Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

The yellow pigment curcumin has long been used in traditional medicine for its anti-inflammatory, antibacterial and antioxidant activities. Over the past half-century, scientific investigations have shown that curcumin is endowed with additional health benefits because it can modify key molecular targets associated with a number of pathologies, such as diabetes, cancer, and arthritis, in addition to cardiovascular, multiple sclerosis, Alzheimer's, and Crohn's diseases. However, this molecule has several disadvantages, such as low bioavailability and solubility, severe oxidative destruction, light sensitivity, fast systemic clearance and breakdown at alkaline pH levels. To address these drawbacks, several methods of microencapsulation employing a variety of shell materials have been investigated. These techniques contributed toward the increase of curcumin's solubility and stability against heat, light, oxygen, and an alkaline pH. The various shell materials and methods used to microencapsulate this chemical are the main topics of this review. The use of microencapsulated curcumin in food, medicine, and cosmetics is also discussed in more detail. Recent relevant research from the last few years has been given in this area, along with future difficulties.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X330008240827052241
2024-10-07
2025-11-16
Loading full text...

Full text loading...

References

  1. PriyadarsiniK. The chemistry of curcumin: From extraction to therapeutic agent.Molecules20141912200912011210.3390/molecules191220091 25470276
    [Google Scholar]
  2. Rhizoma curcuma longa. WHO Monographs on Selected Medicinal Plants.Geneva, SwitzerlandWHO1999
    [Google Scholar]
  3. CAC/MISC 6-2013: List of codex specifications for food additives; Codex Alimentarius: Rome2013
    [Google Scholar]
  4. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231A363398 12680238
    [Google Scholar]
  5. BasuP. MittimanjK. ShahN.J. SirikiR. RahamanK. NirajAtluri; Jr Brown, R. Curcumin, anti-oxidant, and pioglitazone therapy with inclusion of vitamin e in non-alcoholic fatty liver disease-a randomized open label placebo controlled clinical prospective trial (captive).J. Clin. Exp. Hepatol.201331S26S2710.1016/j.jceh.2013.03.054
    [Google Scholar]
  6. PorroC. CianciulliA. TrottaT. LofrumentoD.D. PanaroM.A. Curcumin regulates anti-inflammatory responses by jak/stat/socs signaling pathway in bv-2 microglial cells.Biology (Basel)2019835110.3390/biology8030051 31252572
    [Google Scholar]
  7. LiW. WuM. TangL. PanY. LiuZ. ZengC. WangJ. WeiT. LiangG. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity.Toxicol. Appl. Pharmacol.2015282217518310.1016/j.taap.2014.12.001 25497288
    [Google Scholar]
  8. PaeH.O. JeongG.S. JeongS.O. KimH.S. KimS.A. KimY.C. YooS.J. KimH.D. ChungH.T. Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells.Exp. Mol. Med.200739326727710.1038/emm.2007.30 17603281
    [Google Scholar]
  9. PaganoE. RomanoB. IzzoA.A. BorrelliF. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews.Pharmacol. Res.2018134799110.1016/j.phrs.2018.06.007 29890252
    [Google Scholar]
  10. WeiX.C. Synthesis and antitumor activity curcumin analogs.Guangdong University of Technology2011
    [Google Scholar]
  11. LiM. XinM. GuoC. LinG. WuX. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment.Drug Dev. Ind. Pharm.201743111846185710.1080/03639045.2017.1349787 28665151
    [Google Scholar]
  12. Al-ObaidiH. LawrenceM.J. ShahS. MoghulH. Al-SadenN. BariF. Effect of drug–polymer interactions on the aqueous solubility of milled solid dispersions.Int. J. Pharm.20134461-210010510.1016/j.ijpharm.2013.02.009 23410988
    [Google Scholar]
  13. Scientific Opinion on the reevaluation of curcumin (E 100) as a food additive.EFSA J.201081679
    [Google Scholar]
  14. Refined exposure assessment for curcumin (E 100).EFSA J.20141210387610.2903/j.efsa.2014.3876
    [Google Scholar]
  15. Safety of aluminum from dietary intake. Scientific Opinion of the Panel on Food Additives, Flavorings, Processing Aids and Food Contact Materials.EFSA J.200867754
    [Google Scholar]
  16. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  17. NoticeG.R.A.S. 822, Curcumin.U.S. Food and Drug Administration2018
    [Google Scholar]
  18. KimY.J. LeeH.J. ShinY. Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction.J. Agric. Food Chem.20136146109111091810.1021/jf402483c 24164304
    [Google Scholar]
  19. TakenakaM. OhkuboT. OkadomeH. SotomeI. ItohT. IsobeS. Effective extraction of curcuminoids by grinding turmeric (Curcuma longa) with medium-chain triacylglycerols.Food Sci. Technol. Res.201319465565910.3136/fstr.19.655
    [Google Scholar]
  20. AliI. HaqueA. SaleemK. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column.Anal. Methods2014682526253610.1039/C3AY41987H
    [Google Scholar]
  21. TripathyS. VermaD.K. ThakurM. PatelA.R. SrivastavP.P. SinghS. GuptaA.K. Chávez-GonzálezM.L. AguilarC.N. ChakravortyN. VermaH.K. UtamaG.L. Curcumin extraction, isolation, quantification and its application in functional foods: A review with a focus on immune enhancement activities and COVID-19.Front. Nutr.2021874795610.3389/fnut.2021.747956 34621776
    [Google Scholar]
  22. PawarH.A. GavasaneA.J. ChoudharyP.D. A novel and simple approach for extraction and isolation of curcuminoids from turmeric rhizomes.Nat. Prod. Chem. Res.20186300
