Skip to content
2000
image of Green Synthesis of Nanoparticles: Sustainable Solutions for Multisectoral Applications

Abstract

Green synthesis has emerged as a cornerstone for advancing eco-friendly nanotechnology by utilizing plant extracts, microorganisms, and natural compounds as reducing and stabilizing agents. This sustainable approach mitigates the environmental and health hazards associated with conventional chemical and physical synthesis methods. Green-synthesized nanoparticles (NPs) exhibit remarkable potential across diverse sectors, including agriculture, pharmaceuticals, environmental remediation, and materials science. By leveraging renewable resources, this process minimizes energy consumption, toxic byproducts, and waste generation. Recent studies highlight the use of plant metabolites, fungi, and bacteria for the synthesis of metallic nanoparticles such as silver, gold, and zinc oxide, demonstrating enhanced biocompatibility and reduced toxicity. Characterization techniques such as UV-Vis spectroscopy, X-ray diffraction, and electron microscopy confirm the structural integrity and functional properties of these nanoparticles. In agriculture, green NPs act as efficient nanofertilizers, pesticide carriers, and biosensors, enhancing crop yield and reducing chemical dependency. In the medical field, they play pivotal roles in drug delivery, imaging, and antimicrobial therapies. Furthermore, green nanoparticles contribute to wastewater treatment, pollutant adsorption, and air purification, addressing critical environmental challenges. This review underscores the transformative potential of green synthesis in promoting sustainable industrial practices, fostering innovation, and aligning with the global agenda for environmental responsibility. By integrating green nanotechnology into mainstream production, industries can achieve a balance between technological advancement and ecological preservation, paving the way for a greener, healthier future.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X387119250907090028
2025-09-18
2025-11-17
Loading full text...

Full text loading...

References

  1. Parashar M. Shukla V.K. Singh R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020 31 5 3729 3749 10.1007/s10854‑020‑02994‑8
    [Google Scholar]
  2. Akhtar S. AlAnsari R. Hasan B. Anticancer and antibacterial potential of green synthesized BSA conjugated silver nanoparticles. J. Saudi Chem. Soc. 2024 28 5 101917 10.1016/j.jscs.2024.101917
    [Google Scholar]
  3. Ali Dheyab M. Tang J.H. Abdul Aziz A. Green synthesis of gold nanoparticles and their emerging applications in cancer imaging and therapy: A review. Rev. Inorg. Chem. 2024 10.1515/revic‑2024‑0048
    [Google Scholar]
  4. Salama H.E. Abdel Aziz M.S. Optimized UV-barrier carboxymethyl cellulose-based edible coatings reinforced with green synthesized ZnO-NPs for food packaging applications. Polym. Bull. 2024 81 18 16733 16755 10.1007/s00289‑024‑05462‑z
    [Google Scholar]
  5. Kharey P. Goel M. Husain Z. Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Mater. Chem. Phys. 2023 293 126859 10.1016/j.matchemphys.2022.126859
    [Google Scholar]
  6. Manjula N.G. Sarma G. Shilpa B.M. Suresh Kumar K. Environmental applications of green engineered copper nanoparticles. In: Phytonanotechnology. Singapore Springer Nature 2022 10.1007/978‑981‑19‑4811‑4_12
    [Google Scholar]
  7. Gonçalves R.A. Toledo R.P. Joshi N. Berengue O.M. Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules 2021 26 8 2236 10.3390/molecules26082236 33924397
    [Google Scholar]
  8. Eskandari-Nojedehi M. Jafarizadeh-Malmiri H. Rahbar-Shahrouzi J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies. Green Processing and Synthesis 2018 7 1 38 47 10.1515/gps‑2017‑0004
