Skip to content
2000
image of Enhancing Nutrient Composition and Bioavailability in Common Beans Using Combined Zinc and Iron Fertilizers

Abstract

Background

Agronomic biofortification is the quickest and most cost-effective approach to addressing zinc (Zn) and iron (Fe) deficiencies, especially as climate change presents growing public health issues in developing countries.

Objective

This investigation aims to evaluate the effect of different rates of combined Zn and Fe fertilizers on phytic acid (PA) levels, the ratios of PA-Zn and Fe, and the proximate composition of common bean varieties.

Methods

The field experiment was conducted at Melkassa Research Center and the Negelle Arsi sub-stations by utilizing a split plot design, consisting of twenty-seven treatments that were replicated three times. Three bean varieties (DAB-197, SAB-632, and BZ-2) and nine Zn+Fe fertilizer rates (T1 = control, T2 = 0+1.5%, T3 = 0+3%, T4 = 0.5%+0, T5 = 0.5%+1.5%, T6 = 0.5%+3%, T7 = 1%+0, T8 = 1%+1.5%, and T9 = 1%+3%) were included in treatments.

Results

The combined results of the two sites indicated that both varieties and fertilizer treatments significantly (P< 0.05) influenced proximate composition, anti-nutrient content, and PA: Zn and Fe molar ratios. Among the bean varieties, DAB-197 exhibited the highest (23.2%) crude protein content. Meanwhile, the SAB-632 variety showed a sufficient amount of ash and crude fiber content. The SAB-632 variety had the lowest PA: Zn ratio among the varieties. Higher rates of Zn and Fe fertilizers significantly reduced PA levels and molar ratios, with the lowest values in treatment T9.

Conclusion

These results indicate that increased applications of Zn and Fe improve nutrient bioavailability. Therefore, the DAB-197 and SAB-632 varieties, treated with Zn and Fe-containing fertilizers, could serve as alternative nutrient sources to tackle widespread micronutrient deficiencies in developing countries, including Ethiopia..

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X380973250624115024
2025-07-07
2025-11-16
Loading full text...

Full text loading...

