Skip to content
2000
image of Dietary Fiber: A Comprehensive Review of Its Sources, Health Benefits, and Mechanisms Driving Nutraceutical Effects

Abstract

India, the second-largest producer of fruits and vegetables globally, generates significant quantities of agricultural by-products such as bran, husk, and seeds due to its rapidly expanding food processing sector. These by-products offer valuable opportunities for the extraction of dietary fiber and bioactive components, which can be incorporated into functional foods and nutraceutical products to address growing health concerns. Dietary fiber, an indigestible component of plant-based foods, can be classified into soluble and insoluble forms. Soluble fibers, derived from sources such as oat bran, barley, lentils, and certain fruits and vegetables, are rich in pectin, beta-glucans, and inulin. Insoluble fibers, found in wheat bran, cereal grains, and vegetables, primarily consist of cellulose and hemicellulose. This review explores the potential of dietary fiber in disease management, its diverse sources, and its application in functional and nutraceutical products. Regular intake of dietary fiber is associated with a reduced risk of coronary heart disease, stroke, hypertension, diabetes, obesity, and various gastrointestinal disorders. Soluble fiber, in particular, improves glycemic control and insulin sensitivity, while fiber supplementation aids in weight management among obese individuals. Additionally, increased fiber consumption is linked to lower blood pressure and serum cholesterol levels. Dietary fiber also alleviates gastrointestinal conditions such as gastroesophageal reflux disease, constipation, and hemorrhoids, while prebiotic fibers enhance immune function. Despite its proven benefits, consumer awareness regarding dietary fiber remains insufficient. Enhancing communication and education on the importance of fiber-rich foods and supplements is essential to promote their widespread consumption and leverage their health benefits effectively.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X378014250727175222
2025-08-18
2025-11-16
Loading full text...

Full text loading...

References

  1. Saini P. Islam M. Das R. Shekhar S. Sinha A.S.K. Prasad K. Wheat bran as potential source of dietary fiber: Prospects and challenges. J. Food Compos. Anal. 2023 116 105030 10.1016/j.jfca.2022.105030
    [Google Scholar]
  2. Olteanu G. Ciucă-Pană M.A. Busnatu Ș.S. Lupuliasa D. Neacșu S.M. Mititelu M. Musuc A.M. Ioniță-Mîndrican C.B. Boroghină S.C. Unraveling the microbiome–human body axis: A comprehensive examination of therapeutic strategies, interactions and implications. Int. J. Mol. Sci. 2024 25 10 5561 10.3390/ijms25105561 38791599
    [Google Scholar]
  3. P N.P.V. Joye I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 2020 12 10 3045 10.3390/nu12103045 33027944
    [Google Scholar]
  4. Waddell I.S. Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit. Rev. Food Sci. Nutr. 2023 63 27 8752 8767 10.1080/10408398.2022.2061909 35471164
    [Google Scholar]
  5. Cronin P. Joyce S.A. O’Toole P.W. O’Connor E.M. Dietary fibre modulates the gut microbiota. Nutrients 2021 13 5 1655 10.3390/nu13051655 34068353
    [Google Scholar]
  6. Salamone D. Rivellese A.A. Vetrani C. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetol. 2021 58 9 1131 1138 10.1007/s00592‑021‑01727‑5 33970303
    [Google Scholar]