    [Google Scholar]
  9. Usman M. Cheng S. Recent trends and advancements in green synthesis of biomass-derived carbon dots. Eng 2024 5 3 2223 2263 10.3390/eng5030116
    [Google Scholar]
  10. Subhan A. Mourad A.H.I. Al-Douri Y. Influence of laser process parameters, liquid medium, and external field on the synthesis of colloidal metal nanoparticles using pulsed laser ablation in liquid: a review. Nanomaterials 2022 12 13 2144 10.3390/nano12132144 35807980
    [Google Scholar]
  11. Nyabadza A. Vazquez M. Brabazon D. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid. Crystals 2023 13 2 253 10.3390/cryst13020253
    [Google Scholar]
  12. Terzioğlu E. Arslan M. Balaban B.G. Çakar Z.P. Microbial silver resistance mechanisms: recent developments. World J. Microbiol. Biotechnol. 2022 38 9 158 10.1007/s11274‑022‑03341‑1 35821348
    [Google Scholar]
  13. Shahabadi N. Zendehcheshm S. Khademi F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol. Rep. 2021 30 e00615 10.1016/j.btre.2021.e00615 33948440
    [Google Scholar]
  14. Yang M. Yang Y. Liu Y. Shen G. Yu R. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006 21 7 1125 1131 10.1016/j.bios.2005.04.009 15885999
    [Google Scholar]
  15. Sattar U. Ikram M. Junaid M. Aqeel M. Imran M. Ali S. Annealing effect on synthesized ZnS/TiO 2 nanocomposite for treatment of industrial wastewater. Mater. Res. Express 2019 6 11 115050 10.1088/2053‑1591/ab476c
    [Google Scholar]
  16. Zapata L.E. Portela G. Suárez O.M. Carrasquillo O. Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions. Constr. Build. Mater. 2013 41 708 716 10.1016/j.conbuildmat.2012.12.025
    [Google Scholar]
  17. Lee H.Y. Kim H.E. Jeong S.H. One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization. Colloids Surf. B Biointerfaces 2019 174 308 315 10.1016/j.colsurfb.2018.11.034 30472616
    [Google Scholar]
  18. Doufène K. Lapinte V. Gaveau P. Tunable vegetable oil/silica hybrid microparticles for poorly water-soluble drug delivery. Int. J. Pharm. 2019 567 118478 10.1016/j.ijpharm.2019.118478 31260782
    [Google Scholar]
  19. Wang C. Yin L. Zhang L. Xiang D. Gao R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010 10 3 2088 2106 10.3390/s100302088 22294916
    [Google Scholar]
  20. MacCraith B.D. McDonagh C.M. O’Keeffe G. McEvoy A.K. Butler T. Sheridan F.R. Sol-gel coatings for optical chemical sensors and biosensors. Sens. Actuators B Chem. 1995 29 1-3 51 57 10.1016/0925‑4005(95)01662‑7
    [Google Scholar]
  21. Sonker R.K. Yadav B.C. Gupta V. Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater. Chem. Phys. 2020 239 121975 10.1016/j.matchemphys.2019.121975
    [Google Scholar]
  22. Abramova A.V. Abramov V.O. Bayazitov V.M. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020 60 104788 10.1016/j.ultsonch.2019.104788 31550644
    [Google Scholar]
  23. Periyasamy A.P. Venkataraman M. Kremenakova D. Militky J. Zhou Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020 13 8 1838 10.3390/ma13081838 32295113
    [Google Scholar]
  24. Joshi D.R. Adhikari N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019 28 1 18 10.9734/jpri/2019/v28i330203
    [Google Scholar]
  25. Tobiszewski M. Namieśnik J. Pena-Pereira F. Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem. 2017 19 4 1034 1042 10.1039/C6GC03424A
    [Google Scholar]
  26. Akinyemi P.A. Adegbenro C.A. Ojo T.O. Elugbaju O. Neurobehavioral effects of organic solvents exposure among wood furniture makers in ile-ife, osun state, southwestern nigeria. J. Health Pollut. 2019 9 22 190604 10.5696/2156‑9614‑9.22.190604 31259080
    [Google Scholar]
  27. Ma Y. He X. Qi K. Effects of environmental contaminants on fertility and reproductive health. J. Environ. Sci. 2019 77 210 217 10.1016/j.jes.2018.07.015 30573085