    [Google Scholar]
  23. LeeK.J. KimY.S. JungP.M. MaJ.Y. Optimization of the conditions for the analysis of curcumin and a related compound in Curcuma longa with mobile-phase composition and column temperature via RP-HPLC.Asian J. Chem.201325116306631010.14233/ajchem.2013.14471
    [Google Scholar]
  24. HeffernanC. UkrainczykM. GamidiR.K. HodnettB.K. RasmusonÅ.C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography.Org. Process Res. Dev.201721682182610.1021/acs.oprd.6b00347
    [Google Scholar]
  25. WangC. YangH. LiJ. Combination of microwave, ultrasonic, enzyme assisted method for curcumin species extraction from turmeric (curcuma longa l.) and evaluation of their antioxidant activity.eFood202122738010.2991/efood.k.210329.001
    [Google Scholar]
  26. NagavekarN. SinghalR.S. Supercritical fluid extraction of Curcuma longa and Curcuma amada oleoresin: Optimization of extraction conditions, extract profiling, and comparison of bioactivities.Ind. Crops Prod.201913413414510.1016/j.indcrop.2019.03.061
    [Google Scholar]
  27. KurmudleN. KagliwalL.D. BankarS.B. SinghalR.S. Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents.Food Biosci.20133364110.1016/j.fbio.2013.06.001
    [Google Scholar]
  28. SahneF. MohammadiM. NajafpourG.D. MoghadamniaA.A. Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin.Ind. Crops Prod.20179568669410.1016/j.indcrop.2016.11.037
    [Google Scholar]
  29. LiW. WangS. FengJ. XiaoY. XueX. ZhangH. WangY. LiangX. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa.Magn. Reson. Chem.2009471090290810.1002/mrc.2478 19569074
    [Google Scholar]
  30. Abdul ZaharZ. MohsinH.F. IbtisamA.W. The study on curcuminoids in chromatography, spectroscopy and regioisomerism.J. Phys. Conf. Ser.20201529202203510.1088/1742‑6596/1529/2/022035
    [Google Scholar]
  31. JiangH. SomogyiÁ. JacobsenN.E. TimmermannB.N. GangD.R. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry.Rapid Commun. Mass Spectrom.20062061001101210.1002/rcm.2401 16479557
    [Google Scholar]
  32. PhillipsJ. Moore-MedlinT. SonavaneK. EkshyyanO. McLartyJ. NathanC.A.O. Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice.Otolaryngol. Head Neck Surg.2013148579780310.1177/0194599813476845 23386626
    [Google Scholar]
  33. ChowdhuryR. NimmanapalliR. GrahamT. ReddyG. Curcumin attenuation of lipopolysaccharide induced cardiac hypertrophy in rodents.ISRN Inflamm.201320131810.1155/2013/539305 24236240
    [Google Scholar]
  34. MarczyloT.H. VerschoyleR.D. CookeD.N. MorazzoniP. StewardW.P. GescherA.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine.Cancer Chemother. Pharmacol.200760217117710.1007/s00280‑006‑0355‑x 17051370
    [Google Scholar]
  35. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of curcumin: problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.1157883 26942997
    [Google Scholar]
  36. WangS. ChenP. ZhangL. YangC. ZhaiG. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin.J. Drug Target.2012201083184010.3109/1061186X.2012.719230 22934854
    [Google Scholar]
  37. DovigoL.N. CarmelloJ.C. de Souza CostaC.A. VerganiC.E. BrunettiI.L. BagnatoV.S. PavarinaA.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis.Med. Mycol.201351324325110.3109/13693786.2012.714081 22934533
    [Google Scholar]
  38. ChenX. ZhiF. JiaX. ZhangX. AmbardekarR. MengZ. ParadkarA.R. HuY. YangY. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel.J. Pharm. Pharmacol.2013656807816 23647674
    [Google Scholar]
  39. MadaneR.G. MahajanH.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study.Drug Deliv.20162341326133410.3109/10717544.2014.975382 25367836
    [Google Scholar]
  40. HengM.C.Y. Topical curcumin: a review of mechanisms and uses in dermatology.Int. J. Dermatol. Clin. Res.2017311017
    [Google Scholar]
  41. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  42. HegerM. van GolenR.F. BroekgaardenM. MichelM.C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer.Pharmacol. Rev.201466122230710.1124/pr.110.004044 24368738
    [Google Scholar]
  43. PanM.H. HuangT.M. LinJ.K. Biotransformation of curcumin through reduction and glucuronidation in mice.Drug Metab. Dispos.1999274486494 10101144
    [Google Scholar]
  44. IresonC. OrrS. JonesD.J. VerschoyleR. LimC.K. LuoJ.L. HowellsL. PlummerS. JukesR. WilliamsM. StewardW.P. GescherA. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production.Cancer Res.200161310581064 11221833
    [Google Scholar]
  45. ChengA.L. HsuC.H. LinJ.K. HsuM.M. HoY.F. ShenT.S. KoJ.Y. LinJ.T. LinB.R. Ming-ShiangW. YuH.S. JeeS.H. ChenG.S. ChenT.M. ChenC.A. LaiM.K. PuY.S. PanM.H. WangY.J. TsaiC.C. HsiehC.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions.Anticancer Res.2001214B28952900 11712783
    [Google Scholar]
  46. SharmaR.A. EudenS.A. PlattonS.L. CookeD.N. ShafayatA. HewittH.R. MarczyloT.H. MorganB. HemingwayD. PlummerS.M. PirmohamedM. GescherA.J. StewardW.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance.Clin. Cancer Res.200410206847685410.1158/1078‑0432.CCR‑04‑0744 15501961
    [Google Scholar]
  47. LucaS.V. MacoveiI. BujorA. MironA. Skalicka-WoźniakK. AprotosoaieA.C. TrifanA. Bioactivity of dietary polyphenols: The role of metabolites.Crit. Rev. Food Sci. Nutr.202060462665910.1080/10408398.2018.1546669 30614249
    [Google Scholar]
