Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

The plant is an herbaceous member of the family. It is a widely recognized herb with medicinal properties. It is utilized extensively in many traditional medical practices along with delicious food items, like jams, puddings, and cakes. The purpose of this review was to investigate and compile all of the available data and evidence about the calyxes of with a particular focus on their nutritional composition, bioactive components, and therapeutic benefits. This article provides a comprehensive overview of the plant's traditional usage, pharmacognostic characterization, nutritional and phytochemical composition, and pharmacological properties. This paper elucidates the mechanisms by which exerts neuroprotective and anti-inflammatory effects in managing neurological disorders. Additionally, has been shown to prevent memory impairment, which may be attributed to its effects on neuroinflammation and amyloidogenesis. has been reported to have anti-inflammatory effects due to the presence of polyphenol compounds that possess anti-inflammatory properties. Flavonoids are also commonly found in it, which inhibit the transcription factor nuclear factor kappa B. This plant has a variety of health benefits, including antioxidant, antidepressant, diuretic, antihyperlipidemic, anti-obesity, hepatoprotective, anti-inflammatory, anti-cancer, antimicrobial, and neuroprotective activities. Based on the literature, this review provides a thorough analysis of the pharmacological and phytochemical characteristics of .

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708302750240916064255
2024-09-25
2025-10-22
Loading full text...

Full text loading...

References

  1. AliB.H. WabelN.A. BlundenG. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review.Phytother. Res.200519536937510.1002/ptr.162816106391
    [Google Scholar]
  2. WahabiH.A. AlansaryL.A. Al-SabbanA.H. GlasziuoP. The effectiveness of Hibiscus sabdariffa in the treatment of hypertension: A systematic review.Phytomedicine2010172838610.1016/j.phymed.2009.09.00219801187
    [Google Scholar]
  3. AnelT. SubapriyaM. SinghT. Influence of Hibiscus sabdariffa Linn. calyces drink on fitness and blood parameter on Thang-Ta athletes from Manipur.Pharma Innov.20198610191023
    [Google Scholar]
  4. WilsonF.D. MenzelM.Y. Kenaf (Hibiscus cannabinus), roselle (Hibiscus sabdariffa).Econ. Bot.1964181809110.1007/BF02904005
    [Google Scholar]
  5. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies.Int. J. Mol. Sci.2019209231310.3390/ijms2009231331083327
    [Google Scholar]
  6. BarnardN.D. BushA.I. CeccarelliA. CooperJ. de JagerC.A. EricksonK.I. FraserG. KeslerS. LevinS.M. LuceyB. MorrisM.C. SquittiR. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease.Neurobiol. Aging201435Suppl. 2S74S7810.1016/j.neurobiolaging.2014.03.03324913896
    [Google Scholar]
  7. SeungT.W. ParkS.K. KangJ.Y. KimJ.M. ParkS.H. KwonB.S. LeeC.J. KangJ.E. KimD.O. LeeU. HeoH.J. Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice.Food Res. Int.201810558959810.1016/j.foodres.2017.11.06329433251
    [Google Scholar]
  8. MohamedB.B. SulaimanA.A. DahabA.A. Roselle (Hibiscus sabdariffa L.) in Sudan, cultivation and their uses.Bull. Environ. Pharmacol. Life Sci.2012164854
    [Google Scholar]
  9. SinghRK SurejaAK SinghD Amta and Amti (Hibiscus sabdariffa L.)-Cultural and agricultural dynamics of agrobiodiversity conservation.Indian J. Trad. Knowl.200651151157
    [Google Scholar]
