Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

The study aims to investigate and assess the effectiveness of current novel techniques for the preparation of an efficient nanocarrier system in resolving the drawbacks associated with the delivery of herbal bioactives to treat rheumatoid arthritis. Systematic utilization of various search engines like Science Direct, Pubmed, Shodhganga, Google Scholar, and Google Patent databases based on various sets of key phrases has been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. The current study summarizes the existing research and development of new nano-formulations with a focus on herbal bioactive compounds for treating rheumatoid arthritis. Physicochemical properties of phytoconstituents, such as low aqueous solubility, low permeation coefficient, and chemical instability, poor bioavailability, short plasma half-life, and ultimately sub-therapeutic efficacy, limit their clinical translation despite their great potency. The utilization of Phytochemical-Based Nanocarrier Approaches for rheumatoid arthritis can be a milestone as a major population is affected by this disease worldwide. The intensive study recapitulates that novel drug delivery systems can provide new opportunities to efficiently deliver herbal bioactives with improved pharmacokinetic and pharmacodynamic properties. The exhaustive study concluded that transferosomes, ethosomes, transethosomes, niosomes, phytosomes, Solid Lipid Nanoparticles (SLN), Nano Lipid Carriers (NLC), bilosomes and hylurosomes are some of the efficient nanocarrier systems that may impart numerous benefits to the delivery of herbal bioactives for treatment of RA. These nanocarrier systems fabricated with phytoconstituents flaunt the evident promising benefits of improved aqueous solubility, low first-pass metabolism with upgraded bioavailability, sustained release action, resistance to enzymatic degradation providing support in rheumatoid arthritis recovery. This review discusses that the upgradation of the pharmacological action and other relevant issues of herbal bioactives are possible by utilizing novel drug delivery systems, resulting in successful development of nano-loaded herbal bioactives. It also focuses on highlighting the pioneering progression in the field of herbal bioactives-loaded nanocarrier systems for rheumatoid arthritis both and along with their advanced preparation methods and applications and discussing the opportunities for further prospects. This compiled informative review will enlighten various researchers in the field of delivering herbal bioactives for rheumatoid arthritis.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708304673240903184606
2024-09-11
2025-10-22
Loading full text...

Full text loading...

References

  1. CiofoaiaEI PillarisettyA ConstantinescuF Health disparities in rheumatoid arthritis.Therapeutic Advances in Musculoskeletal Disease.2022141759720X22113712710.1177/1759720X221137127
    [Google Scholar]
  2. ShiG. LiaoX. LinZ. LiuW. LuoX. ZhanH. CaiX. Estimation of the global prevalence, incidence, years lived with disability of rheumatoid arthritis in 2019 and forecasted incidence in 2040: Results from the Global Burden of Disease Study 2019.Clin. Rheumatol.20234292297230910.1007/s10067‑023‑06628‑237294370
    [Google Scholar]
  3. JangS. KwonE.J. LeeJ.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells.Int. J. Mol. Sci.202223290510.3390/ijms2302090535055087
    [Google Scholar]
  4. SchmuklerJ LiT GibsonKA MorlaRM LutaG PincusT Patient global assessment is elevated by up to 5 of 10 units in patients with inflammatory arthritis who screen positive for fibromyalgia (by FAST4) and/or depression (by MDS2) on a single MDHAQ.Seminars in Arthritis and Rheumatism202358152151
    [Google Scholar]
  5. CaiY. ZhangJ. LiangJ. XiaoM. ZhangG. JingZ. LvL. NanK. DangX. The burden of rheumatoid arthritis: Findings from the 2019 global burden of diseases study and forecasts for 2030 by Bayesian age-period-cohort analysis.J. Clin. Med.2023124129110.3390/jcm1204129136835827
    [Google Scholar]
  6. MaraniniB. BortoluzziA. SilvagniE. GovoniM. Focus on sex and gender: What we need to know in the management of rheumatoid arthritis.J. Pers. Med.202212349910.3390/jpm1203049935330498
    [Google Scholar]
  7. LoJ. ChanL. FlynnS. A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: A 2019 update.Arch. Phys. Med. Rehabil.2021102111513110.1016/j.apmr.2020.04.00132339483
    [Google Scholar]
  8. HammondA. TennantA. BrownT. PriorY. ChingA. ParkerJ. Psychometric testing of the rheumatoid arthritis work instability scale in employed people with fibromyalgia.Musculoskelet. Care20232141434144610.1002/msc.182937768007
    [Google Scholar]
  9. HillJ. HarrisonJ. ChristianD. ReedJ. CleggA. DuffieldS.J. GoodsonN. MarsonT. The prevalence of comorbidity in rheumatoid arthritis: A systematic review and meta-analysis.Br. J. Community Nurs.202227523224110.12968/bjcn.2022.27.5.23235522453
    [Google Scholar]
  10. FangQ ZhouC NandakumarKS Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis.Mediators Inflamm.20202020383021210.1155/2020/3830212
    [Google Scholar]
  11. MajithiaV. GeraciS.A. Rheumatoid arthritis: Diagnosis and management.Am. J. Med.20071201193693910.1016/j.amjmed.2007.04.00517976416
    [Google Scholar]
  12. VenablesP MainiRN Diagnosis and differential diagnosis of rheumatoid arthritis.2018Available From: http://www.uptodatefree.ir/topic.htm?path=diagnosis-and-differential-diagnosis-of-rheumatoid-arthritis
  13. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20209488010.3390/cells904088032260219
    [Google Scholar]
  14. CasimiroL BarnsleyL BrosseauL MilneS WelchV TugwellP WellsGA Acupuncture and electroacupuncture for the treatment of rheumatoid arthritis.Cochrane Database Syst Rev.200520054CD00378810.1002/14651858.CD003788.pub2