    [Google Scholar]
  28. Pottathara Y.B. Grohens Y. Kokol V. Kalarikkal N. Thomas S. Synthesis and Proce ssing of Emerging TwoDimensional Nanomaterials. In: Beeran Pottathara Y, Thomas S, Kalarikkal N, Grohens Y, Kokol V, Eds Nanomaterials Synthesis. Beeran Pottathara Y. Thomas S. Kalarikkal N. Grohens Y. Kokol V. Amsterdam, The Netherlands Elsevier 2019 1 25 10.1016/B978‑0‑12‑815751‑0.00001‑8
    [Google Scholar]
  29. Martin P.M. Deposition Technologies: An Overview. Handbook of Deposition Technologies for Films and Coatings. 3rd ed Boston, MA, USA William Andrew Publishing 2010 1 31 10.1016/B978‑0‑8155‑2031‑3.00001‑6
    [Google Scholar]
  30. Somani P.R. Somani S.P. Umeno M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006 430 1-3 56 59 10.1016/j.cplett.2006.06.081
    [Google Scholar]
  31. Pollard A.J. Nair R.R. Sabki S.N. Formation of Monolayer Graphene by Annealing Sacrificial Nickel Thin Films. J. Phys. Chem. C 2009 113 38 16565 16567 10.1021/jp906066z
    [Google Scholar]
  32. Park S. Lim S. Choi H. Chemical vapor deposition of iron and iron oxide thin films from Fe(II) dihydride complexes. Chem. Mater. 2006 18 22 5150 5152 10.1021/cm0601990
    [Google Scholar]
  33. Wong S.L. Liu H. Chi D. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 2016 62 3 9 28 10.1016/j.pcrysgrow.2016.06.002
    [Google Scholar]
  34. Mojica M. Alonso J.A. Méndez F. Synthesis of fullerenes. J. Phys. Org. Chem. 2013 26 7 526 539 10.1002/poc.3121
    [Google Scholar]
  35. Cassell A.M. Raymakers J.A. Kong J. Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999 103 31 6484 6492 10.1021/jp990957s
    [Google Scholar]
  36. Umeno M. Adhikary S. Diamond-like carbon thin films by microwave surface-wave plasma CVD aimed for the application of photovoltaic solar cells. Diamond Related Materials 2005 14 11-12 1973 1979 10.1016/j.diamond.2005.09.030
    [Google Scholar]
  37. Sun J. Chen Y. Cai X. Direct low temperature synthesis of graphene on arbitrary glasses by plasma-enhanced CVD for versatile, cost-effective electrodes. Nano Res. 2015 8 3496 3504 10.1007/s12274‑015‑0849‑0
    [Google Scholar]
  38. Chen J. Guo Y. Jiang L. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014 26 9 1348 1353 10.1002/adma.201304872 24338972
    [Google Scholar]
  39. Bo Z. Yang Y. Chen J. Yu K. Yan J. Cen K. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013 5 12 5180 5204 10.1039/c3nr33449j 23670071
    [Google Scholar]
  40. Sun J. Chen Z. Yuan L. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016 10 12 11136 11144 10.1021/acsnano.6b06066 28024341
    [Google Scholar]
  41. Sun J. Chen Y. Priydarshi M.K. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015 15 9 5846 5854 10.1021/acs.nanolett.5b01936 26305883
    [Google Scholar]
  42. Ma Y. Jang H. Kim S.J. Pang C. Chae H. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process. Nanoscale Res. Lett. 2015 10 1 308 10.1186/s11671‑015‑1019‑8 26239877
    [Google Scholar]
  43. Choi K.M. Kim T.H. Kim K.S. Kim S.G. Case Study. J. Occup. Environ. Hyg. 2013 10 1 D1 D5 10.1080/15459624.2012.734274 23130679
    [Google Scholar]
  44. Grabowska E. Marchelek M. Paszkiewicz-Gawron M. Zaleska-Medynska A. 3—Metal oxide photocatalysts. In: Zaleska-Medynska A, Ed Metal Oxide-Based Photocatalysis. Zaleska-Medynska A. Amsterdam, The Netherlands Elsevier 2018 51 209
    [Google Scholar]
  45. Schäf O. Ghobarkar H. Knauth P. Hydrothermal Synthesis of Nanomaterials. In: Knauth P, Schoonman J, Eds Nanostructured Materials: Selected Synthesis Methods Properties and Applications. Knauth P. Schoonman J. Boston, MA, USA Springer 2002 23 41
    [Google Scholar]