References

  1. Samago T.Y. Dakora F.D. Combined use of Rhizobium inoculation and low phosphorus application increased plant growth, root nodulation and grain yield of common bean (Phaseolus vulgaris) in Ethiopia. Front. Agric. Sci. Eng. 2024 1 13 10.15302/J‑FASE‑2024556
    [Google Scholar]
  2. Crop production and trade data. 2022 Available from: http://www.fao.org/faostat/en/#data
  3. Lisciani S. Marconi S. Le Donne C. Legumes and common beans in sustainable diets: Nutritional quality, environmental benefits, spread and use in food preparations. Front. Nutr. 2024 11 1385232 10.3389/fnut.2024.1385232 38769988
    [Google Scholar]
  4. Blair M.W. Mineral biofortification strategies for food staples: The example of common bean. J. Agric. Food Chem. 2013 61 35 8287 8294 10.1021/jf400774y 23848266
    [Google Scholar]
  5. Beebe S. Biofortification of common bean for higher iron concentration. Front. Sustain. Food Syst. 2020 4 573449 10.3389/fsufs.2020.573449
    [Google Scholar]
  6. Murube E. Beleggia R. Pacetti D. Characterization of nutritional quality traits of a common bean germplasm collection. Foods 2021 10 7 1572 10.3390/foods10071572 34359442
    [Google Scholar]
  7. Didinger C. Foster M.T. Bunning M. Thompson H.J. Nutrition and Human Health Benefits of Dry Beans and Other Pulses. New Jersey, USA Wiley Online Library 2022 1 8 10.1002/9781119776802.ch19
    [Google Scholar]
  8. Siddiqui F. Salam R.A. Lassi Z.S. Das J.K. The intertwined relationship between malnutrition and poverty. Front. Public Health 2020 8 453 10.3389/fpubh.2020.00453 32984245
    [Google Scholar]
  9. Von Grebmer K. Saltzman A. Birol E. Synopsis: 2014 global hunger index: The challenge of hidden hunger. Inter Food Policy Res Instit 2014 83 1 8 10.2499/9780896299580
    [Google Scholar]
  10. Abadía J. Vázquez S. Rellán-Álvarez R. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 2011 49 5 471 482 10.1016/j.plaphy.2011.01.026 21349731
    [Google Scholar]
  11. Colombo C. Iorio E. Liu Q. Jiang Z. Barrón V. Iron oxide nanoparticles in soils: Environmental and agronomic importance. J. Nanosci. Nanotechnol. 2018 18 1 761 1 10.1166/jnn.2018.15294 29768906
    [Google Scholar]
  12. Soetan K.O. Olaiya C.O. Oyewole O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010 4 5 200 222
    [Google Scholar]
  13. Alloway B.J. Zinc in soils and crop nutrition. International Zinc Association and International Fertilizer Association. Paris, France: Brussels 2008 1 8
    [Google Scholar]
  14. Xue Y. Xia H. Christie P. Zhang Z. Li L. Tang C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. (Lond.) 2016 117 3 363 377 10.1093/aob/mcv182 26749590
    [Google Scholar]
  15. Mulualem T. Application of bio-fortification through plant breeding to improve the value of staple crops. Biomed Biotech 2015 3 1 11 19
    [Google Scholar]
  16. Ramírez-Cárdenas L. Leonel A.J. Costa N.M.B. Reis F.P. Zinc bioavailability in different beans as affected by cultivar type and cooking conditions. Food Res. Int. 2010 43 2 573 581 10.1016/j.foodres.2009.07.023
    [Google Scholar]
  17. Shimelis E.A. Rakshit S.K. Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. Lebensm. Wiss. Technol. 2005 38 4 331 338
    [Google Scholar]
  18. Sarkhel S. Roy A. Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J. Food Process Eng. 2022 45 5 14030 10.1111/jfpe.14030
    [Google Scholar]
  19. Feizollahi E. Mirmahdi R.S. Zoghi A. Zijlstra R.T. Roopesh M.S. Vasanthan T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021 143 110284 10.1016/j.foodres.2021.110284 33992384
    [Google Scholar]
  20. Kumar S. Anand R. Effect of germination and temperature on phytic acid content of cereals. Inter J Res Agricult Sci 2021 8 24 35
    [Google Scholar]
  21. Lestienne I. Caporiccio B. Besançon P. Rochette I. Trèche S. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions. J. Agric. Food Chem. 2005 53 21 8342 8348 10.1021/jf050741p 16218686
    [Google Scholar]
  22. Vadivel V. Biesalski H.K. Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains. J. Food Sci. Technol. 2012 49 6 673 684 10.1007/s13197‑010‑0223‑x 24293686
    [Google Scholar]
  23. Marolt G. Gričar E. Pihlar B. Kolar M. Complex formation of phytic acid with selected monovalent and divalent metals. Front Chem. 2020 8 582746 10.3389/fchem.2020.582746 33173770
    [Google Scholar]