    [Google Scholar]
  15. BrosseauL. YongeK.A. WelchV. MarchandS. JuddM. WellsG.A. TugwellP. Transcutaneous electrical nerve stimulation (TENS) for the treatment of rheumatoid arthritis in the hand.Cochrane Libr.20032010710.1002/14651858.CD00437712918009
    [Google Scholar]
  16. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/00049339030173215
    [Google Scholar]
  17. EmeryP. Treatment of rheumatoid arthritis.BMJ2006332753415215510.1136/bmj.332.7534.15216424492
    [Google Scholar]
  18. BegS. HasanH. HussainM.S. SwainS. BarkatM.A. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives.Pharmacogn. Rev.201151012013710.4103/0973‑7847.9110222279370
    [Google Scholar]
  19. LindlerB.N. LongK.E. TaylorN.A. LeiW. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis.Medicines (Basel)20207116710.3390/medicines711006733126603
    [Google Scholar]
  20. SharmaA. GoelA. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products.Mol. Biol. Rep.20235054687470610.1007/s11033‑023‑08406‑437022525
    [Google Scholar]
  21. WangY. ChenS. DuK. LiangC. WangS. Owusu BoadiE. LiJ. PangX. HeJ. ChangY. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis.J. Ethnopharmacol.202127911436810.1016/j.jep.2021.11436834197960
    [Google Scholar]
  22. KhogtaS. PatelJ. BarveK. LondheV. Herbal nano-formulations for topical delivery.J. Herb. Med.20202010030010.1016/j.hermed.2019.100300
    [Google Scholar]
  23. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144Suppl. 1S1S710.12980/APJTB.4.2014C98025183064
    [Google Scholar]
  24. RahmanM. BegS. VermaA. Al AbbasiF.A. AnwarF. SainiS. AkhterS. KumarV. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: Challenges and scope of nano/submicromedicine in its effective delivery.J. Pharm. Pharmacol.201669111410.1111/jphp.1266127774648
    [Google Scholar]
  25. PandeyR. BhairamM. ShuklaS.S. GidwaniB. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru202129241543810.1007/s40199‑021‑00403‑x34327650
    [Google Scholar]
  26. KumariS. GoyalA. Sönmez GürerE. Algın YaparE. GargM. SoodM. SindhuR.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics1405109135631677
    [Google Scholar]
  27. FavalliE.G. RaimondoM.G. BeccioliniA. CrottiC. BiggioggeroM. CaporaliR. The management of first-line biologic therapy failures in rheumatoid arthritis: Current practice and future perspectives.Autoimmun. Rev.201716121185119510.1016/j.autrev.2017.10.00229037899
    [Google Scholar]
  28. LiJ. ZhangZ. WuX. ZhouJ. MengD. ZhuP. Risk of adverse events after anti-TNF treatment for inflammatory rheumatological disease. A meta-analysis.Front. Pharmacol.20211274639610.3389/fphar.2021.74639634790122
    [Google Scholar]
  29. ZhangK.X. IpC.K. ChungS.K. LeiK.K. ZhangY.Q. LiuL. WongV.K.W. Drug-resistance in rheumatoid arthritis: The role of p53 gene mutations, ABC family transporters and personal factors.Curr. Opin. Pharmacol.202054597110.1016/j.coph.2020.08.00232942096
    [Google Scholar]
  30. TakanashiS KanekoY TakeuchiT. FRI0079 Characteristics of difficult-to-treat rheumatoid arthritis.Scientific Abstr.202079616
    [Google Scholar]
  31. NagyG. RoodenrijsN.M.T. WelsingP.M.J. KedvesM. HamarA. van der GoesM.C. KentA. BakkersM. BlaasE. SenoltL. SzekaneczZ. ChoyE. DougadosM. JacobsJ.W.G. GeenenR. BijlsmaH.W.J. ZinkA. AletahaD. SchoneveldL. van RielP. GutermannL. PriorY. NikiphorouE. FerraccioliG. SchettG. HyrichK.L. Mueller-LadnerU. BuchM.H. McInnesI.B. van der HeijdeD. van LaarJ.M. EULAR definition of difficult-to-treat rheumatoid arthritis.Ann. Rheum. Dis.2021801313510.1136/annrheumdis‑2020‑21734433004335
    [Google Scholar]
  32. NurmohamedM.T. Cardiovascular risk in rheumatoid arthritis.Autoimmun. Rev.20098866366710.1016/j.autrev.2009.02.01519393192
    [Google Scholar]
  33. NurmohamedM.T. van HalmV.P. DijkmansB.A.C. Cardiovascular risk profile of antirheumatic agents in patients with osteoarthritis and rheumatoid arthritis.Drugs200262111599160910.2165/00003495‑200262110‑0000312109923
    [Google Scholar]
  34. WolfeF. MitchellD.M. SibleyJ.T. FriesJ.F. BlochD.A. WilliamsC.A. SpitzP.W. HagaM. KleinhekselS.M. CatheyM.A. The mortality of rheumatoid arthritis.Arthritis Rheum.199437448149410.1002/art.17803704088147925
    [Google Scholar]
  35. PatrignaniP. TacconelliS. BrunoA. SostresC. LanasA. Managing the adverse effects of nonsteroidal anti-inflammatory drugs.Expert Rev. Clin. Pharmacol.20114560562110.1586/ecp.11.3622114888
    [Google Scholar]
  36. WangW. ZhouH. LiuL. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.Eur. J. Med. Chem.201815850251610.1016/j.ejmech.2018.09.02730243154
    [Google Scholar]
  37. GanjaliM GanjaliM AljabaliAA BarhoumA Drug delivery systems based on nano-herbal medicine. Bionanotechnology: Emerging Applications of Bionanomaterials Micro and Nano TechnologiesAmsterdamElsevier202210.1016/B978‑0‑12‑823915‑5.00007‑1
    [Google Scholar]
  38. KomolafeK. KomolafeT.R. FatokiT.H. AkinmoladunA.C. BraiB.I.C. OlaleyeM.T. AkindahunsiA.A. Coronavirus disease 2019 and herbal therapy: Pertinent issues relating to toxicity and standardization of phytopharmaceuticals.Rev. Bras. Farmacogn.202131214216110.1007/s43450‑021‑00132‑x33727754
    [Google Scholar]
  39. AwareC.B. PatilD.N. SuryawanshiS.S. MaliP.R. RaneM.R. GuravR.G. JadhavJ.P. Natural bioactive products as promising therapeutics: A review of natural product-based drug development.S. Afr. J. Bot.202215151252810.1016/j.sajb.2022.05.028
    [Google Scholar]
  40. ParasuramanS. Herbal drug discovery: Challenges and perspectives.Curr. Pharmacogenomics Person. Med.2018161636810.2174/1875692116666180419153313
    [Google Scholar]
  41. SanghiD.K. TiwleR. Herbal drugs an emerging tool for novel drug delivery systems.Res. J. Pharm. Technol.201369962966
    [Google Scholar]