  10. AdadiP. KanwuguO.N. Potential application of tetrapleura tetraptera and hibiscus sabdariffa (malvaceae) in designing highly flavoured and bioactive pito with functional properties.Beverages2020622210.3390/beverages6020022
    [Google Scholar]
  11. RiazG. ChopraR. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L.Biomed. Pharmacother.201810257558610.1016/j.biopha.2018.03.02329597091
    [Google Scholar]
  12. KitcherC. AgyeiG. Frimpong-MansoS. Pharmacognostic characteristics of Hibiscus sabdariffa L. as a means of monitoring quality.Res. J. Pharmacogn.2020735563
    [Google Scholar]
  13. RossIA Medicinal Plants of the World, Volume 3, Chemical Constituents, Traditional and Modern Medicinal Uses.Berlin, HeidelbergSpringerLink2005
    [Google Scholar]
  14. VasaviC.L. JyothiA.S. SravaniP. ChandT.P. AdilS.K. RajaR.R. BabaK.H. Hibiscus cannabinus and Hibiscus sabdariffa Phyto Phamacognostical review.J. Pharmacogn. Phytochem.201981313318
    [Google Scholar]
  15. RanjithD. Fluorescence analysis and extractive values of herbal formulations used for wound healing activity in animals.J Med Plants Stud.201862189192
    [Google Scholar]
  16. Da-Costa-RochaI. BonnlaenderB. SieversH. PischelI. HeinrichM. Hibiscus sabdariffa L. – A phytochemical and pharmacological review.Food Chem.201416542444310.1016/j.foodchem.2014.05.00225038696
    [Google Scholar]
  17. MaregesiS. KagasheG. DhokiaD. Determination of iron contents in Hibiscus sabdariffa calyces and and Kigelia African fruit.Scholars Acad. J. Biosci.201314108111
    [Google Scholar]
  18. MensahJ.K. GolomekeD. Antioxidant and antimicrobial activities of the extracts of the Calyx of Hibiscus sabdariffa Linn.Curr. Sci. Persp.2015126976
    [Google Scholar]
  19. MojicaL. RuiL. Gonzalez de MejiaE. Hibiscus sabdariffa L.: Phytochemical composition and nutraceutical properties.Hispanic Foods: Chemistry and Bioactive Compounds.Washington, D.CAmerican Chemical Society2012279305
    [Google Scholar]
  20. KumarS. ShebaA. A study on phytochemicals, antimicrobial, and synergistic antimicrobial activities of Hibiscus sabdariffa.Asian J. Pharm. Clin. Res.201912419820110.22159/ajpcr.2019.v12i4.31597
    [Google Scholar]
  21. Morales-LunaE. Pérez-RamírezI.F. SalgadoL.M. Castaño-TostadoE. Gómez-AldapaC.A. Reynoso-CamachoR. The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content.J. Sci. Food Agric.201999259660510.1002/jsfa.922029943479
    [Google Scholar]
  22. AliB.H. CahlikováL. OpletalL. KaracaT. ManojP. RamkumarA. Al SuleimaniY.M. Al Za’abiM. NemmarA. Chocholousova-HavlikovaL. LocarekM. SiatkaT. BlundenG. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.J. Pharm. Pharmacol.20176991219122910.1111/jphp.1274828542915
    [Google Scholar]
  23. Mohd-EsaN. HernF.S. IsmailA. YeeC.L. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds.Food Chem.201012241055106010.1016/j.foodchem.2010.03.074
    [Google Scholar]
  24. SharmaK. PasrichaV. SatpathyG. GuptaR.K. Evaluation of phytochemical and antioxidant activity of raw Pyrus communis (l), an underexploited fruit.J. Pharmacogn. Phytochem.2015354650
    [Google Scholar]
  25. HagrT. AdamI. Phytochemical analysis, antibacterial and antioxidant activities of essential Oil from Hibiscus sabdariffa (L) Seeds,(Sudanese Karkadi).Progress in Chemical and Biochemical Research.202033194201
    [Google Scholar]
  26. HapsariB.W. Manikharda SetyaningsihW. Methodologies in the analysis of phenolic compounds in roselle (Hibiscus sabdariffa L.): Composition, biological activity, and beneficial effects on human health.Horticulturae2021723510.3390/horticulturae7020035