  24. Erdal I. Kaya M. Küçükyumuk Z. Effects of Zinc and Nitrogen fertilizations on grain yield and some parameters effecting Zinc bioavailability in lentil seeds. Legume Res. 2014 37 1 55 61 10.5958/j.0976‑0571.37.1.008
    [Google Scholar]
  25. Kaya M. Küçükyumuk Z. Erdal I. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. Afr. J. Biotechnol. 2009 8 18 4508 4513
    [Google Scholar]
  26. Lal M.K. Singh B. Sharma S. Singh M.P. Kumar A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci. Technol. 2021 111 741 755 10.1016/j.tifs.2021.02.067
    [Google Scholar]
  27. Sathya A. Siddhuraju P. Effect of processing methods on compositional evaluation of underutilized legume, Parkia roxburghii G. Don (yongchak) seeds. J. Food Sci. Technol. 2015 52 10 6157 6169 10.1007/s13197‑015‑1732‑4 26396363
    [Google Scholar]
  28. Petry N. Egli I. Zeder C. Walczyk T. Hurrell R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010 140 11 1977 1982 10.3945/jn.110.125369 20861210
    [Google Scholar]
  29. Grosse Brinkhaus A. Bee G. Silacci P. Kreuzer M. Dohme-Meier F. Effect of exchanging Onobrychis viciifolia and Lotus corniculatus for Medicago sativa on ruminal fermentation and nitrogen turnover in dairy cows. J. Dairy Sci. 2016 99 6 4384 4397 10.3168/jds.2015‑9911 26995129
    [Google Scholar]
  30. Avnee S. Sood S. Chaudhary D.R. Jhorar P. Rana R.S. Biofortification: An approach to eradicate micronutrient deficiency. Front. Nutr. 2023 10 1233070 10.3389/fnut.2023.1233070 37789898
    [Google Scholar]
  31. Ofori K.F. Antoniello S. English M.M. Aryee A.N.A. Improving nutrition through biofortification–A systematic review. Front. Nutr. 2022 9 1043655 10.3389/fnut.2022.1043655 36570169
    [Google Scholar]
  32. Adu M.O. Asare P.A. Yawson D.O. Nyarko M.A. Osei-Agyeman K. Agronomic biofortification of selected underutilised solanaceae vegetables for improved dietary intake of potassium (K) in Ghana. Heliyon 2018 4 8 00750 10.1016/j.heliyon.2018.e00750 30167498
    [Google Scholar]
  33. Wang J. Mao H. Zhao H. Huang D. Wang Z. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Res. 2012 135 89 96 10.1016/j.fcr.2012.07.010
    [Google Scholar]
  34. Chattha M.U. Hassan M.U. Khan I. Biofortification of wheat cultivars to combat zinc deficiency. Front Plant Sci 2017 8 281 10.3389/fpls.2017.00281 28352273
    [Google Scholar]
  35. Hafeez M.B. Ramzan Y. Khan S. Application of zinc and iron-based fertilizers improves the growth attributes, productivity, and grain quality of two wheat (Triticum aestivum) cultivars. Front. Nutr. 2021 8 779595 10.3389/fnut.2021.779595 34966772
    [Google Scholar]
  36. Jha A.B. Warkentin T.D. Biofortification of pulse crops: Status and future perspectives. Plants 2020 9 1 73 10.3390/plants9010073 31935879
    [Google Scholar]
  37. Merkeb F. Yoseph T. Amsalu B. Improving nutritional values and yield in common bean (Phaseolus vulgaris L.) cultivars via foliar application of zinc and iron fertilizers. Crop Forage Turfgrass Manage. 2024 10 2 70004 10.1002/cft2.70004
    [Google Scholar]
  38. Zulfiqar U. Maqsood M. Hussain S. Anwar-ul-Haq M. Iron nutrition improves productivity, profitability, and biofortification of bread wheat under conventional and conservation tillage systems. J. Soil Sci. Plant Nutr. 2020 20 3 1298 1310 10.1007/s42729‑020‑00213‑1
    [Google Scholar]
  39. Ahmed M.H. Teferra A.T. Yuya B.A. Melese K.A. Impact of soil conservation on farm efficiency of maize growers in Arsi Negelle, central rift valley of Ethiopia. Inter J Econo Empiri Res 2014 2 2 36 43
    [Google Scholar]
  40. Abdel-Mawgoud A.M.R. El-Bassiouny A.M. Ghoname A. Abou-Hussein S.D. Foliar application of amino acids and micronutrients enhance performance of green bean crop under newly reclaimed land conditions. Aust. J. Basic Appl. Sci. 2011 5 6 51 55
    [Google Scholar]
  41. Official methods of analysis of AOAC International. Rockville, Maryland, USA: AOAC International 2000 1 2
  42. James C.S. Analytical chemistry of foods. New York, NY Springer 1995 1 8
    [Google Scholar]
  43. Vaintraub I.A. Lapteva N.A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal. Biochem. 1988 175 1 227 230 10.1016/0003‑2697(88)90382‑X 3245569
    [Google Scholar]
  44. Magallanes-López A.M. Hernandez-Espinosa N. Velu G. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chem. 2017 237 499 505 10.1016/j.foodchem.2017.05.110 28764025
    [Google Scholar]