  42. Goldbach-ManskyR. WilsonM. FleischmannR. OlsenN. SilverfieldJ. KempfP. KivitzA. SherrerY. PucinoF. CsakoG. CostelloR. PhamT.H. SnyderC. van der HeijdeD. TaoX. WesleyR. LipskyP.E. Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: A randomized trial.Ann. Intern. Med.2009151422924010.7326/0003‑4819‑151‑4‑200908180‑0000519687490
    [Google Scholar]
  43. GandhiG.R. JothiG. MohanaT. VasconcelosA.B.S. MontalvãoM.M. HariharanG. SridharanG. KumarP.M. GurgelR.Q. LiH.B. ZhangJ. GanR.Y. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: A systematic review.Phytomedicine20219315376610.1016/j.phymed.2021.15376634624807
    [Google Scholar]
  44. SaggarS. MirP.A. KumarN. ChawlaA. UppalJ. ShilpaS. KaurA. Traditional and herbal medicines: Opportunities and challenges.Pharmacognosy Res.202214210711410.5530/pres.14.2.15
    [Google Scholar]
  45. VermaS. SinghS. Current and future status of herbal medicines.Vet. World20082234710.5455/vetworld.2008.347‑350
    [Google Scholar]
  46. DewiM.K. ChaerunisaaA.Y. MuhaiminM. JoniI.M. Improved Activity of Herbal Medicines through Nanotechnology.Nanomaterials (Basel)20221222407310.3390/nano1222407336432358
    [Google Scholar]
  47. MukherjeePK BanerjeeS GuptaBD KarA Evidence-based validation of herbal medicine: Translational approach. Evidence-Based Validation of Herbal MedicineAmsterdamElsevier2022
    [Google Scholar]
  48. MaY. SongY. MaF. ChenG. A potential polymeric nanogel system for effective delivery of chlorogenic acid to target collagen-induced arthritis.J. Inorg. Organomet. Polym. Mater.20203072356236510.1007/s10904‑019‑01421‑8
    [Google Scholar]
  49. WangQ. QinX. FangJ. SunX. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies.Acta Pharm. Sin. B20211151158117410.1016/j.apsb.2021.03.01334094826
    [Google Scholar]
  50. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials (Basel)2018814210.3390/nano801004229342965
    [Google Scholar]
  51. BensonH.A.E. Transfersomes for transdermal drug delivery.Expert Opin. Drug Deliv.20063672773710.1517/17425247.3.6.72717076595
    [Google Scholar]
  52. AscensoA. BatistaC. CardosoP. MendesT. PraçaF. BentleyV. RaposoS. SimõesS. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S8618626425085
    [Google Scholar]
  53. PawarA.Y. Transfersome: A novel technique which improves transdermal permeability.Asian J. Pharm.20161004
    [Google Scholar]
  54. RajanR. JoseS. Biju MukundV.P. VasudevanD. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.8552422171309
    [Google Scholar]
  55. MishraK.K. KaurC.D. VermaS. SahuA.K. DashD.K. KashyapP. MishraS.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system.Nanomedicine (Lond.)201923354
    [Google Scholar]
  56. MatharooN. MohdH. Michniak-KohnB. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e191810.1002/wnan.191837527953
    [Google Scholar]
  57. SinghS. BharatiD. MishraP. YadavS. Transferosome- A noval drug delivery system.Sch. Acad. J. Pharm.202413514515210.36347/sajp.2024.v13i05.003
    [Google Scholar]
  58. AinbinderD. PaolinoD. FrestaM. TouitouE. Drug delivery applications with ethosomes.J. Biomed. Nanotechnol.20106555856810.1166/jbn.2010.115221329048
    [Google Scholar]
  59. NandureHP PuranikP GiramP LoneV Ethosome: A Novel Drug Carrier.IJPRAS.2013231330
    [Google Scholar]
  60. PurabisahaRK RawatSS PrakashA A review on novel drug delivery system.WJPLS20241036166
    [Google Scholar]
  61. DasS.K. ChakrabortyS. RoyC. RajabalayaR. MohaiminA.W. KhanamJ. NandaA. DavidS.R. Ethosomes as novel vesicular carrier: An overview of the principle, preparation and its applications.Curr. Drug Deliv.201815679581710.2174/156720181566618011609160429336262
    [Google Scholar]
  62. JafariA. DaneshamouzS. GhasemiyehP. Mohammadi-SamaniS. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.2023331345210.1080/08982104.2022.208574235695714
    [Google Scholar]
  63. ChauhanN. VasavaP. KhanS.L. SiddiquiF.A. IslamF. ChopraH. EmranT.B. Ethosomes: A novel drug carrier.Ann. Med. Surg. (Lond.)20228210459510.1016/j.amsu.2022.10459536124209
    [Google Scholar]
  64. ShitoleM.M. NangareS.N. PatilU. JadhavN. Review on drug delivery applications of ethosomes: Current developments and prospects:(TJPS-2021-0031. R1).Thaiphesatchasan202246334
    [Google Scholar]
  65. DehaghaniMZ MahapatraD JosephT Transethosomes: Novel technology for skin delivery of drugs.Int. J. Med. Pharmaceut. Sci.202111811801
    [Google Scholar]
  66. AliJ RazaR AmeenS ArshadA KarimF AkramMW ShakirL Transethosomes: A breakthrough system for transdermal and topical drug delivery: Transethosomes for transdermal and topical drug delivery.Pak. Biomed. J2022313547
    [Google Scholar]
  67. BajajK.J. ParabB.S. ShidhayeS.S. Nano-transethosomes: A novel tool for drug delivery through skin.Indian J. Pharmaceut. Edu. Res.2021551ss1s1010.5530/ijper.55.1s.33
    [Google Scholar]
  68. MunirM. ZamanM. WaqarM.A. HameedH. RiazT. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route.J. Liposome Res.202434120321810.1080/08982104.2023.222135437338000
    [Google Scholar]
  69. JondhalekarT.M. AherS.S. SaudagarR.B. Transethosome: Novel vesicular carrier for enhanced transdermal drug delivery system.Res.J. Pharm. Technol.20171061816181910.5958/0974‑360X.2017.00320.1
    [Google Scholar]
  70. AbdulbaqiI.M. DarwisY. Abou AssiR. Abdul Karim KhanN. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation.Drug Des. Devel. Ther.20181279581310.2147/DDDT.S15801829670336
    [Google Scholar]
  71. WangY. WangR. QiX. LiW. GuanQ. WangR. LiX. LiY. YangZ. FengY. Novel transethosomes for the delivery of brucine and strychnine: Formulation optimization, characterization and in vitro evaluation in hepatoma cells.J. Drug Deliv. Sci. Technol.20216410242510.1016/j.jddst.2021.102425
    [Google Scholar]
  72. CostanzoM. EspositoE. SguizzatoM. LacavallaM.A. DrechslerM. ValacchiG. ZancanaroC. MalatestaM. Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery.Int. J. Mol. Sci.20212210534110.3390/ijms2210534134069489