    [Google Scholar]
  27. EzzatS.M. SalamaM.M. Seif el-DinS.H. SalehS. El-LakkanyN.M. HammamO.A. SalemM.B. BotrosS.S. Metabolic profile and hepatoprotective activity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces.Pharm. Biol.201654123172318110.1080/13880209.2016.121473927564372
    [Google Scholar]
  28. AgarwalJ. DedhiaE. Current scenario of Hibiscus sabdariffa (Mesta) in India.Int. J. Soc. Sci. Humanit. Invent.20141129135
    [Google Scholar]
  29. DharP. KarC.S. OjhaD. PandeyS.K. MitraJ. Chemistry, phytotechnology, pharmacology and nutraceutical functions of kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) seed oil: An overview.Ind. Crops Prod.20157732333210.1016/j.indcrop.2015.08.064
    [Google Scholar]
  30. CastroN.E.A. PintoJ.E.B.P. CardosoM.G. MoraisA.R. BertolucciS.K.V. SilvaF.G. Delú FilhoN. Planting time for maximization of yield of vinegar plant calyx (Hibiscus sabdariffa L.).Cienc. Agrotec.200428354255110.1590/S1413‑70542004000300009
    [Google Scholar]
  31. Grajeda-IglesiasC. Figueroa-EspinozaM.C. BarouhN. BaréaB. FernandesA. de FreitasV. SalasE. Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers.J. Nat. Prod.20167971709171810.1021/acs.jnatprod.5b0095827312226
    [Google Scholar]
  32. Izquierdo-VegaJ. Arteaga-BadilloD. Sánchez-GutiérrezM. Morales-GonzálezJ. Vargas-MendozaN. Gómez-AldapaC. Castro-RosasJ. Delgado-OlivaresL. Madrigal-BujaidarE. Madrigal-SantillánE. Organic acids from Roselle (Hibiscus sabdariffa L.)-A brief review of its pharmacological effects.Biomedicines20208510010.3390/biomedicines805010032354172
    [Google Scholar]
  33. JamrozikD. BorymskaW. Kaczmarczyk-ŻebrowskaI. Hibiscus sabdariffa in diabetes prevention and treatment—does it work? An evidence-based review.Foods20221114213410.3390/foods1114213435885378
    [Google Scholar]
  34. AbreuM.T. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function.Nat. Rev. Immunol.201010213114410.1038/nri270720098461
    [Google Scholar]
  35. LebeisS.L. BommariusB. ParkosC.A. ShermanM.A. KalmanD. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium.J. Immunol.2007179156657710.4049/jimmunol.179.1.56617579078
    [Google Scholar]
  36. StolfiC. MarescaC. MonteleoneG. LaudisiF. Implication of intestinal barrier dysfunction in gut dysbiosis and diseases.Biomedicines202210228910.3390/biomedicines1002028935203499
    [Google Scholar]
  37. O’NeillL.A.J. BowieA.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.Nat. Rev. Immunol.20077535336410.1038/nri207917457343
    [Google Scholar]
  38. ShimD.W. HeoK.H. KimY.K. SimE.J. KangT.B. ChoiJ.W. SimD.W. CheongS.H. LeeS.H. BangJ.K. WonH.S. LeeK.H. Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of toll-like receptor 4 endocytosis in lipopolysaccharide-stimulated macrophages.PLoS One2015105e012687110.1371/journal.pone.012687126017270
    [Google Scholar]
  39. AkiraS. TakedaK. Toll-like receptor signalling.Nat. Rev. Immunol.20044749951110.1038/nri139115229469
    [Google Scholar]
  40. HondaK. TakaokaA. TaniguchiT. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors.Immunity200625334936010.1016/j.immuni.2006.08.00916979567
    [Google Scholar]
  41. SatoS. SanjoH. TakedaK. Ninomiya-TsujiJ. YamamotoM. KawaiT. MatsumotoK. TakeuchiO. AkiraS. Essential function for the kinase TAK1 in innate and adaptive immune responses.Nat. Immunol.20056111087109510.1038/ni125516186825
    [Google Scholar]
  42. PatilD. Animal models for Parkinson's disease.CNS Neurol. Disorders-Drug Targets2014139158094