  48. TanS. CalaniL. BrescianiL. Dall’astaM. FacciniA. AugustinM.A. GrasS.L. Del RioD. The degradation of curcuminoids in a human faecal fermentation model.Int. J. Food Sci. Nutr.201566779079610.3109/09637486.2015.1095865 26471074
    [Google Scholar]
  49. LiZ. SunY. SongM. LiF. XiaoH. Gut microbiota dictate metabolic fate of Curcumin in the colon.J. Nutr. Metab.20172017136798410.1096/fasebj.31.1_supplement.646.12
    [Google Scholar]
  50. MetzlerM. PfeifferE. SchulzS.I. DempeJ.S. Curcumin uptake and metabolism.Biofactors2013391142010.1002/biof.1042 22996406
    [Google Scholar]
  51. PonceletD. Microencapsulation: fundamentals, methods and applications.Surf. Chem. Biomed. Environ. Sci.2006228233410.1007/1‑4020‑4741‑X_3
    [Google Scholar]
  52. PanyamJ. LabhasetwarV. Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv. Drug Deliv. Rev.200355332934710.1016/S0169‑409X(02)00228‑4 12628320
    [Google Scholar]
  53. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  54. VertM. DoiY. HellwichK.H. HessM. HodgeP. KubisaP. RinaudoM. SchuéF. Terminology for biorelated polymers and applications (iupac recommendations 2012), handbook of biochemistry and molecular biology.Boca Raton, FLCRC Press2018885900
    [Google Scholar]
  55. AllahyariM. MohitE. Peptide/protein vaccine delivery system based on PLGA particles.Hum. Vaccin. Immunother.201612380682810.1080/21645515.2015.1102804 26513024
    [Google Scholar]
  56. HolzerM. VogelV. MänteleW. SchwartzD. HaaseW. LangerK. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage.Eur. J. Pharm. Biopharm.200972242843710.1016/j.ejpb.2009.02.002 19462479
    [Google Scholar]
  57. NomuraT. RouthA.F. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules.J. Colloid Interface Sci.20185131910.1016/j.jcis.2017.11.007 29128617
    [Google Scholar]
  58. BerklandC. PollaufE. RamanC. SilvermanR. KimK.K. PackD.W. Macromolecule release from monodisperse PLG microspheres: control of release rates and investigation of release mechanism.J. Pharm. Sci.20079651176119110.1002/jps.20948 17455338
    [Google Scholar]
  59. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  60. ParkJ. WrzesinskiS.H. SternE. LookM. CriscioneJ. RaghebR. JayS.M. DementoS.L. AgawuA. Licona LimonP. FerrandinoA.F. GonzalezD. HabermannA. FlavellR.A. FahmyT.M. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy.Nat. Mater.2012111089590510.1038/nmat3355 22797827
    [Google Scholar]
  61. des RieuxA. FievezV. GarinotM. SchneiderY.J. PréatV. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach.J. Control. Release2006116112710.1016/j.jconrel.2006.08.013 17050027
    [Google Scholar]
  62. LuzP.P. MagalhãesL.G. PereiraA.C. CunhaW.R. RodriguesV. Andrade e SilvaM.L. Curcumin-loaded into PLGA nanoparticles.Parasitol. Res.2012110259359810.1007/s00436‑011‑2527‑9 21739309
    [Google Scholar]
  63. BusariZ.A. DaudaK.A. MorenikejiO.A. AfolayanF. OyeyemiO.T. MeenaJ. SahuD. PandaA.K. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles.Front. Pharmacol.2017862210.3389/fphar.2017.00622 28932197
    [Google Scholar]
  64. AnandP. NairH.B. SungB. KunnumakkaraA.B. YadavV.R. TekmalR.R. AggarwalB.B. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo.Biochem. Pharmacol.201079333033810.1016/j.bcp.2009.09.003 19735646
    [Google Scholar]
  65. JamaliZ. KhoobiM. HejaziS.M. EivaziN. AbdolahpourS. ImanparastF. Moradi-SardarehH. PaknejadM. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line.Photodiagn. Photodyn. Ther.20182319020110.1016/j.pdpdt.2018.06.026 29969678
    [Google Scholar]
  66. AklM.A. Kartal-HodzicA. OksanenT. IsmaelH.R. AfounaM.M. YliperttulaM. SamyA.M. ViitalaT. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery.J. Drug Deliv. Sci. Technol.201632102010.1016/j.jddst.2016.01.007
    [Google Scholar]
  67. TiwariS.K. AgarwalS. SethB. YadavA. NairS. BhatnagarP. KarmakarM. KumariM. ChauhanL.K.S. PatelD.K. SrivastavaV. SinghD. GuptaS.K. TripathiA. ChaturvediR.K. GuptaK.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway.ACS Nano2014817610310.1021/nn405077y 24467380
    [Google Scholar]
  68. HuangN. LuS. LiuX.G. ZhuJ. WangY.J. LiuR.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice.Oncotarget2017846810018101310.18632/oncotarget.20944 29113362
    [Google Scholar]
  69. KoczkurK.M. MourdikoudisS. PolavarapuL. SkrabalakS.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis.Dalton Trans.20154441178831790510.1039/C5DT02964C 26434727
    [Google Scholar]
  70. XianJ. HuaQ. JiangJ. MaY. HuangW. Size-dependent interaction of the PVP capping ligand with Pd nanocrystals.Langmuir2012286736674110.1021/la300786w 22509730
    [Google Scholar]
  71. ProsapioV. De MarcoI. ScognamiglioM. ReverchonE. Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation.Chem. Eng. J.201527728629410.1016/j.cej.2015.04.149
    [Google Scholar]
  72. HeY. LiuH. BianW. LiuY. LiuX. MaS. ZhengX. DuZ. ZhangK. OuyangD. Molecular interactions for the curcumin-polymer complex with enhanced anti-inflammatory effects.Pharmaceutics201911944210.3390/pharmaceutics11090442 31480578
    [Google Scholar]
  73. RahmaA. MunirM.M. KhairurrijalM. PrasetyoA. SuendoV. RachmawatiH. Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl(pyrrolidone) fiber.Biol. Pharm. Bull.201639216317310.1248/bpb.b15‑00391 26830478
    [Google Scholar]
  74. ChhoukK. DionoW. KandaH. GotoM. Micronization for enhancement of curcumin dissolution via electrospraying technique.ChemEngineering2018246010.3390/chemengineering2040060
    [Google Scholar]