    [Google Scholar]
  73. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.74631023252629
    [Google Scholar]
  74. YeoP.L. LimC.L. ChyeS.M. Kiong LingA.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  75. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  76. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.01824369107
    [Google Scholar]
  77. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.00434000392
    [Google Scholar]
  78. YasaminehS. YasaminehP. Ghafouri KalajahiH. GholizadehO. YekanipourZ. AfkhamiH. EslamiM. Hossein KheirkhahA. TaghizadehM. YazdaniY. DadashpourM. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system.Int. J. Pharm.202262412187810.1016/j.ijpharm.2022.12187835636629
    [Google Scholar]
  79. BahrololoumiS NikazarS Niosomes as a promising nanovesicular drug delivery. Advanced and Modern Approaches for Drug DeliveryCambridge, MassachusettsAcademic Press2022
    [Google Scholar]
  80. MohantyD. RaniM.J. HaqueM.A. BakshiV. JahangirM.A. ImamS.S. GilaniS.J. Preparation and evaluation of transdermal naproxen niosomes: Formulation optimization to preclinical anti-inflammatory assessment on murine model.J. Liposome Res.202030437738710.1080/08982104.2019.165264631412744
    [Google Scholar]
  81. KaurI.P. AggarwalD. SinghH. KakkarS. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system.Graefes Arch. Clin. Exp. Ophthalmol.2010248101467147210.1007/s00417‑010‑1383‑020437246
    [Google Scholar]
  82. Dabbagh MoghaddamF. AkbarzadehI. MarzbankiaE. FaridM. khalediL. ReihaniA.H. JavidfarM. MortazaviP. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect.Cancer Nanotechnol.20211211410.1186/s12645‑021‑00085‑9
    [Google Scholar]
  83. Yadavar-NikraveshM.S. AhmadiS. MilaniA. AkbarzadehI. KhoobiM. VahabpourR. BolhassaniA. BakhshandehH. Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects.Adv. Powder Technol.20213293161317310.1016/j.apt.2021.05.047
    [Google Scholar]
  84. RaafatK.M. El-ZahabyS.A. Niosomes of active Fumaria officinalis phytochemicals: Antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action.Chin. Med.20201514010.1186/s13020‑020‑00321‑132377229
    [Google Scholar]
  85. GandhiA DuttaA PalA BakshiP Recent trends of phytosomes for delivering herbal extract with improved bioavailability.J. Pharmacogn. Phytochem2012140614
    [Google Scholar]
  86. ShivanandP. KinjalP. Phytosomes: Technical revolution in phytomedicine.Int. J. Pharm. Tech. Res.201021627631
    [Google Scholar]
  87. LasureP. SayyadH. An overview of phytosomes as an advanced herbal drug delivery system.Res. J. Top. Cosmet. Sci.2013426566
    [Google Scholar]
  88. BhattacharyaS. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals.Int. J. Health Res.20092322523210.4314/ijhr.v2i3.47905
    [Google Scholar]
  89. KarpuzM GunayMS OzerAY Liposomes and phytosomes for phytoconstituents. Advances and avenues in the development of novel carriers for bioactives and biological agentsCambridge, MassachusettsAcademic Press2020
    [Google Scholar]
  90. PatelJ. PatelR. KhambholjaK. PatelN. An overview of phytosomes as an advanced herbal drug delivery system.Asian J Pharm Sci200946363371
    [Google Scholar]
  91. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics1309147534575551
    [Google Scholar]
  92. MurugesanM.P. Venkata RatnamM. MengitsuY. KandasamyK. Evaluation of anti-cancer activity of phytosomes formulated from Aloe vera extract.Mater. Today Proc.20214263163610.1016/j.matpr.2020.11.047
    [Google Scholar]
  93. DeleanuM. TomaL. SandaG.M. BarbălatăT. NiculescuL.Ş. SimaA.V. DeleanuC. SăcărescuL. SuciuA. AlexandruG. CrişanI. PopescuM. StancuC.S. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability, antioxidant and anti-inflammatory effects in vivo.Pharmaceutics2023154106610.3390/pharmaceutics1504106637111552
    [Google Scholar]
  94. YadavN. KhatakS. SaraU.S. Solid lipid nanoparticles-A review.Int. J. Appl. Pharm.201352818
    [Google Scholar]
  95. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  96. ÜnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine20072328930018019829
    [Google Scholar]
  97. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.02111311991
    [Google Scholar]
  98. AlbuquerqueJ. MouraC. SarmentoB. ReisS. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics.Molecules2015206111031111810.3390/molecules20061110326087258
    [Google Scholar]
  99. JenningV. LippacherA. GohlaS.H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization.J. Microencapsul.200219111010.1080/71381758311811751
    [Google Scholar]
  100. GuptaS. KesarlaR. ChotaiN. MisraA. OmriA. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability.BioMed Res. Int.2017201711810.1155/2017/598401428243600
    [Google Scholar]
  101. YouJ. WanF. DecuiF. SunY. DuY. HuF. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles.Int. J. Pharm.20073431-227027610.1016/j.ijpharm.2007.07.00317706383
    [Google Scholar]
  102. KhareA. SinghI. PawarP. GroverK. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application.J. Drug Deliv.2016201611110.1155/2016/659036127293896
    [Google Scholar]
  103. KunjiappanS. SankaranarayananM. Karan KumarB. PavadaiP. BabkiewiczE. MaszczykP. Glodkowska-MrowkaE. ArunachalamS. Ram Kumar PandianS. RavishankarV. BaskararajS. VellaichamyS. ArulmaniL. PanneerselvamT. Capsaicin-loaded solid lipid nanoparticles: Design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation.Nanotechnology202132909510110.1088/1361‑6528/abc57e33113518
    [Google Scholar]
  104. BagdeA. PatelK. KutlehriaS. ChowdhuryN. SinghM. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength.Drug Deliv. Transl. Res.20199481682710.1007/s13346‑019‑00632‑330924025
    [Google Scholar]
  105. MezianiMJ PathakP SunYP Supercritical fluid technology for nanotechnology in drug delivery.Nanotechnology in Drug DeliveryLondonInTechOpen2009