  7. Tang H.Y. Fang Z. Ng K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends Food Sci. Technol. 2020 100 333 348 10.1016/j.tifs.2020.04.028
    [Google Scholar]
  8. European Food Safety Authority Outcome of the public consultation on the draft opinion of the scientific panel on dietetic products, nutrition, and allergies (NDA) on dietary reference values for carbohydrates and dietary fibre. EFS2 J. 2010 8 3 10.2903/j.efsa.2010.1508
    [Google Scholar]
  9. Korczak R. Slavin J. L. Definitions, regulations, and new frontiers for dietary fiber and whole grains. Nutr. Rev. 2020 78 6 12 10.1093/nutrit/nuz061
    [Google Scholar]
  10. Soliman G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019 11 5 1155 10.3390/nu11051155 31126110
    [Google Scholar]
  11. Williams B. Grant L. Gidley M. Mikkelsen D. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 2017 18 10 2203 10.3390/ijms18102203 29053599
    [Google Scholar]
  12. Mudgil D. Barak S. Classification, technological properties, and sustainable sources. Dietary Fiber: Properties, Recovery, and Applications. Elsevier 2019 27 58 10.1016/B978‑0‑12‑816495‑2.00002‑2
    [Google Scholar]
  13. Zhang Y. Hu J. Zhong Y. Liu S. Liu L. Mu X. Chen C. Yang S. Li G. Zhang D. Huang X. Yang J. Huang X. Bian S. Nie S. Insoluble/soluble fraction ratio determines effects of dietary fiber on gut microbiota and serum metabolites in healthy mice. Food Funct. 2024 15 1 338 354 10.1039/D3FO04068B 38088096
    [Google Scholar]
  14. Bulsiewicz W.J. The importance of dietary fiber for metabolic health. Am. J. Lifestyle Med. 2023 17 5 639 648 10.1177/15598276231167778 37711348
    [Google Scholar]
  15. Ribichini E. Stigliano S. Rossi S. Zaccari P. Sacchi M.C. Bruno G. Badiali D. Severi C. Role of fibre in nutritional management of pancreatic diseases. Nutrients 2019 11 9 2219 10.3390/nu11092219 31540004
    [Google Scholar]
  16. Ahmad A. Khalid N. Dietary fibers in modern food production: A special perspective with β-Glucans. Biopolymers for Food Design. Elsevier 2018 125 156 10.1016/B978‑0‑12‑811449‑0.00005‑0
    [Google Scholar]
  17. Alahmari L.A. Dietary fiber influence on overall health, with an emphasis on CVD, diabetes, obesity, colon cancer, and inflammation. Front. Nutr. 2024 11 1510564 10.3389/fnut.2024.1510564 39734671
    [Google Scholar]
  18. Barber T.M. Kabisch S. Pfeiffer A.F.H. Weickert M.O. The health benefits of dietary fibre. Nutrients 2020 12 10 3209 10.3390/nu12103209 33096647
    [Google Scholar]
  19. Stephen A.M. Champ M.M.J. Cloran S.J. Fleith M. van Lieshout L. Mejborn H. Burley V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017 30 2 149 190 10.1017/S095442241700004X 28676135
    [Google Scholar]
  20. Lin S. Dietary fiber in bakery products: Source, processing, and function. Advances in Food and Nutrition Research. Elsevier 2022 37 100 10.1016/bs.afnr.2021.12.001
    [Google Scholar]
  21. El-Salhy M. Ystad S.O. Mazzawi T. Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int. J. Mol. Med. 2017 40 3 607 613 10.3892/ijmm.2017.3072 28731144
    [Google Scholar]
  22. Ioniță-Mîndrican C.B. Ziani K. Mititelu M. Oprea E. Neacșu S.M. Moroșan E. Dumitrescu D.E. Roșca A.C. Drăgănescu D. Negrei C. Therapeutic benefits and dietary restrictions of fiber intake: A state of the art review. Nutrients 2022 14 13 2641 10.3390/nu14132641 35807822
    [Google Scholar]