    [Google Scholar]
  43. RajabN.F. MusaS.M. Ahmad MunawarM. LeongL.M. HengK.Y. IbrahimF.W. ChanK.M. dan Neuroblastoma M. Anti-neuroinflammatory effects of Hibiscus sabdariffa Linn.(Roselle) on lipopolysaccharides-induced microglia and neuroblastoma cells.Jurnal Sains Kesihatan Malaysia201614211111710.17576/jskm‑2016‑1402‑13
    [Google Scholar]
  44. GiacaloneM Di SaccoF TraupeI PagnucciN ForforiF GiuntaF Blueberry polyphenols and neuroprotection.Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease Prevention and TherapyCambridge, MassachusettsAcademic Press201510.1016/B978‑0‑12‑411462‑3.00002‑3
    [Google Scholar]
  45. EngelL.S. KeiferM.C. CheckowayH. RobinsonL.R. VaughanT.L. Neurophysiological function in farm workers exposed to organophosphate pesticides.Arch. Environ. Health199853171410.1080/000398998096056849570304
    [Google Scholar]
  46. DimitriadouV. PangX. TheoharidesT.C. Hydroxyzine inhibits experimental allergic encephalomyelitis (EAE) and associated brain mast cell activation.Int. J. Immunopharmacol.200022967368410.1016/S0192‑0561(00)00029‑110884588
    [Google Scholar]
  47. SwardfagerW. LanctôtK. RothenburgL. WongA. CappellJ. HerrmannN. A meta-analysis of cytokines in Alzheimer’s disease.Biol. Psychiatry2010681093094110.1016/j.biopsych.2010.06.01220692646
    [Google Scholar]
  48. HaqueM.A. JantanI. HarikrishnanH. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways.Int. Immunopharmacol.20185531232210.1016/j.intimp.2018.01.00129310107
    [Google Scholar]
  49. HarikrishnanH. JantanI. HaqueM.A. KumolosasiE. Phyllanthin from Phyllanthus amarus inhibits LPS ‐induced proinflammatory responses in U937 macrophages via downregulation of NF‐κB/MAPK/PI3K‐Akt signaling pathways.Phytother. Res.201832122510251910.1002/ptr.619030238535
    [Google Scholar]
  50. WeinerH.L. SelkoeD.J. Inflammation and therapeutic vaccination in CNS diseases.Nature2002420691787988410.1038/nature0132512490962
    [Google Scholar]
  51. HalleA. HornungV. PetzoldG.C. StewartC.R. MonksB.G. ReinheckelT. FitzgeraldK.A. LatzE. MooreK.J. GolenbockD.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β.Nat. Immunol.20089885786510.1038/ni.163618604209
    [Google Scholar]
  52. YoshiyamaY. HiguchiM. ZhangB. HuangS.M. IwataN. SaidoT.C. MaedaJ. SuharaT. TrojanowskiJ.Q. LeeV.M.Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model.Neuron200753333735110.1016/j.neuron.2007.01.01017270732
    [Google Scholar]
  53. WangD. WangC. LiuL. LiS. Protective effects of evodiamine in experimental paradigm of Alzheimer’s disease.Cogn. Neurodynamics201812330331310.1007/s11571‑017‑9471‑z29765479
    [Google Scholar]
  54. JavedH. KhanM.M. KhanA. VaibhavK. AhmadA. KhuwajaG. AhmedM.E. RazaS.S. AshafaqM. TabassumR. SiddiquiM.S. El-AgnafO.M. SafhiM.M. IslamF. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type.Brain Res.2011138913314210.1016/j.brainres.2011.02.07221376020
    [Google Scholar]
  55. IbrahimD.S. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes.Metab. Brain Dis.2017321697510.1007/s11011‑016‑9886‑y27488111
    [Google Scholar]
  56. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.15660671566067
    [Google Scholar]
  57. AdwanL. SubaieaG.M. ZawiaN.H. Tolfenamic acid downregulates BACE1 and protects against lead-induced upregulation of Alzheimer’s disease related biomarkers.Neuropharmacology20147959660210.1016/j.neuropharm.2014.01.00924462621
    [Google Scholar]