    [Google Scholar]
  106. SaadS. AhmadI. KawishS.M. KhanU.A. AhmadF.J. AliA. JainG.K. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology.Colloids Surf. B Biointerfaces202018711062810.1016/j.colsurfb.2019.11062831753617
    [Google Scholar]
  107. TrucilloP. CampardelliR. Production of solid lipid nanoparticles with a supercritical fluid assisted process.J. Supercrit. Fluids2019143162310.1016/j.supflu.2018.08.001
    [Google Scholar]
  108. AkbariZ. AmanlouM. Karimi-SabetJ. GolestaniA. NiasarM.S. Characterization of carbamazepine-loaded solid lipid nanoparticles prepared by rapid expansion of supercritical solution.Trop. J. Pharm. Res.201513121955196110.4314/tjpr.v13i12.1
    [Google Scholar]
  109. ChattopadhyayP. ShekunovB. YimD. CipollaD. BoydB. FarrS. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.Adv. Drug Deliv. Rev.200759644445310.1016/j.addr.2007.04.01017582648
    [Google Scholar]
  110. CoutoR. AlvarezV. TemelliF. Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO2.J. Supercrit. Fluids201712043244210.1016/j.supflu.2016.05.036
    [Google Scholar]
  111. Nabi-MeibodiM. NavidiB. NavidiN. VatanaraA. Reza RouiniM. RamezaniV. Optimized double emulsion-solvent evaporation process for production of solid lipid nanoparticles containing baclofene as a lipid insoluble drug.J. Drug Deliv. Sci. Technol.201323322523010.1016/S1773‑2247(13)50034‑7
    [Google Scholar]
  112. KhallafR.A. SalemH.F. AbdelbaryA. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment.Drug Deliv.20162393452346010.1080/10717544.2016.119449827240935
    [Google Scholar]
  113. MaoS.R. WangY.Z. JiH.Y. BiD.Z. [Preparation of solid lipid nanoparticles by microemulsion technique].Yao Xue Xue Bao2003388624626. [In Chinese]14628457
    [Google Scholar]
  114. KumaraS.S. AlliR. Preparation, characterization and optimization of irbesartan loaded solid lipid nanoparticles for oral delivery.Asian J. Pharm. Technol.202111297104
    [Google Scholar]
  115. FreitasC. MüllerR.H. Spray-drying of solid lipid nanoparticles (SLNTM).Eur. J. Pharm. Biopharm.199846214515110.1016/S0939‑6411(97)00172‑09795036
    [Google Scholar]
  116. Ezzati Nazhad DolatabadiJ. HamishehkarH. ValizadehH. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: Solid-state characterization and aerosol dispersion performance.Drug Dev. Ind. Pharm.20154191431143710.3109/03639045.2014.95611125220930
    [Google Scholar]
  117. SchubertM. Müller-GoymannC.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – Evaluation of the method and process parameters.Eur. J. Pharm. Biopharm.200355112513110.1016/S0939‑6411(02)00130‑312551713
    [Google Scholar]
  118. Arıca YeginB. BenoîtJ.P. LamprechtA. Paclitaxel-loaded lipid nanoparticles prepared by solvent injection or ultrasound emulsification.Drug Dev. Ind. Pharm.20063291089109410.1080/0363904060068350117012121
    [Google Scholar]
  119. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  120. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  121. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  122. PurohitD.K. Nano-lipid carriers for topical application: Current scenario.Asian J. Pharm.2016101S9
    [Google Scholar]
  123. SharmaN. SharmaS. SinghS. GargK. SinghS.K. AroraS. Nano-structured lipid carriers: A promising strategy and current progress in rheumatoid arthritis and pain management.Plant Arch.202020222982308
    [Google Scholar]
  124. YadavK.S. KaleK. High pressure homogenizer in pharmaceuticals: Understanding its critical processing parameters and applications.J. Pharm. Innov.202015469070110.1007/s12247‑019‑09413‑4
    [Google Scholar]
  125. SadiahS. AnwarE. DjufriM. CahyaningsihU. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method.J. Pharmaceut. Sci. Res.201791018891893
    [Google Scholar]
  126. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Design and characterization of astaxanthin-loaded nanostructured lipid carriers.Innov. Food Sci. Emerg. Technol.20142636637410.1016/j.ifset.2014.06.012
    [Google Scholar]
  127. RahmanH. RasedeeA. HowC.W. AbdulA.B. AllaudinZ.N. OthmanH. SaeedM. YeapS. Zerumbone-loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect.Int. J. Nanomedicine201382769278110.2147/IJN.S4531323946649
    [Google Scholar]
  128. MadanJ.R. KhobaragadeS. DuaK. AwasthiR. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast.Dermatol. Ther.2020333e1337010.1111/dth.1337032250507
    [Google Scholar]
  129. KimC.H. KimB.D. LeeT.H. KimH.K. LyuM.J. YoonY.I. GooY.T. KangM.J. LeeS. ChoiY.W. Synergistic co-administration of docetaxel and curcumin to chemoresistant cancer cells using PEGylated and RIPL peptide-conjugated nanostructured lipid carriers.Cancer Nanotechnol.20221311710.1186/s12645‑022‑00119‑w
    [Google Scholar]
  130. ShiraziA.S. VarshochianR. RezaeiM. ArdakaniY.H. DinarvandR. SN38 loaded nanostructured lipid carriers (NLCs); Preparation and in vitro evaluations against glioblastoma.J. Mater. Sci. Mater. Med.20213277810.1007/s10856‑021‑06538‑234191134
    [Google Scholar]
  131. NoorullaK.M. YasirM. MuzaffarF. SR. GhoneimM.M. AlmurshediA.S. TuraA.J. AlshehriS. GebissaT. MekitS. AhmedM.M. ZafarA. Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and in-vivo preclinical evaluation.J. Drug Deliv. Sci. Technol.20226710293910.1016/j.jddst.2021.102939
    [Google Scholar]
  132. AliZ. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout.BMC Pharmacol. Toxicol.2022202223
    [Google Scholar]
  133. AwadeenR.H. BoughdadyM.F. MeshaliM.M. Quality by design approach for preparation of zolmitriptan/chitosan nanostructured lipid carrier particles – Formulation and pharmacodynamic assessment.Int. J. Nanomedicine2020158553856810.2147/IJN.S27435233173292
    [Google Scholar]