  23. Singla A. Gupta O.P. Sagwal V. Kumar A. Patwa N. Mohan N. Ankush Kumar D. Vir O. Singh J. Kumar L. Lal C. Singh G. Beta-glucan as a soluble dietary fiber source: Origins, biosynthesis, extraction, purification, structural characteristics, bioavailability, biofunctional attributes, industrial utilization, and global trade. Nutrients 2024 16 6 900 10.3390/nu16060900 38542811
    [Google Scholar]
  24. Lam K.L. Keung H.Y. Ko K.C. Kwan H.S. Cheung P.C.K. In vitro fermentation of beta-glucans and other selected carbohydrates by infant fecal inoculum: An evaluation of their potential as prebiotics in infant formula. Bioactive Carbohydr. Diet. Fibre 2018 14 20 24 10.1016/j.bcdf.2017.07.009
    [Google Scholar]
  25. Kuge T. Nagoya H. Tryfona T. Kurokawa T. Yoshimi Y. Dohmae N. Tsubaki K. Dupree P. Tsumuraya Y. Kotake T. Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan. Biosci. Biotechnol. Biochem. 2015 79 11 1810 1817 10.1080/09168451.2015.1046365 26027730
    [Google Scholar]
  26. Zhong X. Wang G. Li F. Fang S. Zhou S. Ishiwata A. Tonevitsky A.G. Shkurnikov M. Cai H. Ding F. Immunomodulatory effect and biological significance of β-Glucans. Pharmaceutics 2023 15 6 1615 10.3390/pharmaceutics15061615 37376063
    [Google Scholar]
  27. Jayachandran M. Chen J. Chung S.S.M. Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018 61 101 110 10.1016/j.jnutbio.2018.06.010 30196242
    [Google Scholar]
  28. Fujiike A.Y. Lee C.Y.A.L. Rodrigues F.S.T. Oliveira L.C.B. Barbosa-Dekker A.M. Dekker R.F.H. Cólus I.M.S. Serpeloni J.M. Anticancer effects of carboxymethylated (1→3)(1→6)-β-D-glucan (botryosphaeran) on multicellular tumor spheroids of MCF-7 cells as a model of breast cancer. J. Toxicol. Environ. Health A 2022 85 13 521 537 10.1080/15287394.2022.2048153 35255775
    [Google Scholar]
  29. Hjorth T. Schadow A. Revheim I. Spielau U. Thomassen L.M. Meyer K. Piotrowski K. Rosendahl-Riise H. Rieder A. Varela P. Lysne V. Ballance S. Koerner A. Landberg R. Buyken A. Dierkes J. Sixteen-week multicentre randomised controlled trial to study the effect of the consumption of an oat beta-glucan-enriched bread versus a whole-grain wheat bread on glycaemic control among persons with pre-diabetes: A study protocol of the CarbHealth study. BMJ Open 2022 12 8 e062066 10.1136/bmjopen‑2022‑062066 35998955
    [Google Scholar]
  30. MS Wolever T. Rahn M. Dioum E. Spruill S.E. Ezatagha A. Campbell J.E. Jenkins A.L. Chu Y. An Oat β-Glucan beverage reduces LDL cholesterol and cardiovascular disease risk in men and women with borderline high cholesterol: A double-blind, randomized, controlled clinical trial. J. Nutr. 2021 151 9 2655 2666 10.1093/jn/nxab154 34236436
    [Google Scholar]
  31. Dranca F. Oroian M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int. 2018 113 327 350 10.1016/j.foodres.2018.06.065 30195527
    [Google Scholar]
  32. Sahasrabudhe N.M. Beukema M. Tian L. Troost B. Scholte J. Bruininx E. Bruggeman G. van den Berg M. Scheurink A. Schols H.A. Faas M.M. de Vos P. Dietary fiber pectin directly blocks toll-like receptor 2–1 and prevents doxorubicin-induced ileitis. Front. Immunol. 2018 9 383 10.3389/fimmu.2018.00383 29545800
    [Google Scholar]
  33. Yang Z. Zhang Y. Jin G. Lei D. Liu Y. Insights into the impact of modification methods on the structural characteristics and health functions of pectin: A comprehensive review. Int. J. Biol. Macromol. 2024 261 Pt 2 129851 10.1016/j.ijbiomac.2024.129851 38307429
    [Google Scholar]
  34. Gómez B. Gullón B. Yáñez R. Schols H. Alonso J.L. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Foods 2016 20 108 121 10.1016/j.jff.2015.10.029