  46. Nunes D. Pimentel A. Santos L. 2—Synthesis, design, and morphology of metal oxide nanostructures. In: Nunes D, Pimentel A, Santos L, et al., Eds Metal Oxide Nanostructures. Nunes D. Pimentel A. Santos L. Amsterdam, The Netherlands Elsevier 2019 21 57 10.1016/B978‑0‑12‑811512‑1.00002‑3
    [Google Scholar]
  47. Kubota K. Dahbi M. Hosaka T. Kumakura S. Komaba S. Towards K‐Ion and Na‐Ion Batteries as “Beyond Li‐Ion”. Chem. Rec. 2018 18 4 459 479 10.1002/tcr.201700057 29442429
    [Google Scholar]
  48. Su D. Ahn H.J. Wang G. Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J. Mater. Chem. A Mater. Energy Sustain. 2013 1 15 4845 4850 10.1039/c3ta00031a
    [Google Scholar]
  49. Hosono E. Saito T. Hoshino J. High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J. Power Sources 2012 217 43 46 10.1016/j.jpowsour.2012.05.100
    [Google Scholar]
  50. Song H. Tang A. Xu G. Liu L. Yin M. Pan Y. One-step convenient hydrothermal synthesis of MoS2/RGO as a high-performance anode for sodium-ion batteries. Int. J. Electrochem. Sci. 2018 13 5 4720 4730 10.20964/2018.05.29
    [Google Scholar]
  51. Lin B. Zhu X. Fang L. Birnessite nanosheet arrays with high k content as a high‐capacity and ultrastable cathode for k‐ion batteries. Adv. Mater. 2019 31 24 1900060 10.1002/adma.201900060 31045288
    [Google Scholar]
  52. Darr J.A. Zhang J. Makwana N.M. Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017 117 17 11125 11238 10.1021/acs.chemrev.6b00417 28771006
    [Google Scholar]
  53. Caramazana P. Dunne P. Gimeno-Fabra M. McKechnie J. Lester E. A review of the environmental impact of nanomaterial synthesis using continuous flow hydrothermal synthesis. Curr. Opin. Green Sustain. Chem. 2018 12 57 62 [CrossRef] 10.1016/j.cogsc.2018.06.016
    [Google Scholar]
  54. Chen K. Chiang C.J. Ray D. Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent. Mater. Lett. 2013 98 270 272 10.1016/j.matlet.2013.02.015
    [Google Scholar]
  55. Mehraz S. Kongsong P. Taleb A. Dokhane N. Sikong L. Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis. Sol. Energy Mater. Sol. Cells 2019 189 254 262 [CrossRef] 10.1016/j.solmat.2017.06.048
    [Google Scholar]
  56. Patil A. Bhanage B. Sonochemistry: A Greener Protocol for Nanoparticles Synthesis. In: Handbook of Nanoparticles. Cham, Switzerland Springer 2016 143 166 10.1007/978‑3‑319‑15338‑4_4
    [Google Scholar]
  57. Ashokkumar M. The characterization of acoustic cavitation bubbles – An overview. Ultrason. Sonochem. 2011 18 4 864 872 10.1016/j.ultsonch.2010.11.016 21172736
    [Google Scholar]
  58. Kharissova O. Kharisov B. Valdés J. Ortiz Mendez U. Ultrasound in Nanochemistry: Recent Advances. Synth. React. Inorg. Metal-Org. Nano-Met. Chem 2011 41 429 448
    [Google Scholar]
  59. Young F.R. Cavitation. Singapore World Scientific 1999 418 10.1142/p172
    [Google Scholar]
  60. Brennen C.E. Cavitation and Bubble Dynamics. Cambridge, UK Cambridge University Press 2014
    [Google Scholar]
  61. Oxley J.D. Mdleleni M.M. Suslick K.S. Hydrodehalogenation with sonochemically prepared Mo2C and W2C. Catal. Today 2004 88 3-4 139 151 10.1016/j.cattod.2003.11.010
    [Google Scholar]
  62. Cui C. Quan X. Yu H. Han Y. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Appl. Catal. B 2008 80 1-2 122 128 [CrossRef] 10.1016/j.apcatb.2007.11.019
    [Google Scholar]
  63. Pokhrel N. Vabbina P.K. Pala N. Sonochemistry: Science and Engineering. Ultrason. Sonochem. 2016 29 104 128 10.1016/j.ultsonch.2015.07.023 26584990
    [Google Scholar]
  64. Lu A.H. Salabas E.L. Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007 46 8 1222 1244 10.1002/anie.200602866 17278160
    [Google Scholar]
  65. Cao M. Liu T. Gao S. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed. 2005 44 27 4197 4201 10.1002/anie.200500448 15940730
    [Google Scholar]