  134. GendyA.M. ElnagarM.R. AllamM.M. MousaM.R. KhodirA.E. El-HaddadA.E. ElnahasO.S. FayezS.M. El-MancyS.S. Berberine-loaded nanostructured lipid carriers mitigate warm hepatic ischemia/reperfusion-induced lesion through modulation of HMGB1/TLR4/NF-κB signaling and autophagy.Biomed. Pharmacother.202214511212210.1016/j.biopha.2021.11212234489150
    [Google Scholar]
  135. OsanlouR. EmtyazjooM. BanaeiA. HesarinejadM.A. AshrafiF. Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties.Colloids Surf. A Physicochem. Eng. Asp.202264112858810.1016/j.colsurfa.2022.128588
    [Google Scholar]
  136. GomesG.V.L. SolaM.R. RochettiA.L. FukumasuH. VicenteA.A. PinhoS.C. β-carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru ( Astrocaryum murumuru ) butter produced by phase inversion temperature method: Characterisation, dynamic in vitro digestion and cell viability study.J. Microencapsul.2019361435210.1080/02652048.2019.158598230836027
    [Google Scholar]
  137. PatilPV MenonMD PalshetkarAD DesaiND Topical delivery of mupirocin calcium nanostructured lipid carriers using a full-thickness excision wound healing model.J Wound Care202332Sup5alxiiilxxiv10.12968/jowc.2023.32.Sup5a.lxiii
    [Google Scholar]
  138. KharatM. McClementsD.J. Fabrication and characterization of nanostructured lipid carriers (NLC) using a plant-based emulsifier: Quillaja saponin.Food Res. Int.201912610860110.1016/j.foodres.2019.10860131732055
    [Google Scholar]
  139. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  140. SoutoE.B. BaldimI. OliveiraW.P. RaoR. YadavN. GamaF.M. MahantS. SLN and NLC for topical, dermal, and transdermal drug delivery.Expert Opin. Drug Deliv.202017335737710.1080/17425247.2020.172788332064958
    [Google Scholar]
  141. TianC. AsgharS. WuY. Kambere AmerigosD. ChenZ. ZhangM. YinL. HuangL. PingQ. XiaoY. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: Preparation, in vitro and in vivo evaluations.Drug Deliv.20172411605161610.1080/10717544.2017.139189029063815
    [Google Scholar]
  142. PhamT.M.A. LeeD.H. NaY.G. JinM. JungM. KimH.E. YooH. WonJ.H. LeeJ.Y. BaekJ.S. HanS.C. LeeH.K. ChoC.W. Enhancement of S(+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system.Arch. Pharm. Res.2022451182283510.1007/s12272‑022‑01413‑236307644
    [Google Scholar]
  143. WangY. ZhangH. HaoJ. LiB. LiM. XiuwenW. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect.Drug Deliv.20162341398140310.3109/10717544.2015.105561926079530
    [Google Scholar]
  144. AliA.S. AlrashediM.G. AhmedO.A.A. IbrahimI.M. Pulmonary delivery of hydroxychloroquine nanostructured lipid carrier as a potential treatment of COVID-19.Polymers (Basel)20221413261610.3390/polym1413261635808662
    [Google Scholar]
  145. E ElerakyN. M OmarM. A MahmoudH. A Abou-TalebH. Nanostructured lipid carriers to mediate brain delivery of temazepam: Design and in vivo study.Pharmaceutics202012545110.3390/pharmaceutics1205045132422903
    [Google Scholar]
  146. Abdel-moneumR. Abdel-RashidR.S. Bile salt stabilized nanovesicles as a promising drug delivery technology: A general overview and future perspectives.J. Drug Deliv. Sci. Technol.20237910405710.1016/j.jddst.2022.104057
    [Google Scholar]
  147. ChilkawarR. NanjwadeB. NwajiM. IdrisS. MohamiedA. Bilosomes based drug delivery system.J. Chem. Appl.201525
    [Google Scholar]
  148. El-NabarawiM.A. ShammaR.N. FaroukF. NasrallaS.M. Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: Preparation, characterization and in vivo skin deposition assay.J. Liposome Res.202030111110.1080/08982104.2019.157725631010357
    [Google Scholar]
  149. YangS. LiuL. HanJ. TangY. Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques.Int. J. Cosmet. Sci.2020421162810.1111/ics.1259231724203
    [Google Scholar]
  150. PimpleP. ShahJ. SinghP. Emerging phytochemical formulations for management of rheumatoid arthritis: A Review.Curr. Drug Deliv.2024211033010.2174/011567201827043424010511033038299275
    [Google Scholar]
  151. XuH. DongL. BinZ. YansongH. ShaofengL. ChangL. ChenC. ChangliW. Supramolecular self-assembly of a hybrid ‘hyalurosome’ for targeted photothermal therapy in non-small cell lung cancer.Drug Deliv.202027137838610.1080/10717544.2020.173052132098528
    [Google Scholar]
  152. AsrorovAM EHyalurosomes: A newer approach for drug delivery. Systems of Nanovesicular Drug DeliveryCambridge, MassachusettsAcademic Press202210.1016/B978‑0‑323‑91864‑0.00011‑5
    [Google Scholar]
  153. MancaM.L. CastangiaI. ZaruM. NácherA. ValentiD. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring.Biomaterials20157110010910.1016/j.biomaterials.2015.08.03426321058
    [Google Scholar]
  154. ZhuJ. TangX. JiaY. HoC.T. HuangQ. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review.Int. J. Pharm.202057811912710.1016/j.ijpharm.2020.11912732036009
    [Google Scholar]
  155. ElhalmoushyP.M. ElsheikhM.A. MatarN.A. El-HadidyW.F. KamelM.A. OmranG.A. ElnaggarY.S.R. Novel berberine-loaded hyalurosomes as a promising nanodermatological treatment for vitiligo: Biochemical, biological and gene expression studies.Int. J. Pharm.202261512152310.1016/j.ijpharm.2022.12152335104596
    [Google Scholar]
  156. SanaE. ZeeshanM. AinQ.U. KhanA.U. HussainI. KhanS. LepeltierE. AliH. Topical delivery of curcumin-loaded transfersomes gel ameliorated rheumatoid arthritis by inhibiting NF-κβ pathway.Nanomedicine (Lond.)2021161081983710.2217/nnm‑2020‑031633900118
    [Google Scholar]
  157. SarwaK.K. MazumderB. RudrapalM. VermaV.K. Potential of capsaicin-loaded transfersomes in arthritic rats.Drug Deliv.201522563864610.3109/10717544.2013.87160124471764
    [Google Scholar]
  158. WeiY. Study on preparation of sinomenine hydrochloride transfersomes and their therapeutic effects on rheumatoid arthritis in rats.Chin. Tradit. Herbal Drugs2017201748724879
    [Google Scholar]
  159. VariaU. JoshiD. JadejaM. KatariyaH. DetholiaK. SoniV. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid.Future J. Pharmaceut. Sci.2022813910.1186/s43094‑022‑00428‑2
    [Google Scholar]