    [Google Scholar]
  35. Blanco-Pérez F. Steigerwald H. Schülke S. Vieths S. Toda M. Scheurer S. The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota. Curr. Allergy Asthma Rep. 2021 21 10 43 10.1007/s11882‑021‑01020‑z 34505973
    [Google Scholar]
  36. Moon J.S. Shin S.Y. Choi H.S. Joo W. Cho S.K. Li L. Kang J.H. Kim T.J. Han N.S. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 2015 131 50 56 10.1016/j.carbpol.2015.05.022 26256159
    [Google Scholar]
  37. Ho Do M. Seo Y.S. Park H.Y. Polysaccharides: Bowel health and gut microbiota. Crit. Rev. Food Sci. Nutr. 2021 61 7 1212 1224 10.1080/10408398.2020.1755949 32319786
    [Google Scholar]
  38. Chumpitazi B.P. McMeans A.R. Vaughan A. Ali A. Orlando S. Elsaadi A. Shulman R.J. Fructans exacerbate symptoms in a subset of children with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2018 16 2 219 225.e1 10.1016/j.cgh.2017.09.043 28970147
    [Google Scholar]
  39. Sempio R. Sahin A.W. Walter J. Arendt E.K. Zannini E. Impact of isolated and chemically modified dietary fiber on bakery products: Current knowledge and future directions. Cereal Chem. 2024 101 1 7 37 10.1002/cche.10722
    [Google Scholar]
  40. Fu X. Liu Z. Zhu C. Mou H. Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 2019 59 sup1 S130 S152 10.1080/10408398.2018.1542587
    [Google Scholar]
  41. den Besten G. van Eunen K. Groen A.K. Venema K. Reijngoud D.J. Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013 54 9 2325 2340 10.1194/jlr.R036012 23821742
    [Google Scholar]
  42. Samuel B.S. Shaito A. Motoike T. Rey F.E. Backhed F. Manchester J.K. Hammer R.E. Williams S.C. Crowley J. Yanagisawa M. Gordon J.I. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA 2008 105 43 16767 16772 10.1073/pnas.0808567105 18931303
    [Google Scholar]
  43. Tolhurst G. Heffron H. Lam Y.S. Parker H.E. Habib A.M. Diakogiannaki E. Cameron J. Grosse J. Reimann F. Gribble F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012 61 2 364 371 10.2337/db11‑1019 22190648
    [Google Scholar]
  44. Yano J.M. Yu K. Donaldson G.P. Shastri G.G. Ann P. Ma L. Nagler C.R. Ismagilov R.F. Mazmanian S.K. Hsiao E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015 161 2 264 276 10.1016/j.cell.2015.02.047 25860609
    [Google Scholar]
  45. Haghikia A. Jörg S. Duscha A. Berg J. Manzel A. Waschbisch A. Hammer A. Lee D.H. May C. Wilck N. Balogh A. Ostermann A.I. Schebb N.H. Akkad D.A. Grohme D.A. Kleinewietfeld M. Kempa S. Thöne J. Demir S. Müller D.N. Gold R. Linker R.A. Dietary Fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2015 43 4 817 829 10.1016/j.immuni.2015.09.007 26488817
    [Google Scholar]
  46. Xiong R.G. Zhou D.D. Wu S.X. Huang S.Y. Saimaiti A. Yang Z.J. Shang A. Zhao C.N. Gan R.Y. Li H.B. Health benefits and side effects of short-chain fatty acids. Foods 2022 11 18 2863 10.3390/foods11182863 36140990
    [Google Scholar]
  47. Bishehsari F. Engen P.A. Preite N.Z. Tuncil Y.E. Naqib A. Shaikh M. Rossi M. Wilber S. Green S.J. Hamaker B.R. Khazaie K. Voigt R.M. Forsyth C.B. Keshavarzian A. Dietary fiber treatment corrects the composition of gut microbiota, promotes scfa production, and suppresses colon carcinogenesis. Genes 2018 9 2 102 10.3390/genes9020102 29462896
    [Google Scholar]
  48. Makki K. Deehan E.C. Walter J. Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018 23 6 705 715 10.1016/j.chom.2018.05.012 29902436
    [Google Scholar]