  58. NäslundJ. HaroutunianV. MohsR. DavisK.L. DaviesP. GreengardP. BuxbaumJ.D. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline.JAMA2000283121571157710.1001/jama.283.12.157110735393
    [Google Scholar]
  59. LiR. LindholmK. YangL.B. YueX. CitronM. YanR. BeachT. SueL. SabbaghM. CaiH. WongP. PriceD. ShenY. Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer’s disease patients.Proc. Natl. Acad. Sci. USA2004101103632363710.1073/pnas.020568910114978286
    [Google Scholar]
  60. CaiH. WangY. McCarthyD. WenH. BorcheltD.R. PriceD.L. WongP.C. BACE1 is the major β-secretase for generation of Aβ peptides by neurons.Nat. Neurosci.20014323323410.1038/8506411224536
    [Google Scholar]
  61. El-ShiekhR.A. AshourR.M. Abd El-HaleimE.A. AhmedK.A. Abdel-SattarE. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice.Biomed. Pharmacother.202012811030310.1016/j.biopha.2020.11030332480228
    [Google Scholar]
  62. SelkoeD.J. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease.Annu. Rev. Cell Biol.199410137340310.1146/annurev.cb.10.110194.0021057888181
    [Google Scholar]
  63. ChristensenM.A. ZhouW. QingH. LehmanA. PhilipsenS. SongW. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1.Mol. Cell. Biol.200424286587410.1128/MCB.24.2.865‑874.200414701757
    [Google Scholar]
  64. PuroK. SunjuktaR. SamirS. GhatakS. ShakuntalaI. SenA. Medicinal uses of Roselle plant (Hibiscus sabdariffa L.): A mini review.Indian J Hill Farm.20142718190
    [Google Scholar]
  65. QiY ChinKL MalekianF BerhaneM GagerJ Biological characteristics, nutritional and medicinal value of roselle, Hibiscus sabdariffa. Circular-urban forestry natural resources and environment.Scientific Res.200560512
    [Google Scholar]
  66. AlmajidA. BazroonA. AlAhmedA. BakhurjiO. Exploring the Health Benefits and Therapeutic Potential of Roselle (Hibiscus sabdariffa) in Human Studies: A Comprehensive Review.Cureus20231511e4930910.7759/cureus.4930938024072
    [Google Scholar]
  67. SunA. LiuM. NguyenX.V. BingG. P38 MAP kinase is activated at early stages in Alzheimer’s disease brain.Exp. Neurol.2003183239440510.1016/S0014‑4886(03)00180‑814552880
    [Google Scholar]
  68. KangT.H. HurJ.Y. KimH.B. RyuJ.H. KimS.Y. Neuroprotective effects of the cyanidin-3-O-β-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia.Neurosci. Lett.2006391312212610.1016/j.neulet.2005.08.05316181734
    [Google Scholar]
  69. ChandrashekharV.M. GanapatyS. RamkishanA. NarsuM.L. Neuroprotective activity of gossypin from Hibiscus vitifolius against global cerebral ischemia model in rats.Indian J. Pharmacol.201345657558010.4103/0253‑7613.12136724347764
    [Google Scholar]
  70. MaccioniR.B. CalfíoC. GonzálezA. LüttgesV. Novel nutraceutical compounds in Alzheimer prevention.Biomolecules202212224910.3390/biom1202024935204750
    [Google Scholar]
  71. TsengT.H. KaoE.S. ChuC.Y. ChouF.P. Lin WuH.W. WangC.J. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes.Food Chem. Toxicol.199735121159116410.1016/S0278‑6915(97)85468‑39449221
    [Google Scholar]
  72. WangJ. CaoX. JiangH. QiY. ChinK. YueY. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.Molecules20141912212262123810.3390/molecules19122122625525823
    [Google Scholar]
  73. HamzaA.A. HeebaG.H. HassaninS.O. ElwyH.M. BekhitA.A. AminA. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway.Biomed. Pharmacother.202316511514810.1016/j.biopha.2023.11514837450997
    [Google Scholar]
  74. Haji FarajiM. Haji TarkhaniA.H. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension.J. Ethnopharmacol.199965323123610.1016/S0378‑8741(98)00157‑310404421
    [Google Scholar]