  160. BalasubramaniyamS. GraceX.F. Development of ethosomal gel loaded with Terminalia chebula for effective treatment of arthritis.Curr. Overview Pharmaceut. Sci.2023914215110.9734/bpi/cops/v9/9671F
    [Google Scholar]
  161. SarwaK.K. DasP.J. MazumderB. A nanovesicle topical formulation of Bhut Jolokia (hottest capsicum): A potential anti-arthritic medicine.Expert Opin. Drug Deliv.201411566167610.1517/17425247.2014.89158124661126
    [Google Scholar]
  162. FanC. LiX. ZhouY. ZhaoY. MaS. LiW. LiuY. LiG. Enhanced topical delivery of tetrandrine by ethosomes for treatment of arthritis.BioMed Res. Int.2013201311310.1155/2013/16194324062995
    [Google Scholar]
  163. GayathriH. Product development of beta-sitosterol ethosomes for the treatment of rheumatoid arthiritis.BioGecko2023123111
    [Google Scholar]
  164. SongH. WenJ. LiH. MengY. ZhangY. ZhangN. ZhengW. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome.Int. J. Nanomedicine2019143177318810.2147/IJN.S18884231118630
    [Google Scholar]
  165. ChenZ.X. LiB. LiuT. WangX. ZhuY. WangL. WangX.H. NiuX. XiaoY. SunQ. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.Eur. J. Pharm. Sci.20179924024510.1016/j.ejps.2016.12.02628039091
    [Google Scholar]
  166. KaurP. GargV. BawaP. SharmaR. SinghS.K. KumarB. GulatiM. PandeyN.K. NarangR. WadhwaS. MohantaS. JyotiJ. SomS. Formulation, systematic optimization, in vitro, ex vivo and stability assessment of transethosome based gel of curcumin.Asian J. Pharm. Clin. Res.20181114414710.22159/ajpcr.2018.v11s2.28563
    [Google Scholar]
  167. HassanA.S.II HofniA. AbourehabM.A.S. Abdel-RahmanI.A.M. Ginger extract–loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model.Int. J. Nanomedicine2023181259128010.2147/IJN.S40060436945254
    [Google Scholar]
  168. JamalM. ImamS.S. AqilM. AmirM. MirS.R. MujeebM. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems.Int. Immunopharmacol.201529236136910.1016/j.intimp.2015.10.02926545446
    [Google Scholar]
  169. El-MahdyM.M. HassanA.S. El-BadryM. El-GindyG.E. Performance of curcumin in nanosized carriers niosomes and ethosomes as potential anti-inflammatory delivery system for topical application.Bullet. Pharmaceut. Sci.2020431105122
    [Google Scholar]
  170. HegdekarN.Y. PriyaS. ShettyS.S. JyothiD. Formulation and evaluation of niosomal gel loaded with Asparagus racemosus extract for anti-inflammatory activity.Indian J. Pharmaceut. Edu. Res.2023571ss63s7410.5530/ijper.57.1s.8
    [Google Scholar]
  171. PripremA. JanpimK. NualkaewS. MahakunakornP. Topical niosome gel of Zingiber cassumunar Roxb. extract for anti-inflammatory activity enhanced skin permeation and stability of compound D.AAPS PharmSciTech201617363163910.1208/s12249‑015‑0376‑z26292930
    [Google Scholar]
  172. GunesA. GulerE. UnR.N. DemirB. BarlasF.B. YavuzM. CoskunolH. TimurS. Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures.J. Drug Deliv. Sci. Technol.20173715816510.1016/j.jddst.2016.12.013
    [Google Scholar]
  173. ZhuS. LuoC. FengW. LiY. ZhuM. SunS. ZhangX. Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization.Int. J. Pharm.202057811910410.1016/j.ijpharm.2020.11910432018017
    [Google Scholar]
  174. DasMK KalitaB Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application.J. Appl. Pharmaceut. Sci.20244100517
    [Google Scholar]
  175. H ShariareM. AfnanK. IqbalF. A AltamimiM. AhamadS.R. S AldughaimM. K AlanaziF. KaziM. Development and optimization of epigallocatechin-3-gallate (EGCG) nano phytosome using design of experiment (DoE) and their in vivo anti-inflammatory studies.Molecules20202522545310.3390/molecules2522545333233756
    [Google Scholar]
  176. HüschJ. BohnetJ. FrickerG. SkarkeC. ArtariaC. AppendinoG. Schubert-ZsilaveczM. Abdel-TawabM. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract.Fitoterapia201384899810.1016/j.fitote.2012.10.00223092618
    [Google Scholar]
  177. SharmaN. SinghS. LallerN. AroraS. Application of central composite design for statistical optimization of Trigonella foenum-graecum phytosome-based cream.Res. J. Pharm. Technol.20201341627163210.5958/0974‑360X.2020.00295.4
    [Google Scholar]
  178. BhalekarM.R. MadgulkarA.R. DesaleP.S. MariumG. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.Drug Dev. Ind. Pharm.20174361003101010.1080/03639045.2017.129166628161984
    [Google Scholar]
  179. ZhangF. LiuZ. HeX. LiZ. ShiB. CaiF. β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: Involvement of NF-кB and HO-1/Nrf-2 pathway.Drug Deliv.20202711329134110.1080/10717544.2020.181888332945205
    [Google Scholar]
  180. XueM. JiangZ. WuT. LiJ. ZhangL. ZhaoY. LiX. ZhangL.Y. YangS. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats.Phytomedicine20121911998100610.1016/j.phymed.2012.06.00622884304
    [Google Scholar]
  181. AroraR. KuhadA. KaurI.P. ChopraK. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats.Eur. J. Pain201519794095210.1002/ejp.62025400173
    [Google Scholar]
  182. MeiZ. WuQ. HuS. LibX. YangX. Triptolide loaded solid lipid nanoparticle hydrogel for topical application.Drug Dev. Ind. Pharm.200531216116810.1081/DDC‑20004779115773283
    [Google Scholar]
  183. WangQ. YangQ. CaoX. WeiQ. FirempongC.K. GuoM. ShiF. XuX. DengW. YuJ. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles.Int. J. Pharm.20185501-2243410.1016/j.ijpharm.2018.08.02830125653
    [Google Scholar]
  184. IordacheT.A. BadeaN. MihailaM. CrisanS. PopA.L. LacatusuI. Polygonum cuspidatum loaded nanostructured lipid carriers for dual inhibition of TNF-α- and IL-6 cytokines and free radical species.Materials (Basel)2023169349210.3390/ma1609349237176373
    [Google Scholar]
  185. LacatusuI. BadeaG. PopescuM. BordeiN. IstratiD. MoldovanL. SeciuA.M. PanteliM.I. RasitI. BadeaN. Marigold extract, azelaic acid and black caraway oil into lipid nanocarriers provides a strong anti-inflammatory effect in vivo.Ind. Crops Prod.201710914115010.1016/j.indcrop.2017.08.030