  66. Han Y. Radziuk D. Shchukin D. Moehwald H. Sonochemical synthesis of magnetic protein container for targeted delivery. Macromol. Rapid Commun. 2008 29 14 1203 1207 10.1002/marc.200800105
    [Google Scholar]
  67. Mason T.J. Sonochemistry and the environment – Providing a “green” link between chemistry, physics and engineering. Ultrason. Sonochem. 2007 14 4 476 483 10.1016/j.ultsonch.2006.10.008 17207652
    [Google Scholar]
  68. Hujjatul Islam M. Paul M.T.Y. Burheim O.S. Pollet B.G. Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrason. Sonochem. 2019 59 104711 10.1016/j.ultsonch.2019.104711 31421622
    [Google Scholar]
  69. Aritonang H.F. Koleangan H. Wuntu A.D. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int. J. Microbiol. 2019 2019 1 8642303 31354833
    [Google Scholar]
  70. Yang H. Ren Y. Wang T. Wang C. Preparation and antibacterial activities of Ag/Ag +/Ag 3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results Phys. 2016 6 299 304 10.1016/j.rinp.2016.05.012
    [Google Scholar]
  71. Lim J. Yeap S.P. Che H.X. Low S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013 8 1 381 10.1186/1556‑276X‑8‑381 24011350
    [Google Scholar]
  72. Goldstein A. Soroka Y. Frušić-Zlotkin M. Popov I. Kohen R. High resolution SEM imaging of gold nanoparticles in cells and tissues. J. Microsc. 2014 256 3 237 247 10.1111/jmi.12179 25228335
    [Google Scholar]
  73. Kumar M. Ranjan R. Dandapat S. Srivastava R. Sinha M.P. XRD analysis for characterization of green nanoparticles: A mini review. Manoj Kumar, Rakesh Ranjan, Sukumar Dandapat, Rohit Srivastava, Manoranjan Prasad Sinha (2022). XRD Analysis for Characterization of Green Nanoparticles: A Mini Review. Int. J. Pharm. Pharm. Sci. 2022 10 1 555779
    [Google Scholar]
  74. Besner S. Meunier M. Laser Synthesis of Nanomaterials. Laser Precision Microfabrication. Sugioka K. Meunier M. Piqué A. Berlin/Heidelberg, Germany Springer In: Sugioka K, Meunier M, Piqué A, Eds 2010 163 187 10.1007/978‑3‑642‑10523‑4_7
    [Google Scholar]
  75. Ion J.C. Laser Processing of Engineering Materials: Principal Procedure and Industrial Application. Oxford, UK Elsevier 2006 441
    [Google Scholar]
  76. Zeng H. Du X.W. Singh S.C. Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Adv. Funct. Mater. 2012 22 7 1333 1353 [CrossRef] 10.1002/adfm.201102295
    [Google Scholar]
  77. Amendola V. Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013 15 9 3027 3046 10.1039/C2CP42895D 23165724
    [Google Scholar]
  78. Walter J.G. Petersen S. Stahl F. Scheper T. Barcikowski S. Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J. Nanobiotechnology 2010 8 1 21 10.1186/1477‑3155‑8‑21 20731831
    [Google Scholar]
  79. Salmaso S. Caliceti P. Amendola V. Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J. Mater. Chem. 2009 19 11 1608 1615 [CrossRef] 10.1039/b816603j
    [Google Scholar]
  80. Singh D. Kumar S. Singh S.C. Lal B. Singh N.B. Applications of liquid assisted pulsed laser ablation synthesized tio 2 nanoparticles on germination, growth and biochemical parameters of Brassica Oleracea var. Capitata. Sci. Adv. Mater. 2012 4 3 522 531 [CrossRef] 10.1166/sam.2012.1313
    [Google Scholar]
  81. Kabashin A.V. Meunier M. Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions. J. Photochem. Photobiol. Chem. 2006 182 3 330 334 [CrossRef] 10.1016/j.jphotochem.2006.06.008
    [Google Scholar]
  82. Kabashin A.V. Singh A. Swihart M.T. Zavestovskaya I.N. Prasad P.N. Laser-Processed Nanosilicon: A multifunctional nanomaterial for energy and healthcare. ACS Nano 2019 13 9 9841 9867 10.1021/acsnano.9b04610 31490658
    [Google Scholar]
  83. Amendola V. Polizzi S. Meneghetti M. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 2007 23 12 6766 6770 10.1021/la0637061 17489616
    [Google Scholar]