  75. KuskovA.N. VoskresenskayaA.A. GoryachayaA.V. ArtyukhovA.A. ShtilmanM.I. TsatsakisA.M. Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin.J. Mater. Sci. Mater. Med.20102151521153010.1007/s10856‑010‑4029‑1 20177741
    [Google Scholar]
  76. LussA.L. KulikovP.P. RommeS.B. AndersenC.L. PennisiC.P. DoceaA.O. KuskovA.N. VeloniaK. MezhuevY.O. ShtilmanM.I. TsatsakisA.M. GurevichL. Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery.Nanomedicine201813770371510.2217/nnm‑2017‑0311 29629829
    [Google Scholar]
  77. PinhoE. GrootveldM. SoaresG. HenriquesM. Cyclodextrin-based hydrogels toward improved wound dressings.Crit. Rev. Biotechnol.201434432833710.3109/07388551.2013.794413 23919239
    [Google Scholar]
  78. MarquesH.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles.Flavour Fragrance J.201025531332610.1002/ffj.2019
    [Google Scholar]
  79. WaleczekK. MarquesH.M.C. HempelB. SchmidtP.C. Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin.Eur. J. Pharm. Biopharm.200355224725110.1016/S0939‑6411(02)00166‑2 12637105
    [Google Scholar]
  80. GarneroC. ZoppiA. GenoveseD. LonghiM. Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: Aggregate and complex formation.Carbohydr. Res.2010345172550255610.1016/j.carres.2010.08.018 20933225
    [Google Scholar]
  81. GuoS. Encapsulation of curcumin into β-cyclodextrins inclusion: A review. E3S Web.Conf.20191310110010.1051/e3sconf/201913101100
    [Google Scholar]
  82. Kasapoglu-CalikM. OzdemirM. Synthesis and controlled release of curcumin‐β‐cyclodextrin inclusion complex from nanocomposite poly(N ‐isopropylacrylamide/sodium alginate) hydrogels.J. Appl. Polym. Sci.2019136214755410.1002/app.47554
    [Google Scholar]
  83. MangolimC.S. MoriwakiC. NogueiraA.C. SatoF. BaessoM.L. NetoA.M. MatioliG. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.Food Chem.201415336137010.1016/j.foodchem.2013.12.067 24491741
    [Google Scholar]
  84. MariaD.N. MishraS.R. WangL. Abd-ElgawadA.H. SolimanO.A. El-DahanM.S. JablonskiM.M. Water-soluble complex of curcumin with cyclodextrins: Enhanced physical properties for ocular drug delivery.Curr. Drug Deliv.2017146875886 27501714
    [Google Scholar]
  85. YadavV.R. SureshS. DeviK. YadavS. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model.AAPS PharmSciTech200910375276210.1208/s12249‑009‑9264‑8 19495987
    [Google Scholar]
  86. LiN. WangN. WuT. QiuC. WangX. JiangS. ZhangZ. LiuT. WeiC. WangT. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug.Drug Dev. Ind. Pharm.201844121966197410.1080/03639045.2018.1505904 30059244
    [Google Scholar]
  87. YadavV.R. PrasadS. KannappanR. RavindranJ. ChaturvediM.M. VaahteraL. ParkkinenJ. AggarwalB.B. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake.Biochem. Pharmacol.20108071021103210.1016/j.bcp.2010.06.022 20599780
    [Google Scholar]
  88. CelebiogluA. UyarT. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs.Food Chem.202031712639710.1016/j.foodchem.2020.126397 32078994
    [Google Scholar]
  89. HerzbergerJ. NiedererK. PohlitH. SeiwertJ. WormM. WurmF.R. FreyH. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation.Chem. Rev.201611642170224310.1021/acs.chemrev.5b00441 26713458
    [Google Scholar]
  90. RoyD. CambreJ.N. SumerlinB.S. Future perspectives and recent advances in stimuli-responsive materials.Prog. Polym. Sci.2010351-227830110.1016/j.progpolymsci.2009.10.008
    [Google Scholar]
  91. YangL. AlexandridisP. Physicochemical aspects of drug delivery and release from polymer-based colloids.Curr. Opin. Colloid Interface Sci.200051-213214310.1016/S1359‑0294(00)00046‑7
    [Google Scholar]
  92. AlexandridisP. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers.Chem. Eng. Technol.2011341152810.1002/ceat.201000335
    [Google Scholar]
  93. AgnelyF. DjedourA. BochotA. GrossiordJ.L. Properties of various thermoassociating polymers: pharmaceutical and cosmetic applications.J. Drug Deliv. Sci. Technol.200616131010.1016/S1773‑2247(06)50001‑2
    [Google Scholar]
  94. TadrosT. Viscoelastic properties of sterically stabilised emulsions and their stability.Adv. Colloid Interface Sci.201522269270810.1016/j.cis.2015.03.001 25900262
    [Google Scholar]
  95. AzeemA. AnwerM.K. TalegaonkarS. Niosomes in sustained and targeted drug delivery: Some recent advances.J. Drug Target.200917967168910.3109/10611860903079454 19845484
    [Google Scholar]
  96. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.945 21719996
    [Google Scholar]
  97. SahuA. KasojuN. GoswamiP. BoraU. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications.J. Biomater. Appl.201125661963910.1177/0885328209357110 20207782
    [Google Scholar]
  98. DasR.K. KasojuN. BoraU. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells.Nanomedicine20106115316010.1016/j.nano.2009.05.009 19616123
    [Google Scholar]
  99. VaidyaF.U. SharmaR. ShaikhS. RayD. AswalV.K. PathakC. Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits pro‐inflammatory cytokines in human breast adenocarcinoma cells.Cancer Rep.201921e113310.1002/cnr2.1133 32721127
    [Google Scholar]
  100. XuY.Q. ChenW.R. TsosieJ.K. XieX. LiP. WanJ.B. HeC.W. ChenM.W. Niosome encapsulation of curcumin: Characterization and cytotoxic effect on ovarian cancer cells.J. Nanomater.201620161910.1155/2016/6365295
    [Google Scholar]
  101. SantosC. SilvaC.J. GuimaraesR. ButtelZ. TamagniniP. ZilleA. Fabrication and characterization of PVA, PVA/chitosan, and PVA/cyanobacterial exopolysaccharide nanofibrous composite nanofiltration membranes prepared by electrospinningAbstr. Pap. Am. Chem2013245