  49. Louis P. Solvang M. Duncan S.H. Walker A.W. Mukhopadhya I. Dietary fibre complexity and its influence on functional groups of the human gut microbiota. Proc. Nutr. Soc. 2021 80 4 386 397 10.1017/S0029665121003694
    [Google Scholar]
  50. Markowiak-Kopeć P. Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020 12 4 1107 10.3390/nu12041107 32316181
    [Google Scholar]
  51. Fu J. Zheng Y. Gao Y. Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms 2022 10 12 2507 10.3390/microorganisms10122507 36557760
    [Google Scholar]
  52. Khorasaniha R. Olof H. Voisin A. Armstrong K. Wine E. Vasanthan T. Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll. 2023 139 108495 10.1016/j.foodhyd.2023.108495
    [Google Scholar]
  53. Carbone S. Del Buono M.G. Ozemek C. Lavie C.J. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2019 62 4 327 333 10.1016/j.pcad.2019.08.004 31442513
    [Google Scholar]
  54. Goff H.D. Repin N. Fabek H. El Khoury D. Gidley M.J. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioactive Carbohydr. Diet. Fibre 2018 14 39 53 10.1016/j.bcdf.2017.07.005
    [Google Scholar]
  55. Berger C. Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch. 2020 472 9 1249 1272 10.1007/s00424‑020‑02383‑4 32394191
    [Google Scholar]
  56. Bin Rakhis S.A. Sr AlDuwayhis N.M. Aleid N. AlBarrak A.N. Aloraini A.A. Glycemic control for Type 2 diabetes mellitus patients: A systematic review. Cureus 2022 14 6 e26180 10.7759/cureus.26180 35891859
    [Google Scholar]
  57. Russell W.R. Baka A. Björck I. Delzenne N. Gao D. Griffiths H.R. Hadjilucas E. Juvonen K. Lahtinen S. Lansink M. Loon L.V. Mykkänen H. östman E. Riccardi G. Vinoy S. Weickert M.O. Impact of diet composition on Blood glucose regulation. Crit. Rev. Food Sci. Nutr. 2016 56 4 541 590 10.1080/10408398.2013.792772 24219323
    [Google Scholar]
  58. Khan J. Khan M. Ma Y. Meng Y. Mushtaq A. Shen Q. Xue Y. Overview of the composition of whole grains’ phenolic acids and dietary fibre and their effect on chronic non-communicable diseases. Int. J. Environ. Res. Public Health 2022 19 5 3042 10.3390/ijerph19053042 35270737
    [Google Scholar]
  59. Candela M. Biagi E. Soverini M. Consolandi C. Quercia S. Severgnini M. Peano C. Turroni S. Rampelli S. Pozzilli P. Pianesi M. Fallucca F. Brigidi P. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br. J. Nutr. 2016 116 1 80 93 10.1017/S0007114516001045 27151248
    [Google Scholar]
  60. McRae M.P. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. J. Chiropr. Med. 2018 17 1 44 53 10.1016/j.jcm.2017.11.002 29628808
    [Google Scholar]
  61. Mao T. Huang F. Zhu X. Wei D. Chen L. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. J. Funct. Foods 2021 82 104500 10.1016/j.jff.2021.104500
    [Google Scholar]
  62. Weickert M.O. Pfeiffer A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018 148 1 7 12 10.1093/jn/nxx008 29378044
    [Google Scholar]
  63. Li Y. Zhang L. Liu H. Cao M. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim Microbiome. 2024 6 1 34 10.1186/s42523‑024‑00323‑6
    [Google Scholar]
  64. Nitzke D. Czermainski J. Rosa C. Coghetto C. Fernandes S.A. Carteri R.B. Increasing dietary fiber intake for type 2 diabetes mellitus management: A systematic review. World J. Diabetes 2024 15 5 1001 1010 10.4239/wjd.v15.i5.1001 38766430
    [Google Scholar]
