222010.1002/advs.20210222035218328
    [Google Scholar]
  75. WuC. ZhouY. XuM. HanP. ChenL. ChangJ. XiaoY. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity.Biomaterials201334242243310.1016/j.biomaterials.2012.09.06623083929
    [Google Scholar]
  76. ZhaoS. LiL. WangH. ZhangY. ChengX. ZhouN. RahamanM.N. LiuZ. HuangW. ZhangC. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.Biomaterials20155337939110.1016/j.biomaterials.2015.02.11225890736
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708307900240818172700
Loading
/content/journals/raiad/10.2174/0127722708307900240818172700
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioceramic; cuprorivaite; Diabetes; nanomaterials; nanotechnology; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test