  75. Herrera-ArellanoA. Miranda-SánchezJ. Ávila-CastroP. Herrera-ÁlvarezS. Jiménez-FerrerJ. ZamilpaA. Román-RamosR. Ponce-MonterH. TortorielloJ. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial.Planta Med.200773161210.1055/s‑2006‑95706517315307
    [Google Scholar]
  76. Herrera-ArellanoA. Flores-RomeroS. Chávez-SotoM.A. TortorielloJ. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: A controlled and randomized clinical trial.Phytomedicine200411537538210.1016/j.phymed.2004.04.00115330492
    [Google Scholar]
  77. HuangT.W. ChangC.L. KaoE.S. LinJ.H. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters.Food Nutr. Res.20155912901810.3402/fnr.v59.2901826475512
    [Google Scholar]
  78. Fernández-ArroyoS. Rodríguez-MedinaI.C. Beltrán-DebónR. PasiniF. JovenJ. MicolV. Segura-CarreteroA. Fernández-GutiérrezA. Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract.Food Res. Int.20114451490149510.1016/j.foodres.2011.03.040
    [Google Scholar]
  79. PengC.H. ChyauC.C. ChanK.C. ChanT.H. WangC.J. HuangC.N. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance.J. Agric. Food Chem.201159189901990910.1021/jf202237921870884
    [Google Scholar]
  80. OjulariO.V. LeeS.G. NamJ.O. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity.Molecules201924121010.3390/molecules2401021030626104
    [Google Scholar]
  81. SinghP. KhanM. HailemariamH. Nutritional and health importance of Hibiscus sabdariffa: A review and indication for research needs.J Nutr Health Food Eng.201765125128
    [Google Scholar]
  82. Herranz-LópezM. Olivares-VicenteM. EncinarJ. Barrajón-CatalánE. Segura-CarreteroA. JovenJ. MicolV. Multi-targeted molecular effects of Hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity.Nutrients20179890710.3390/nu908090728825642
    [Google Scholar]
  83. El‐SaadanySS SitohyMZ LabibSM El-MassryRA Biochemical dynamics and hypocholesterolemic action of Hibiscus sabdariffa (Karkade).Food/Nahrung.199135656776
    [Google Scholar]
  84. Alarcon-AguilarF.J. ZamilpaA. Perez-GarciaM.D. Almanza-PerezJ.C. Romero-NuñezE. Campos-SepulvedaE.A. Vazquez-CarrilloL.I. Roman-RamosR. Effect of Hibiscus sabdariffa on obesity in MSG mice.J. Ethnopharmacol.20071141667110.1016/j.jep.2007.07.02017765418
    [Google Scholar]
  85. ChangY. HuangH. HsuJ. YangS. WangC. anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells.Toxicol. Appl. Pharmacol.2005205320121210.1016/j.taap.2004.10.01415922006
    [Google Scholar]
  86. UkpanukpongR.U. OtuD.O. FafioyeR.O. YusuffA.A. EtengM.U. Biosciences and Plant Biology.Int. J. Curr. Res. Biosci. Plant Biol.20196491610.20546/ijcrbp.2019.604.002
    [Google Scholar]
  87. RibeiroR.A. de BarrosF. de MeloM.M. MunizC. ChieiaS. Wanderley M dasG. GomesC. TrolinG. Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of São Paulo, Brasil.J. Ethnopharmacol.1988241192910.1016/0378‑8741(88)90136‑53199837
    [Google Scholar]
  88. LaikangbamR. Damayanti DeviM. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract.Urol. Res.201240321121810.1007/s00240‑011‑0433‑322057204
    [Google Scholar]
  89. PatelS. Hibiscus sabdariffa: An ideal yet under-exploited candidate for nutraceutical applications.Biomed. Prev. Nutr.201441232710.1016/j.bionut.2013.10.004
    [Google Scholar]
  90. JungE. KimY. JooN. Physicochemical properties and antimicrobial activity of Roselle ( Hibiscus sabdariffa L.).J. Sci. Food Agric.201393153769377610.1002/jsfa.625623749748
    [Google Scholar]