  65. Castro-Quezada I. Flores-Guillén E. Núñez-Ortega P.E. Irecta-Nájera C.A. Sánchez-Chino X.M. Mendez-Flores O.G. Olivo-Vidal Z.E. García-Miranda R. Solís-Hernández R. Ochoa-Díaz-López H. Dietary carbohydrates and insulin resistance in adolescents from marginalized Areas of Chiapas, México. Nutrients 2019 11 12 3066 10.3390/nu11123066 31888175
    [Google Scholar]
  66. Reynolds A.N. Akerman A.P. Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020 17 3 e1003053 10.1371/journal.pmed.1003053 32142510
    [Google Scholar]
  67. Chambers E.S. Byrne C.S. Aspey K. Chen Y. Khan S. Morrison D.J. Frost G. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 2018 20 4 1034 1039 10.1111/dom.13159 29134744
    [Google Scholar]
  68. Gowd V. Xie L. Zheng X. Chen W. Dietary fibers as emerging nutritional factors against diabetes: focus on the involvement of gut microbiota. Crit. Rev. Biotechnol. 2019 39 4 524 540 10.1080/07388551.2019.1576025 30810398
    [Google Scholar]
  69. Zhang L. Ouyang Y. Li H. Shen L. Ni Y. Fang Q. Wu G. Qian L. Xiao Y. Zhang J. Yin P. Panagiotou G. Xu G. Ye J. Jia W. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: A randomized crossover trial. Sci. Rep. 2019 9 1 4736 10.1038/s41598‑018‑38216‑9 30894560
    [Google Scholar]
  70. Zhao L. Zhang F. Ding X. Wu G. Lam Y.Y. Wang X. Fu H. Xue X. Lu C. Ma J. Yu L. Xu C. Ren Z. Xu Y. Xu S. Shen H. Zhu X. Shi Y. Shen Q. Dong W. Liu R. Ling Y. Zeng Y. Wang X. Zhang Q. Wang J. Wang L. Wu Y. Zeng B. Wei H. Zhang M. Peng Y. Zhang C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018 359 6380 1151 1156 10.1126/science.aao5774 29590046
    [Google Scholar]
  71. Abiola J.O. Oluyemi A.A. Idowu O.T. Oyinloye O.M. Ubah C.S. Owolabi O.V. Somade O.T. Onikanni S.A. Ajiboye B.O. Osunsanmi F.O. Nash O. Omotuyi O.I. Oyinloye B.E. Potential role of phytochemicals as glucagon-like peptide 1 receptor (GLP-1R) agonists in the treatment of diabetes mellitus. Pharmaceuticals 2024 17 6 736 10.3390/ph17060736 38931402
    [Google Scholar]
  72. McNelis J.C. Lee Y.S. Mayoral R. van der Kant R. Johnson A.M.F. Wollam J. Olefsky J.M. GPR43 potentiates β-Cell function in obesity. Diabetes 2015 64 9 3203 3217 10.2337/db14‑1938 26023106
    [Google Scholar]
  73. Ojo O. Feng Q.Q. Ojo O.O. Wang X.H. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2020 12 11 3239 10.3390/nu12113239 33113929
    [Google Scholar]
  74. Sharifi-Rad J. Rodrigues C.F. Sharopov F. Docea A.O. Can Karaca A. Sharifi-Rad M. Kahveci Karıncaoglu D. Gülseren G. Şenol E. Demircan E. Taheri Y. Suleria H.A.R. Özçelik B. Nur Kasapoğlu K. Gültekin-Özgüven M. Daşkaya-Dikmen C. Cho W.C. Martins N. Calina D. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health 2020 17 7 2326 10.3390/ijerph17072326 32235611
    [Google Scholar]
  75. Jan B. Dar M.I. Choudhary B. Basist P. Khan R. Alhalmi A. Cardiovascular diseases among indian older adults: A comprehensive review. Cardiovasc. Ther. 2024 2024 1 6894693 10.1155/2024/6894693 39742010
    [Google Scholar]
  76. Carson J.A.S. Lichtenstein A.H. Anderson C.A.M. Appel L.J. Kris-Etherton P.M. Meyer K.A. Petersen K. Polonsky T. Van Horn L. American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Peripheral Vascular Disease; and Stroke Council Dietary cholesterol and cardiovascular risk: A science advisory from the american heart association. Circulation 2020 141 3 e39 e53 10.1161/CIR.0000000000000743 31838890
    [Google Scholar]
  77. Vourakis M. Mayer G. Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int. J. Mol. Sci. 2021 22 15 8074 10.3390/ijms22158074 34360839