  84. Amendola V. Polizzi S. Meneghetti M. Laser ablation synthesis of gold nanoparticles in organic solvents. J. Phys. Chem. B 2006 110 14 7232 7237 10.1021/jp0605092 16599492
    [Google Scholar]
  85. Sylvestre J.P. Poulin S. Kabashin A.V. Sacher E. Meunier M. Luong J.H.T. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 2004 108 43 16864 16869 10.1021/jp047134+
    [Google Scholar]
  86. Kushnir D. Sandén B.A. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 2008 12 3 360 375 [CrossRef] 10.1111/j.1530‑9290.2008.00057.x
    [Google Scholar]
  87. Sato S. Ogura M. Ishihara M. Nanosecond, high‐intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near‐infrared wavelengths: In‐vitro study. Lasers Surg. Med. 2001 29 5 464 473 10.1002/lsm.10002 11891735
    [Google Scholar]
  88. Mueller R. Jossen R. Pratsinis S.E. Watson M. Akhtar M.K. Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 2004 87 2 197 202 [CrossRef] 10.1111/j.1551‑2916.2004.00197.x
    [Google Scholar]
  89. Strobel R. Baiker A. Pratsinis S.E. Aerosol flame synthesis of catalysts. Adv. Powder Technol. 2006 17 5 457 480 [CrossRef] 10.1163/156855206778440525
    [Google Scholar]
  90. Teoh W.Y. Amal R. Mädler L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale 2010 2 8 1324 1347 10.1039/c0nr00017e 20820719
    [Google Scholar]
  91. Weidenhof B. Reiser M. Stöwe K. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J. Am. Chem. Soc. 2009 131 26 9207 9219 10.1021/ja809134s 19566095
    [Google Scholar]
  92. Pisduangdaw S. Panpranot J. Methastidsook C. Characteristics and catalytic properties of Pt–Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane. Appl. Catal. A Gen. 2009 370 1-2 1 6 10.1016/j.apcata.2009.08.006
    [Google Scholar]
  93. Andreoli A.F. Gargarella P. Neto N.D.C. Orava J. de Oliveira M.F. Eckert J. Welding bulk metallic glasses: Processes, key challenges, and future directions. Int. Mater. Rev. 2024 69 3-4 229 264 10.1177/09506608241254946
    [Google Scholar]
  94. Leng J. Wang Z. Wang J. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 2019 48 11 3015 3072 10.1039/C8CS00904J 31098599
    [Google Scholar]
  95. Aboulouard A. Gultekin B. Can M. Dye sensitized solar cells based on titanium dioxide nanoparticles synthesized by flame spray pyrolysis and hydrothermal sol-gel methods: a comparative study on photovoltaic performances. J. Mater. Res. Technol. 2020 9 2 1569 1577 10.1016/j.jmrt.2019.11.083
    [Google Scholar]
  96. Pawinrat P. Mekasuwandumrong O. Panpranot J. Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal. Commun. 2009 10 10 1380 1385 10.1016/j.catcom.2009.03.002
    [Google Scholar]
  97. Alsaiari N.S. Alzahrani F.M. Amari A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 2023 28 1 463 10.3390/molecules28010463 36615655
    [Google Scholar]
  98. Fakhari S. Jamzad M. Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 2019 12 1 19 24 10.1080/17518253.2018.1547925
    [Google Scholar]
  99. Akintelu S.A. Folorunso A.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience 2020 10 4 848 863 10.1007/s12668‑020‑00774‑6
    [Google Scholar]
  100. Javed R. Ghonaim R. Shathili A. Khalifa S.A. El-Seedi H.R. Phytonanotechnology: A greener approach for biomedical applications. In: Biogenic Nanoparticles for Cancer Theranostics. Elseiver 2021 43 86 10.1016/B978‑0‑12‑821467‑1.00009‑4
    [Google Scholar]
  101. Vieira L.C.C. Paixão M.W. Corrêa A.G. Green synthesis of novel chalcone and coumarin derivatives via Suzuki coupling reaction. Tetrahedron Lett. 2012 53 22 2715 2718 10.1016/j.tetlet.2012.03.079
    [Google Scholar]
  102. Keerthy H.K. Garg M. Mohan C.D. Synthesis and characterization of novel 2-amino-chromene-nitriles that target Bcl-2 in acute myeloid leukemia cell lines. PLoS One 2014 9 9 e107118 10.1371/journal.pone.0107118 25268519