    [Google Scholar]
  186. AhmadA. AbuzinadahM.F. AlkreathyH.M. BanaganapalliB. MujeebM. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies.PLoS One2018133e019345110.1371/journal.pone.019345129558494
    [Google Scholar]
  187. ShakeelF. AlamP. AliA. AlqarniM.H. AlshetailiA. GhoneimM.M. AlshehriS. AliA. Investigating antiarthritic potential of nanostructured clove oil (Syzygium aromaticum) in FCA-induced arthritic rats: Pharmaceutical action and delivery strategies.Molecules20212623732710.3390/molecules2623732734885909
    [Google Scholar]
  188. ZakariaM.Y. FayadE. AlthobaitiF. ZakiI. Abu AlmaatyA.H. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: Accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice.Drug Deliv.20212811150116510.1080/10717544.2021.193419034121561
    [Google Scholar]
  189. ElkomyM.H. AlruwailiN.K. ElmowafyM. ShalabyK. ZafarA. AhmadN. AlsalahatI. GhoneimM.M. EissaE.M. EidH.M. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation.Pharmaceutics202214356310.3390/pharmaceutics1403056335335939
    [Google Scholar]
  190. MancaM.L. LattuadaD. ValentiD. MarelliO. CorradiniC. Fernàndez-BusquetsX. ZaruM. MaccioniA.M. FaddaA.M. ManconiM. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid.Eur. J. Pharm. Biopharm.2019136849210.1016/j.ejpb.2019.01.01230659893
    [Google Scholar]
  191. PalR.R. RajpalV. SinghN. SinghS. MishraN. SinghP. MauryaP. Alka SarafS.A. Downregulation of pro-inflammatory markers IL-6 and TNF-α in rheumatoid arthritis using nano-lipidic carriers of a quinone-based phenolic: An in vitro and in vivo study.Drug Deliv. Transl. Res.202313262764110.1007/s13346‑022‑01221‑735963927
    [Google Scholar]
  192. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.10862230797146
    [Google Scholar]
  193. PooniaN. LatherV. KaurB. KirthanashriS.V. PanditaD. Optimization and Development of Methotrexate- and Resveratrol-Loaded Nanoemulsion Formulation Using Box–Behnken Design for Rheumatoid Arthritis.Assay Drug Dev. Technol.202018835636810.1089/adt.2020.98933052698
    [Google Scholar]
  194. AmanR.M. ZaghloulR.A. ElsaedW.M. HashimI.I.A. In vitro–in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis.Drug Deliv. Transl. Res.202313112903292910.1007/s13346‑023‑01360‑537284937
    [Google Scholar]
  195. RaoK AzizS RoomeT RazzakA SikandarB JamaliKS ImranM JabriT ShahMR Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats.Artif Cells Nanomed. Biotechnol.201846sup159760710.1080/21691401.2018.1431653
    [Google Scholar]
  196. MunirA. MuhammadF. ZaheerY. AliM.A. IqbalM. RehmanM. MunirM.U. AkhtarB. WebsterT.J. SharifA. IhsanA. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model.J. Drug Deliv. Sci. Technol.20216610285410.1016/j.jddst.2021.102854
    [Google Scholar]
  197. DeepikaG. SureshV. RupulaK. BantalV. RbS. Synthesis and evaluation of anti-inflammatory and anti-nociceptive potentials of biopolymer based curcumin nanoparticle construct: In silico, in vitro and in vivo studies.Bioact. Carbohydr. Diet. Fibre20233010038110.1016/j.bcdf.2023.100381
    [Google Scholar]
  198. BirbaraP.J. Hydrated microparticles of apigenin and/or luteolin with improved solubility.CA Patent 2778441C2019
  199. PengS. Treat spontaneous heating herbal application of rheumatic arthritis and preparation method thereof.CN Patent 104546802B2018
  200. JingpingX. LipingX. YunziW. YunkaiT. YouxuX. Chinese herbal medicine for treating rheumatoid arthritis and ankylosing spondylitis osteoarthropathy.CN Patent 112121082A2020
  201. HongM. HormT. JiaQ. JiaoP. Compositions comprising extracts of Aplinia and other plants for improving joint health and treating arthritis.AU Patent 2022235606A12022
  202. YicunC. ChunquanL. YongbingL. ChaoshengC. ShuyunW. Chinese medicinal preparation of caulis millettiae speciosae, preparation method and application thereof.CN Patent 111110738A2020
  203. MonthY. l. ZehuaiW. QingchunH. YueZ. Composition for preventing rheumatoid arthritis and preparation method and application thereof.CN Patent 113134064A2021
  204. FangmingL. LixiaT. ZhaoxingL. A Chinese medicinal powder for treating rheumatoid arthritis.CN Patent 113144165A2021
  205. LiyIngQ. A Chinese medicinal ointment with antiinflammatory effect, and its preparation method.CN Patent 113577125B2022
  206. MonthY. l. ZehuaiW. QingchunH. YueZ. Composition for preventing and/or treating rheumatoid arthritis and preparation method and application thereof.CN Patent 113082093A2021
    [Google Scholar]
  207. MahaK. N. P. Herbal remedy from kratom leaves for relief of rheumatoid arthritis, joint pain, gout.TH Patent 2203001146C32023
    [Google Scholar]
  208. ZhezhanfeiB.X. Application of Artemisia sphaerocephala root extract in preparation of anti-rheumatoid arthritis drugs.CN Patent 116236513A2023
    [Google Scholar]
  209. BaoH. YuanyuanW. NianS. A Chinese medicinal spray with antiinflammatory, repercussive and arthritis treating effects, and its preparation method.CN Patent 116270863A2023
    [Google Scholar]
  210. XianliZ. LinC. A natural external pharmaceutical composition for treating arthritis.CN Patent 116036225A2023
    [Google Scholar]
  211. SunH. LiuL. LiH. DaiL. Medical use of pentacyclic triterpenoid saponin compound and pharmaceutical composition thereof.EP Patent 3973965A12022
    [Google Scholar]
  212. Mi-wonS. Doo-seokL. LeeW. SonS. ChoiG. Hyeon-sookG. Pharmaceutical composition comprising extract of herbal mixture and celecoxib.KR Patent 102117215B12021
    [Google Scholar]
  213. NingT. QuanzanC. BianjiangZ. PingY. Gel paste containing plant extract and preparation method thereof.CN Patent 110917243B2021
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708304673240903184606
Loading
/content/journals/raiad/10.2174/0127722708304673240903184606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test