    [Google Scholar]
  102. KongM. ChenX.G. XingK. ParkH.J. Antimicrobial properties of chitosan and mode of action: A state of the art review.Int. J. Food Microbiol.20101441516310.1016/j.ijfoodmicro.2010.09.012 20951455
    [Google Scholar]
  103. Cruz-RomeroM.C. MurphyT. MorrisM. CumminsE. KerryJ.P. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications.Food Control201334239339710.1016/j.foodcont.2013.04.042
    [Google Scholar]
  104. EstevinhoB.N. RochaF. SantosL. AlvesA. Microencapsulation with chitosan by spray drying for industry applications – A review.Trends Food Sci. Technol.201331213815510.1016/j.tifs.2013.04.001
    [Google Scholar]
  105. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  106. LucasJ. RalaivaoM. EstevinhoB.N. RochaF. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products.Powder Technol.202036242843510.1016/j.powtec.2019.11.095
    [Google Scholar]
  107. SowasodN. NakagawaK. CharinpanitkulT. TanthapanichakoonW. Encapsulation of curcumin loaded oil droplets with chitosan based cryogel: influence of freezing condition on nanocapsule properties.Food Sci. Technol. Res.201319463364010.3136/fstr.19.633
    [Google Scholar]
  108. ParizeA.L. StulzerH.K. LaranjeiraM.C.M. BrighenteI.M.C. SouzaT.C.R. Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying.Quim. Nova20123561127113210.1590/S0100‑40422012000600011
    [Google Scholar]
  109. HwangS.W. ShinJ.S. Pectin-coated curcumin-chitosan microparticles crosslinked with mg2+ for delayed drug release in the digestive system.Int. J. Polym. Sci.201820181710.1155/2018/2071071
    [Google Scholar]
  110. AngL. DarwisY. PorL. YamM. Microencapsulation curcuminoids for effective delivery in pharmaceutical application.Pharmaceutics201911945110.3390/pharmaceutics11090451 31480767
    [Google Scholar]
  111. Al-KinaniM.A. HaiderA.J. Al-MusawiS. Design, construction and characterization of intelligence polymer coated core–shell nanocarrier for curcumin drug encapsulation and delivery in lung cancer therapy purposes.J. Inorg. Organomet. Polym. Mater.2021311707910.1007/s10904‑020‑01672‑w
    [Google Scholar]
  112. ThangavelP. SaravanakumarI. SundaramM.K. RathinamB. MuthuvijayanV. Preparation and characterization of a jelly fig (Ficus awkeotsang Makino) polysaccharide-based bioactive 3D scaffold for improved vascularization and skin tissue engineering applications.Int. J. Biol. Macromol.2024259Pt 112919910.1016/j.ijbiomac.2024.129199 38176487
    [Google Scholar]
  113. PonrasuT. YangR.F. ChouT.H. WuJ.J. ChengY.S. Core-Shell Encapsulation of Lipophilic substance in jelly fig (Ficus awkeotsang Makino) Polysaccharides using an inexpensive acrylic-based Millifluidic device.Appl. Biochem. Biotechnol.2020191136037510.1007/s12010‑019‑03209‑5 31879860
    [Google Scholar]
  114. HartiniN. PonrasuT. WuJ.J. SriariyanunM. ChengY.S. Microencapsulation of curcumin in crosslinked jelly fig pectin using vacuum spray drying technique for effective drug delivery.Polymers (Basel)20211316258310.3390/polym13162583 34451123
    [Google Scholar]
  115. ChenJ.F. ChenX.W. GuoJ. YangX.Q. Zein-based core–shell microcapsules for the potential delivery of algae oil and lipophilic compounds.Food Funct.20191031504151210.1039/C8FO02302F 30785152
    [Google Scholar]
  116. WangF. ZhangL. BaiX. CaoX. JiaoX. HuangY. LiY. QinY. WenY. Stimuli-responsive nanocarrier for codelivery of MiR-31 and doxorubicin to suppress high MtEF4 cancer.ACS Appl. Mater. Interfaces20181026227672277510.1021/acsami.8b07698 29897733
    [Google Scholar]
  117. LinJ. LiC. ZhaoY. HuJ. ZhangL.M. Co-electrospun nanofibrous membranes of collagen and zein for wound healing.ACS Appl. Mater. Interfaces2012421050105710.1021/am201669z 22242622
    [Google Scholar]
  118. ShiK. YuH. LeeT.C. HuangQ. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.ACS Appl. Mater. Interfaces2013521104561046410.1021/am4016457 24106783
    [Google Scholar]
  119. MeiL. TengZ. ZhuG. LiuY. ZhangF. ZhangJ. LiY. GuanY. LuoY. ChenX. WangQ. Silver nanocluster-embedded zein films as antimicrobial coating materials for food packaging.ACS Appl. Mater. Interfaces2017940352973530410.1021/acsami.7b08152 28926224
    [Google Scholar]
  120. ChenS. McClementsD.J. JianL. HanY. DaiL. MaoL. GaoY. Core–shell biopolymer nanoparticles for codelivery of curcumin and piperine: Sequential electrostatic deposition of hyaluronic acid and chitosan shells on the zein core.ACS Appl. Mater. Interfaces20191141381033811510.1021/acsami.9b11782 31509373
    [Google Scholar]
  121. LiuF. MaD. LuoX. ZhangZ. HeL. GaoY. McClementsD.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol.Food Hydrocoll.20187945046110.1016/j.foodhyd.2018.01.017
    [Google Scholar]
  122. KhanM.K.I. NazirA. MaanA.A. Electrospraying: a novel technique for efficient coating of foods.Food Eng. Rev.20179211211910.1007/s12393‑016‑9150‑6
    [Google Scholar]
  123. WangJ. JansenJ.A. YangF. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review.Front Chem.2019725810.3389/fchem.2019.00258 31106194
    [Google Scholar]
  124. HeY. HuangY. WangW. ChengY. Integrating micromixer precipitation and electrospray drying toward continuous production of drug nanoparticles.Chem. Eng. J.2011168293193710.1016/j.cej.2011.01.092
    [Google Scholar]