    [Google Scholar]
  78. Clemente-Suárez V.J. Beltrán-Velasco A.I. Redondo-Flórez L. Martín-Rodríguez A. Tornero-Aguilera J.F. Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients 2023 15 12 2749 10.3390/nu15122749 37375654
    [Google Scholar]
  79. Zhu X. Sun X. Wang M. Zhang C. Cao Y. Mo G. Liang J. Zhu S. Quantitative assessment of the effects of beta-glucan consumption on serum lipid profile and glucose level in hypercholesterolemic subjects. Nutr. Metab. Cardiovasc. Dis. 2015 25 8 714 723 10.1016/j.numecd.2015.04.008 26026211
    [Google Scholar]
  80. Andersson M. Ellegård L. Andersson H. Oat bran stimulates bile acid synthesis within 8 h as measured by 7α-hydroxy-4-cholesten-3-one. Am. J. Clin. Nutr. 2002 76 5 1111 1116 10.1093/ajcn/76.5.1111 12399287
    [Google Scholar]
  81. Weber A.M. Pascale N. Gu F. Ryan E.P. Respondek F. Nutrition and health effects of pectin: A systematic scoping review of human intervention studies. Nutr. Res. Rev. 2024 Sep 1 18 10.1017/S0954422424000180 39324277
    [Google Scholar]
  82. Tang J. Tang J. Tang J. Tang J. The therapeutic value of bifidobacteria in cardiovascular disease. npj Biofilms Microbiomes 2023 9 82 10.1038/s41522‑023‑00448‑7
    [Google Scholar]
  83. Farhadipour M. Depoortere I. The Function of Gastrointestinal Hormones in Obesity—Implications for the Regulation of Energy Intake. Nutrients 2021 13 6 1839 10.3390/nu13061839 34072172
    [Google Scholar]
  84. Röhrl C. Stangl H. Cholesterol metabolism—physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wien. Med. Wochenschr. 2018 168 11-12 280 285 10.1007/s10354‑018‑0626‑2 29488036
    [Google Scholar]
  85. Zhou X. Wu X. Wang R. Han L. Li H. Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer’s Disease. Int. J. Mol. Sci. 2023 25 1 170 10.3390/ijms25010170 38203341
    [Google Scholar]
  86. Eastwood M.A. Dietary fibre, functions by modulating the entero-hepatic circulation. QJM 2019 112 11 833 834 10.1093/qjmed/hcz090 31081039
    [Google Scholar]
  87. Li M.Z. Wang L. Chen G.J. Chen Z.X. Biopolymer-based sequestrants for lowering cholesterol: Structures, in vitro bile acid anion binding effects, and interaction mechanisms. J. Funct. Foods 2024 113 106002 10.1016/j.jff.2024.106002
    [Google Scholar]
  88. Kalra S. Kapoor N. Verma M. Shaikh S. Das S. Jacob J. Sahay R. Defining and diagnosing obesity in India: A call for advocacy and action. J. Obes. 2023 2023 1 13 10.1155/2023/4178121 38026823
    [Google Scholar]
  89. Chen J.P. Chen G.C. Wang X.P. Qin L. Bai Y. Dietary fiber and metabolic syndrome: A meta-analysis and review of related mechanisms. Nutrients 2017 10 1 24 10.3390/nu10010024 29278406
    [Google Scholar]
  90. Jovanovski E. Mazhar N. Komishon A. Khayyat R. Li D. Blanco Mejia S. Khan T. Jenkins A.L. Smircic-Duvnjak L. Sievenpiper J.L. Vuksan V. Effect of viscous fiber supplementation on obesity indicators in individuals consuming calorie-restricted diets: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2021 60 1 101 112 10.1007/s00394‑020‑02224‑1 32198674
    [Google Scholar]
  91. Fernandez-Cantos M.V. Garcia-Morena D. Iannone V. El-Nezami H. Kolehmainen M. Kuipers O.P. Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD. Tissue Barriers 2021 9 3 1879719 10.1080/21688370.2021.1879719 34280073
    [Google Scholar]
  92. Zhu Y. Yang H. Zhang Y. Rao S. Mo Y. Zhang H. Liang S. Zhang Z. Yang W. Dietary fiber intake and non-alcoholic fatty liver disease: The mediating role of obesity. Front. Public Health 2023 10 1038435 10.3389/fpubh.2022.1038435 36684870