  91. Mardiah ZakariaF.R. PrangdimurtiE. DamanikR. Anti-inflammatory of purple roselle extract in diabetic rats induced by streptozotocin.Procedia Food Sci.2015318218910.1016/j.profoo.2015.01.020
    [Google Scholar]
  92. YangY.S. HuangC.N. WangC.J. LeeY.J. ChenM.L. PengC.H. Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via regulating the pathogenic markers and kidney functions of type 2 diabetic rats.J. Funct. Foods20135281081910.1016/j.jff.2013.01.027
    [Google Scholar]
  93. ReanmongkolW. ItharatA. Antipyretic activity of the extracts of Hibiscus sabdariffa calyces L. in experimental animals.Songklanakarin J. Sci. Technol.20072912938
    [Google Scholar]
  94. EssaM.M. SubramanianP. SuthakarG. ManivasagamT. Babu DakshayaniK. SivaperumalR. SubashS. VinothiniG. Influence of Hibiscus sabdariffa (Gongura) on the levels of circulatory lipid peroxidation products and liver marker enzymes in experimental hyperammonemia.J. Appl. Biomed.200641535810.32725/jab.2006.004
    [Google Scholar]
  95. AjiboyeT.O. SalawuN.A. YakubuM.T. OladijiA.T. AkanjiM.A. OkogunJ.I. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.Drug Chem. Toxicol.201134210911510.3109/01480545.2010.53676721314460
    [Google Scholar]
  96. ChiuC.T. ChenJ.H. ChouF.P. LinH.H. Hibiscus sabdariffa leaf extract inhibits human prostate cancer cell invasion via down-regulation of Akt/NF-κB/MMP-9 pathway.Nutrients2015775065508710.3390/nu707506526115086
    [Google Scholar]
  97. UsohI.F. AkpanE.J. EtimE.O. FarombiE.O. Antioxidant actions of dried flower extracts of Hibiscus sabdariffa L. on sodium arsenite-induced oxidative stress in rats.Pak. J. Nutr.20054313514110.3923/pjn.2005.135.141
    [Google Scholar]
  98. AdaramoyeO. OgungbenroB. AnyaegbuO. FafunsoM. Protective effects of extracts of Vernonia amygdalina, Hibiscus sabdariffa and vitamin C against radiation-induced liver damage in rats.J. Radiat. Res. (Tokyo)200849212313110.1269/jrr.0706218250564
    [Google Scholar]
  99. AfolabiO.C. OgunsolaF.T. CokerA.O. Susceptibility of cariogenic Streptococcus mutans to extracts of Garcinia kola, Hibiscus sabdariffa, and Solanum americanum.West Afr. J. Med.200827423023319469401
    [Google Scholar]
  100. YinM. ChaoC. Anti-Campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef.Int. J. Food Microbiol.20081271-2737710.1016/j.ijfoodmicro.2008.06.00218620770
    [Google Scholar]
  101. LiuK. TsaoS. YinM. In vitro antibacterial activity of roselle calyx and protocatechuic acid.Phytother. Res.2005191194294510.1002/ptr.176016317650
    [Google Scholar]
  102. UmarI.A. MaryomsN.G. DaikwoE. GidadoA. BurataiL.B. IgbokweI.O. IbrahimM.A. The effect of aqueous extracts of Hibiscus sabdariffa (Sorrel) calyces on heamatological profile and organ pathological changes in Trypanasoma congolense - infected rats.Afr. J. Tradit. Complement. Altern. Med.20096458559120606781
    [Google Scholar]
  103. AdigunM.O. OgundipeO.D. AnetorJ.I. OdetundeA.O. Dose-dependent changes in some haematological parameters during short-term administration of Hibiscus sabdariffa Calyx aqueous extract (Zobo) in Wistar albino rats.Afr. J. Med. Med. Sci.2006351737717209331
    [Google Scholar]
  104. FaladeO.S. OtemuyiwaI.O. OladipoA. OyedapoO.O. AkinpeluB.A. AdewusiS.R.A. The chemical composition and membrane stability activity of some herbs used in local therapy for anemia.J. Ethnopharmacol.20051021152210.1016/j.jep.2005.04.03416039811
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708302750240916064255
Loading
/content/journals/raiad/10.2174/0127722708302750240916064255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test