  125. Gomez-EstacaJ. BalaguerM.P. GavaraR. Hernandez-MunozP. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin.Food Hydrocoll.2012281829110.1016/j.foodhyd.2011.11.013
    [Google Scholar]
  126. YuanS. LeiF. LiuZ. TongQ. SiT. XuR.X. Coaxial electrospray of curcumin–loaded microparticles for sustained drug release.PLoS One2015107e013260910.1371/journal.pone.0132609 26208167
    [Google Scholar]
  127. MaiZ. ChenJ. HeT. HuY. DongX. ZhangH. HuangW. KoF. ZhouW. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity.RSC Advances2017731724173410.1039/C6RA25314H
    [Google Scholar]
  128. ChenX. ZouL.Q. NiuJ. LiuW. PengS.F. LiuC.M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes.Molecules2015208142931431110.3390/molecules200814293 26251892
    [Google Scholar]
  129. TakahashiM. InafukuK. MiyagiT. OkuH. WadaK. ImuraT. KitamotoD. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method.J. Oleo Sci.2007561354210.5650/jos.56.35 17693697
    [Google Scholar]
  130. JangleR.D. ThoratB.N. Effect of freeze‒thawing study on curcumin liposomes for obtaining better freeze-dried product.Dry. Technol.201331996697410.1080/07373937.2013.769003
    [Google Scholar]
  131. FengT. WeiY. LeeR. ZhaoL. Liposomal curcumin and its application in cancer.Int. J. Nanomedicine2017126027604410.2147/IJN.S132434 28860764
    [Google Scholar]
  132. KhanF.I. GhoshalA.K. Removal of volatile organic compounds from polluted air.J. Loss Prev. Process Ind.20001352754510.1016/S0950‑4230(00)00007‑3
    [Google Scholar]
  133. ChenH. WuJ. SunM. GuoC. YuA. CaoF. ZhaoL. TanQ. ZhaiG. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin.J. Liposome Res.201222210010910.3109/08982104.2011.621127 22007962
    [Google Scholar]
  134. GuJ.J. DengY.J. Preparation of curcumin liposomes and its oral pharmacokinetics in rats.J Chengdu Med Coll.20105297100
    [Google Scholar]
  135. SunJ. HanM. Preparation of novel curcumin liposomes and associated preliminary stability study.World Sci. Technol.20081046672
    [Google Scholar]
  136. MatloobA.H. MourtasS. KlepetsanisP. AntimisiarisS.G. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study.Int. J. Pharm.20144761-210811510.1016/j.ijpharm.2014.09.041 25269006
    [Google Scholar]
  137. PamunuwaG. KarunaratneV. KarunaratneD.N. Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes.J. Nanomater.201620161910.1155/2016/4535790
    [Google Scholar]
  138. OuC.F. LiangY.L. ShenS.W. HanX. Preparation of liposomal in curcumin using ethanol injection method.J. South Agric2011421012591264
    [Google Scholar]
  139. ZhaoY.Z. LuC.T. ZhangY. XiaoJ. ZhaoY.P. TianJ.L. XuY.Y. FengZ.G. XuC.Y. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery.Int. J. Pharm.2013454130230910.1016/j.ijpharm.2013.06.052 23830940
    [Google Scholar]
  140. LiC. DengL. ZhangY. SuT.T. JiangY. ChenZ.B. Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin.Yao Xue Xue Bao2012471115411547 23387090
    [Google Scholar]
  141. ZangG. ZhaoY. PanL. LiuC.H. Preparation and quality evaluation of curcumin liposomes modified with vitamin A.Carol. J. Pharm.2011426431434
    [Google Scholar]
  142. HasanM. LatifiS. KahnC.J.F. TamayolA. HabibeyR. PasseriE. LinderM. Arab-TehranyE. The positive role of curcumin-loaded salmon nanoliposomes on the culture of primary cortical neurons.Mar. Drugs201816721810.3390/md16070218 29941790
    [Google Scholar]
  143. GamboaJ.M. LeongK.W. In vitro and in vivo models for the study of oral delivery of nanoparticles.Adv. Drug Deliv. Rev.201365680081010.1016/j.addr.2013.01.003 23415952
    [Google Scholar]
  144. PurasG. MashalM. ZárateJ. AgirreM. OjedaE. GrijalvoS. EritjaR. Diaz-TahocesA. Martínez NavarreteG. Avilés-TriguerosM. FernándezE. PedrazJ.L. A novel cationic niosome formulation for gene delivery to the retina.J. Control. Release20141741273610.1016/j.jconrel.2013.11.004 24231407
    [Google Scholar]
  145. XieX. XuA.M. Leal-OrtizS. CaoY. GarnerC.C. MeloshN.A. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection.ACS Nano2013754351435810.1021/nn400874a 23597131
    [Google Scholar]
  146. ObeidM.A. KhadraI. AlbaloushiA. MullinM. AlyamaniH. FerroV.A. Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release.Beilstein J. Nanotechnol.2019101826183210.3762/bjnano.10.177 31579065
    [Google Scholar]
  147. ObeidM.A. GebrilA.M. TateR.J. MullenA.B. FerroV.A. Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods.Int. J. Pharm.20175211-2546010.1016/j.ijpharm.2017.02.007 28163227
    [Google Scholar]
  148. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  149. GongW.J. NadzirM.M. HishamS.F. KalidasS.R. Size, entrapment efficiency and stability of curcumin niosomes prepared at different ph conditions.Asian J. Sci. Res.2019131232810.3923/ajsr.2020.23.28
    [Google Scholar]
  150. KumarK. RaiA.K. Development and evaluation of proniosome- encapsulated curcumin for transdermal administration.Trop. J. Pharm. Res.201110669770310.4314/tjpr.v10i6.1
    [Google Scholar]
  151. AlemiA. Zavar RezaJ. HaghiralsadatF. Zarei JalianiH. Haghi KaramallahM. HosseiniS.A. Haghi KaramallahS. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy.J. Nanobiotech.20181612810.1186/s12951‑018‑0351‑4 29571289
    [Google Scholar]
  152. MistlbergerG. Medina-CastilloA.L. BorisovS.M. MayrT. Fernández-GutiérrezA. Fernandez-SanchezJ.F. KlimantI. Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors.2011172(3-4)299308
    [Google Scholar]