    [Google Scholar]
  103. Mansouri K. Khodarahmi R. Foroumadi A. Mostafaie A. Mohammadi Motlagh H. Anti-angiogenic/proliferative behavior of a “4-aryl-4H-chromene” on blood vessel’s endothelial cells: A possible evidence on dual “anti-tumor” activity. Med. Chem. Res. 2011 20 7 920 929 10.1007/s00044‑010‑9418‑y
    [Google Scholar]
  104. Khoobi M. Alipour M. Sakhteman A. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem. 2013 68 260 269 10.1016/j.ejmech.2013.07.038 23988409
    [Google Scholar]
  105. Fernández-Bachiller M.I. Pérez C. Monjas L. Rademann J. Rodríguez-Franco M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem. 2012 55 3 1303 1317 10.1021/jm201460y 22243648
    [Google Scholar]
  106. Beyer G. Nanocomposites: A new class of flame retardants for polymers. Plast. Addit. Compd. 2002 4 10 22 28 10.1016/S1464‑391X(02)80151‑9
    [Google Scholar]
  107. Ghadiri M. Chrzanowski W. Rohanizadeh R. Biomedical applications of cationic clay minerals. RSC Advances 2015 5 37 29467 29481 10.1039/C4RA16945J
    [Google Scholar]
  108. Shi H. Lan T. Pinnavaia T.J. Interfacial effects on the reinforcement properties of polymer− organoclay nanocomposites. Chem. Mater. 1996 8 8 1584 1587 10.1021/cm960227m
    [Google Scholar]
  109. Huang F. Wang Y. Gao W. Construction and regulation of high active sites in montmorillonite composite catalyst for the removal of ofloxacin via persulfate activation. Heliyon 2024 10 9 e29896 10.1016/j.heliyon.2024.e29896 38707273
    [Google Scholar]
  110. Kovalchuk I. Performance of Thermal-, Acid-, and Mechanochemical-Activated Montmorillonite for Environmental Protection from Radionuclides U(VI) and Sr(II). Eng 2023 4 3 2141 2152 10.3390/eng4030122
    [Google Scholar]
  111. Benelli G. Lukehart C.M. Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J. Cluster Sci. 2017 28 1 1 2 10.1007/s10876‑017‑1165‑5
    [Google Scholar]
  112. Singh R. Tiwari P. Kumari N. Sharma B. Biomedical applications of green synthesized nanoparticles. In: Advances in Pharmaceutical Biotechnology 2020 235 45 10.1007/978‑981‑15‑2195‑9_18
    [Google Scholar]
  113. Vijayaram S. Razafindralambo H. Sun Y.Z. Applications of green synthesized metal nanoparticles—a review. Biol. Trace Elem. Res. 2024 202 1 360 386 10.1007/s12011‑023‑03645‑9 37046039
    [Google Scholar]
  114. Marrez D.A. Abdelhamid A.E. Darwesh O.M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 2019 20 100302 10.1016/j.fpsl.2019.100302
    [Google Scholar]
  115. Jafarzadeh S. Nooshkam M. Zargar M. Green synthesis of nanomaterials for smart biopolymer packaging: challenges and outlooks. J. Nanostructure Chem. 2024 14 2 113 136 10.1007/s40097‑023‑00527‑3
    [Google Scholar]
  116. Kumar S. Mudai A. Roy B. Basumatary I.B. Mukherjee A. Dutta J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 2020 9 9 1143 10.3390/foods9091143 32825205
    [Google Scholar]
  117. Goutam S.P. Saxena G. Roy D. Yadav A.K. Bharagava R.N. Green synthesis of nanoparticles and their applications in water and wastewater treatment. In: Bioremediation of Industrial Waste for Environmental Safety 2020 349 79 10.1007/978‑981‑13‑1891‑7_16
    [Google Scholar]
  118. Singh N.B. B H Susan MA, Guin M. Applications of green synthesized nanomaterials in water remediation. Curr. Pharm. Biotechnol. 2021 22 6 733 761 10.2174/1389201021666201027160029 33109041
    [Google Scholar]
  119. Pandian C.J. Palanivel R. Dhananasekaran S. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng. 2015 23 8 1307 1315 10.1016/j.cjche.2015.05.012
    [Google Scholar]
  120. Raota C.S. Cerbaro A.F. Salvador M. Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: Characterization and application in wastewater disinfection. J. Environ. Chem. Eng. 2019 7 5 103383 10.1016/j.jece.2019.103383