    [Google Scholar]
  93. Masse K.E. Lu V.B. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front. Endocrinol. (Lausanne) 2023 14 1169624 10.3389/fendo.2023.1169624 37560311
    [Google Scholar]
  94. Heaton K.W. Food fibre as an obstacle to energy intake. Lancet 1973 302 7843 1418 1421 10.1016/S0140‑6736(73)92806‑7 4128728
    [Google Scholar]
  95. Miquel-Kergoat S. Azais-Braesco V. Burton-Freeman B. Hetherington M.M. Effects of chewing on appetite, food intake and gut hormones: A systematic review and meta-analysis. Physiol. Behav. 2015 151 88 96 10.1016/j.physbeh.2015.07.017 26188140
    [Google Scholar]
  96. Hogenkamp P.S. Schiöth H.B. Effect of oral processing behaviour on food intake and satiety. Trends Food Sci. Technol. 2013 34 1 67 75 10.1016/j.tifs.2013.08.010
    [Google Scholar]
  97. Adam C.L. Williams P.A. Garden K.E. Thomson L.M. Ross A.W. Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS One 2015 10 1 e0115438 10.1371/journal.pone.0115438 25602757
    [Google Scholar]
  98. Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017 57 16 3543 3564 10.1080/10408398.2016.1180501 27229126
    [Google Scholar]
  99. Edwards C.H. Ryden P. Mandalari G. Butterworth P.J. Ellis P.R. Structure–function studies of chickpea and durum wheat uncover mechanisms by which cell wall properties influence starch bioaccessibility. Nat. Food 2021 2 2 118 126 10.1038/s43016‑021‑00230‑y 34667952
    [Google Scholar]
  100. Ramírez-Salazar S.A. Herren C. McCartney J. Ortiz García J.G. Dietary insights in neurological diseases. Curr. Neurol. Neurosci. Rep. 2021 21 10 55 10.1007/s11910‑021‑01143‑w 34586517
    [Google Scholar]
  101. Berer K. Martínez I. Walker A. Kunkel B. Schmitt-Kopplin P. Walter J. Krishnamoorthy G. Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci. Rep. 2018 8 1 10431 10.1038/s41598‑018‑28839‑3 29993025
    [Google Scholar]
  102. Jackson A. Forsyth C.B. Shaikh M. Voigt R.M. Engen P.A. Ramirez V. Keshavarzian A. Diet in Parkinson’s disease: Critical role for the microbiome. Front. Neurol. 2019 10 1245 10.3389/fneur.2019.01245 31920905
    [Google Scholar]
  103. Saghafian F. Hajishafiee M. Rouhani P. Saneei P. Dietary fiber intake, depression, and anxiety: A systematic review and meta-analysis of epidemiologic studies. Nutr. Neurosci. 2023 26 2 108 126 10.1080/1028415X.2021.2020403 36692989
    [Google Scholar]
  104. Fatahi S. Matin S.S. Sohouli M.H. Găman M.A. Raee P. Olang B. Kathirgamathamby V. Santos H.O. Guimarães N.S. Shidfar F. Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complement. Ther. Med. 2021 56 102621 10.1016/j.ctim.2020.102621 33220451
    [Google Scholar]
  105. Cuervo-Zanatta D. Syeda T. Sánchez-Valle V. Irene-Fierro M. Torres-Aguilar P. Torres-Ramos M.A. Shibayama-Salas M. Silva-Olivares A. Noriega L.G. Torres N. Tovar A.R. Ruminot I. Barros L.F. García-Mena J. Perez-Cruz C. Dietary fiber modulates the release of gut bacterial products preventing cognitive decline in an alzheimer’s mouse model. Cell. Mol. Neurobiol. 2023 43 4 1595 1618 10.1007/s10571‑022‑01268‑7 35953741
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X378014250727175222
Loading
/content/journals/rafna/10.2174/012772574X378014250727175222
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Short chain fatty acids ; mechanism ; Dietary fiber ; Nutraceuticals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test