  153. SongC.X. LabhasetwarV. MurphyH. QuX. HumphreyW.R. ShebuskiR.J. LevyR.J. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery.J. Control. Release1997432-319721210.1016/S0168‑3659(96)01484‑8
    [Google Scholar]
  154. Silva-BuzanelloR.A. SouzaM.F. OliveiraD.A. BonaE. LeimannF.V. Cardozo FilhoL. AraújoP.H.H. FerreiraS.R.S. GonçalvesO.H. Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation.Polímeros201626320721410.1590/0104‑1428.2246
    [Google Scholar]
  155. PernettiM. van MalssenK.F. FlöterE. BotA. Structuring of edible oils by alternatives to crystalline fat.Curr. Opin. Colloid Interface Sci.2007124-522123110.1016/j.cocis.2007.07.002
    [Google Scholar]
  156. MarangoniA.G. Organogels: an alternative edible oil-structuring method.J. Am. Oil Chem. Soc.201289574978010.1007/s11746‑012‑2049‑3
    [Google Scholar]
  157. ShapiroY.E. Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach.Prog. Polym. Sci.20113691184125310.1016/j.progpolymsci.2011.04.002
    [Google Scholar]
  158. YuH. ShiK. LiuD. HuangQ. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids.Food Chem.20121311485410.1016/j.foodchem.2011.08.027 23265454
    [Google Scholar]
  159. YuH. HuangQ. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.J. Agric. Food Chem.201260215373537910.1021/jf300609p 22506728
    [Google Scholar]
  160. TurckD. BohnT. CastenmillerJ. De HenauwS. Hirsch-ErnstK.I. MaciukA. MangelsdorfI. McArdleH.J. NaskaA. PelaezC. PentievaK. SianiA. ThiesF. TsabouriS. VincetiM. CubaddaF. FrenzelT. HeinonenM. MarchelliR. Neuhäuser-BertholdM. PoulsenM. Prieto MaradonaM. SchlatterJ.R. van LoverenH. AckerlR. KoulouraE. KnutsenH.K. Safety of tetrahydrocurcuminoids from turmeric (Curcuma longa L.) as a novel food pursuant to Regulation (EU) 2015/2283.EFSA J.20211912e06936 34987620
    [Google Scholar]
  161. SowbhagyaH.B. SmithaS. SampathuS.R. KrishnamurthyN. BhattacharyaS. Stability of water-soluble turmeric colourant in an extruded food product during storage.J. Food Eng.20056736737110.1016/j.jfoodeng.2004.05.003
    [Google Scholar]
  162. WangY. LuZ. LvF. BieX. Study on microencapsulation of curcumin pigments by spray drying.Eur. Food Res. Technol.2009229339139610.1007/s00217‑009‑1064‑6
    [Google Scholar]
  163. WangY.F. ShaoJ.J. ZhouC.H. ZhangD.L. BieX.M. LvF.X. ZhangC. LuZ.X. Food preservation effects of curcumin microcapsules.Food Control201227111311710.1016/j.foodcont.2012.03.008
    [Google Scholar]
  164. WangY. LuZ. WuH. LvF. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens.Int. J. Food Microbiol.20091361717410.1016/j.ijfoodmicro.2009.09.001 19775769
    [Google Scholar]
  165. VitaglioneP. Barone LumagaR. FerracaneR. RadetskyI. MennellaI. SchettinoR. KoderS. ShimoniE. FoglianoV. Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients.J. Agric. Food Chem.201260133357336610.1021/jf204517k 22401804
    [Google Scholar]
  166. SharmaM. InbarajB.S. DikkalaP.K. SridharK. MudeA.N. NarsaiahK. Preparation of curcumin hydrogel beads for the development of functional kulfi: a tailoring delivery system.Foods202211218210.3390/foods11020182 35053917
    [Google Scholar]
  167. PlianbangchangP. TungpraditW. TiyaboonchaiW. Efficacy and safety of curcuminoids loaded solid lipid nanoparticles facial cream as an anti-aging agent.NUJST20131527381
    [Google Scholar]
  168. GanesanP. ChoiD.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.Int. J. Nanomed.2016111987200710.2147/IJN.S104701 27274231
    [Google Scholar]
  169. SuwannateepN. WanichwecharungruangS. HaagS.F. DevahastinS. GrothN. FluhrJ.W. LademannJ. MeinkeM.C. Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation.Eur. J. Pharm. Biopharm.201282348549010.1016/j.ejpb.2012.08.010 22954772
    [Google Scholar]
  170. KaurC.D. SarafS. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin.J. Cosmet. Dermatol.201110426026510.1111/j.1473‑2165.2011.00586.x 22151933
    [Google Scholar]
  171. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Collo. Surf.B Biointer.201411414414910.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  172. CoradiniK. LimaF.O. OliveiraC.M. ChavesP.S. AthaydeM.L. CarvalhoL.M. BeckR.C.R. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects.Eur. J. Pharm. Biopharm.201488117818510.1016/j.ejpb.2014.04.009 24780440
    [Google Scholar]
  173. FriedrichR.B. KannB. CoradiniK. OfferhausH.L. BeckR.C.R. WindbergsM. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin.Eur. J. Pharm. Sci.20157820421310.1016/j.ejps.2015.07.018 26215463
    [Google Scholar]
  174. BasnetP. HussainH. ThoI. Skalko-BasnetN. Liposomal delivery system enhances anti-inflammatory properties of curcumin.J. Pharm. Sci.2012101259860910.1002/jps.22785 21989712
    [Google Scholar]
  175. RogersN.M. StephensonM.D. KitchingA.R. HorowitzJ.D. CoatesP.T.H. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen‐presenting cells.Br. J. Pharmacol.2012166119420910.1111/j.1476‑5381.2011.01590.x 21745189
    [Google Scholar]
  176. WitikaB.A. MakoniP.A. MatafwaliS.K. MweetwaL.L. ShandeleG.C. WalkerR.B. Enhancement of biological and pharmacological properties of an encapsulated polyphenol: Curcumin.Molecules20212614424410.3390/molecules26144244 34299519
    [Google Scholar]
  177. WangX. JiangY. WangY.W. HuangM.T. HoC.T. HuangQ. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions.Food Chem.2008108241942410.1016/j.foodchem.2007.10.086 26059118
    [Google Scholar]