    [Google Scholar]
  121. Monreal C.M. DeRosa M. Mallubhotla S.C. Bindraban P.S. Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 2016 52 3 423 437 10.1007/s00374‑015‑1073‑5
    [Google Scholar]
  122. Kah M. Beulke S. Tiede K. Hofmann T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 2013 43 16 1823 1867 10.1080/10643389.2012.671750
    [Google Scholar]
  123. Raliya R. Tarafdar J.C. Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 2016 64 16 3111 3118 10.1021/acs.jafc.5b05224 27054413
    [Google Scholar]
  124. Mittal D. Kumar A. Balasubramaniam B. Synthesis of biogenic silver nanoparticles using plant growth-promoting bacteria: potential use as biocontrol agent against phytopathogens. Biomater Polym Horiz 2021 1 22 31 10.37819/bph.001.01.0130
    [Google Scholar]
  125. Mittal A.K. Chisti Y. Banerjee U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013 31 2 346 356 10.1016/j.biotechadv.2013.01.003 23318667
    [Google Scholar]
  126. Khan M. Shaik M.R. Khan S.T. Adil S.F. Kuniyil M. Al-Warthan A. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their antimicrobial activity. Biomolecules 2019 9 10 593 31658626
    [Google Scholar]
  127. Narayanan K.B. Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010 156 1-2 1 13 10.1016/j.cis.2010.02.001 20181326
    [Google Scholar]
  128. Durán N. Marcato P.D. De Souza G.I.H. Alves O.L. Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 2011 9 17 16014167
    [Google Scholar]
  129. Suslick K.S. Sonochemistry. Science 1990 247 4949 1439 1445 10.1126/science.247.4949.1439 17791211
    [Google Scholar]
  130. Gogate P.R. Pandit A.B. Sonochemical reactors: Scale up aspects. Ultrason. Sonochem. 2004 11 3-4 105 117 10.1016/j.ultsonch.2004.01.005 15081966
    [Google Scholar]
  131. Yang G. Liu J. Pan G. Lu Y. Laser ablation in liquids: Principles and applications in the preparation of nanomaterials. Front. Chem. China 2010 5 1 6 15
    [Google Scholar]
  132. Amendola V. Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 2009 11 20 3805 3821 10.1039/b900654k 19440607
    [Google Scholar]
  133. Byrappa K. Yoshimura M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing. Norwich William Andrew Publishing 2001
    [Google Scholar]
  134. Strobel R. Pratsinis S.E. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007 17 45 4743 4756 10.1039/b711652g
    [Google Scholar]
  135. Sanchez C. Julián B. Belleville P. Popall M. Applications of hybrid organic–inorganic nanocomposites. Journal of Material Chemistry 2005 15 35–36 3559 3592
    [Google Scholar]
  136. Pandey S. Oza G. Mewada A. Shah R. Sharon M. Sharon M. Green synthesis of metal oxide nanoparticles and their applications. In: Nanoparticles for Biomedical Applications. Elseiver 2020 199 218
    [Google Scholar]
  137. Raut R.W. Mendhulkar V.D. Kashid S.B. Photosynthesis of silver nanoparticle using Onion (Allium cepa) extract and their characterization. J. Biotechnol. Biomater. 2013 3 1 1 3
    [Google Scholar]
  138. Rajeshkumar S. Malarkodi C. Gnanajobitha G. Paulkumar K. Vanaja M. Kannan C. Green synthesis and characterization of silver nanoparticles using Withania somnifera plant extract and its antimicrobial activity. Int. J. Pharm. Pharm. Sci. 2018 10 3 171 176
    [Google Scholar]
  139. Jain S. Sharma R. Jain A. Green synthesis of chromenes using acid-treated montmorillonite as catalyst. Green Chem. Lett. Rev. 2021 14 1 1 8
    [Google Scholar]
  140. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018 16 1 84 10.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X387119250907090028
Loading
/content/journals/rafna/10.2174/012772574X387119250907090028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test