  45. Teshome D.M. Emire S.A. Canning quality evaluation of common bean (Phaseolus vulgaris L.) varieties grown in the central rift valley of Ethiopia. East Afri J Sci 2012 6 1 65 78
    [Google Scholar]
  46. Tasie M.M. Gebreyes B.G. Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in ethiopia. Int. J. Food Sci. 2020 2020 1 1 11 10.1155/2020/8243617 32258096
    [Google Scholar]
  47. Dimkpa C.O. Bindraban P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016 36 1 7 10.1007/s13593‑015‑0346‑6
    [Google Scholar]
  48. Mahmoud A.W.M. Ayad A.A. Abdel-Aziz H.S.M. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants 2022 11 19 2599 10.3390/plants11192599 36235465
    [Google Scholar]
  49. Ram S. Malik V.K. Gupta V. Impact of foliar application of iron and zinc fertilizers on grain iron, zinc, and protein contents in bread wheat (Triticum aestivum L.). Front. Nutr. 2024 11 1378937 10.3389/fnut.2024.1378937 38807641
    [Google Scholar]
  50. Minuye M. Bajo W. Common beans variability on physical, canning quality, nutritional, mineral, and phytate contents. Cogent Food Agric. 2021 7 1 1914376 10.1080/23311932.2021.1914376
    [Google Scholar]
  51. Vunain E. Chirambo F. Sajidu S. Mguntha T.T. Proximate composition, mineral composition and phytic acid in three common Malawian white rice grains. Malawi J. Sci. Technol. 2020 12 1 87 108
    [Google Scholar]
  52. Ketema D.A. Gebeyehu H.R. Gebreyes B.G. Evaluation of Proximate, Mineral and Anti-nutritional composition of improved and released Common bean varieties in Ethiopia. Inter J Nov Res Life Sci 2019 6 6 13 27
    [Google Scholar]
  53. Fagbohun E.D. Lawal O.U. Ore M.E. The proximate, mineral and phytochemical analysis of the leaves of Ocimum gratissimum L., Melanthera scandens A. and Leea guineensis L. and their medicinal value. Int. J. Appl. Biol. Pharm. Technol. 2012 3 1 15 22
    [Google Scholar]
  54. Gowthami P. Rao G.R. Rao K.L.N. Lal A.M. Effect of foliar application of potassium, boron and zinc on quality and seed yield in soybean. Int. J. Chem. Stud. 2018 6 1 142 144
    [Google Scholar]
  55. El-Habbasha E.S. Badr E.A. Latef E.A. Effect of zinc foliar application on growth characteristics and grain yield of some wheat varieties under Zn deficient sandy soil condition. Int. J. Chemtech Res. 2015 8 6 452 458
    [Google Scholar]
  56. Bybordi A. Mamedov G. Evaluation of application methods efficiency of zinc and iron for canola (Brassica napus L.). Not. Sci. Biol. 1970 2 1 94 103 10.15835/nsb213531
    [Google Scholar]
  57. Cakmak I. Pfeiffer W.H. McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010 87 1 10 20 10.1094/CCHEM‑87‑1‑0010
    [Google Scholar]
  58. Wang Z. Liu Q. Pan F. Yuan L. Yin X. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Res. 2015 184 58 64 10.1016/j.fcr.2015.09.007
    [Google Scholar]
  59. Bibi F. Saleem I.S. Ehsan S. Jamil S. Ullah H. Mubashir M. Effect of various application rates of phosphorus combined with different zinc rates and time of zinc application on phytic acid concentration and zinc bioavailability in wheat. Agric. Nat. Resour. 2020 54 3 265 272 10.34044/j.anres.2020.54.3.05
    [Google Scholar]
  60. Singh B. Kunze G. Satyanarayana T. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev. 2011 6 3 69 87
    [Google Scholar]
  61. Wang Y. Wei Y. Dong L. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. J. Zhejiang Univ. Sci. B 2014 15 4 365 374 10.1631/jzus.B1300263 24711357
    [Google Scholar]
  62. Castro-Alba V. Lazarte C.E. Bergenståhl B. Granfeldt Y. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Sci. Nutr. 2019 7 9 2854 2865 10.1002/fsn3.1127 31572579
    [Google Scholar]
  63. Silva V.M. Nardeli A.J. Mendes N.A.C. Agronomic biofortification of cowpea with zinc: Variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiol. Biochem. 2021 162 378 387 10.1016/j.plaphy.2021.02.020 33735742
    [Google Scholar]
  64. Petry N. Egli I. Campion B. Nielsen E. Hurrell R. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J. Nutr. 2013 143 8 1219 1224 10.3945/jn.113.175067 23784069
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X380973250624115024
Loading
/content/journals/rafna/10.2174/012772574X380973250624115024
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ash content ; protein content ; malnutrition ; phytic acid ; herbal constituents ; fiber content
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test