  178. ChenP. ZhangH. ChengS. ZhaiG. ShenC. Development of curcumin loaded nanostructured lipid carrier based thermosensitive] in situ gel for dermal delivery. CollO. Surf. A Physicochem.Eng. Asp.201650635636210.1016/j.colsurfa.2016.06.054
    [Google Scholar]
  179. Sadeghi GhadiZ. EbrahimnejadP. Curcumin entrapped hyaluronan containing niosomes: preparation, characterisation and in vitro/in vivo evaluation.J. Microencapsul.201936216917910.1080/02652048.2019.1617360 31104531
    [Google Scholar]
  180. MancaM.L. CastangiaI. ZaruM. NácherA. ValentiD. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring.Biomaterials20157110010910.1016/j.biomaterials.2015.08.034 26321058
    [Google Scholar]
  181. KianvashN. BahadorA. PourhajibagherM. GhafariH. NikouiV. RezayatS.M. DehpourA.R. PartoazarA. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects.Drug Deliv. Transl. Res.20177565466310.1007/s13346‑017‑0405‑4 28707264
    [Google Scholar]
  182. LiuC.H. HuangH.Y. In vitro anti-propionibacterium activity by curcumin containing vesicle system.Chem. Pharm. Bull. (Tokyo)201361441942510.1248/cpb.c12‑01043 23546001
    [Google Scholar]
  183. KonrádsdóttirF. OgmundsdóttirH. SigurdssonV. LoftssonT. Drug targeting to the hair follicles: a cyclodextrin-based drug delivery.AAPS PharmSciTech200910126626910.1208/s12249‑009‑9205‑6 19280346
    [Google Scholar]
  184. JungS. OtbergN. ThiedeG. RichterH. SterryW. PanznerS. LademannJ. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles.J. Invest. Dermatol.200612681728173210.1038/sj.jid.5700323 16645589
    [Google Scholar]
  185. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomed.2016112279230410.2147/IJN.S105016 27307730
    [Google Scholar]
  186. El-MahdyM. HassanA. El-BadryM. El-GindyG. Performance of curcumin in nanosized carriers niosomes and ethosomes as potential anti-inflammatory delivery system for topical application. Bulletin of Pharmaceutical Sciences.Bullet. Pharma. Scie. Assiut2020431105122
    [Google Scholar]
  187. Jin-guangC. Preparation of curcumin ethosomes.Afr. J. Pharm. Pharmacol.20137312246225110.5897/AJPP12.435
    [Google Scholar]
  188. MadhaviB.B. VennelaK.S. MasanaP. MadipojuB. Enhanced transdermal drug penetration of curcumin via ethosomes.Malays. J. Pharm. Sci.20131114958
    [Google Scholar]
  189. GunjanJ. SwarnlataS. Topical delivery of curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles.J. Pharm. Drug Deliv. Res.201431
    [Google Scholar]
  190. GuoT. LuJ. FanY. ZhangY. YinS. ShaX. FengN. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis.Int. J. Pharm.202160412076210.1016/j.ijpharm.2021.120762 34082000
    [Google Scholar]
  191. ZhangY. XiaQ. LiY. HeZ. LiZ. GuoT. WuZ. FengN. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin.Theranostics201991486410.7150/thno.29715 30662553
    [Google Scholar]
  192. PartoazarA. KianvashN. DarvishiM. NasoohiS. RezayatS. BahadorA. Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat.Drug Res.2016661266066510.1055/s‑0042‑114034 27626605
    [Google Scholar]
  193. AilioaieL.M. LitscherG. Curcumin and photobiomodulation in chronic viral hepatitis and hepatocellular carcinoma.Int. J. Mol. Sci.20202119715010.3390/ijms21197150 32998270
    [Google Scholar]
  194. PanM.H. ChangW.L. Lin-ShiauS.Y. HoC.T. LinJ.K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells.J. Agric. Food Chem.20014931464147410.1021/jf001129v 11312881
    [Google Scholar]
  195. DesaiS.J. PrickrilB. RasoolyA. Mechanisms of phytonutrient modulation of Cyclooxygenase-2 (COX-2) and inflammation related to cancer.Nutr. Cancer201870335037510.1080/01635581.2018.1446091 29578814
    [Google Scholar]
  196. SquiresM.S. HudsonE.A. HowellsL. SaleS. HoughtonC.E. JonesJ.L. FoxL.H. DickensM. PrigentS.A. MansonM.M. Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells.Biochem. Pharmacol.200365336137610.1016/S0006‑2952(02)01517‑4 12527329
    [Google Scholar]
  197. XiaQ. XuM. ZhangP. LiuL. MengX. DongL. Therapeutic potential of autophagy in glioblastoma treatment with phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway inhibitors.Front. Oncol.20201057290410.3389/fonc.2020.572904 33123479
    [Google Scholar]
  198. LiB. TakedaT. TsuijiK. WongT.F. TadakawaM. KondoA. NagaseS. YaegashiN. Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells.Int. J. Gynecol. Cancer201323580380810.1097/IGC.0b013e31828c9581 23532091
    [Google Scholar]
  199. PaolinoD. VeroA. CoscoD. PecoraT.M.G. CiancioloS. FrestaM. PignatelloR. Improvement of Oral Bioavailability of Curcumin upon Microencapsulation with Methacrylic Copolymers.Front. Pharmacol.2016748510.3389/fphar.2016.00485 28066239
    [Google Scholar]
  200. ChenY. LuY. LeeR.J. XiangG. Nano encapsulated curcumin: and its potential for biomedical applications.Int. J. Nanomedicine2020153099312010.2147/IJN.S210320 32431504
    [Google Scholar]
  201. PrasadC. BhatiaE. BanerjeeR. Curcumin encapsulated lecithin nanoemulsions: an oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor.Sci. Rep.2020101858710.1038/s41598‑020‑65468‑1 32444829
    [Google Scholar]
  202. El-SaadonyM.T. YangT. KormaS.A. SitohyM. Abd El-MageedT.A. SelimS. Al JaouniS.K. SalemH.M. MahmmodY. SolimanS.M. Mo’menS.A.A. MosaW.F.A. El-WafaiN.A. Abou-AlyH.E. SitohyB. Abd El-HackM.E. El-TarabilyK.A. SaadA.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review.Front. Nutr.20239104025910.3389/fnut.2022.1040259 36712505
    [Google Scholar]
  203. ApiratikulN. PenglongT. SuksenK. SvastiS. ChairoungduaA. YingyongnarongkulB. In vitro delivery of curcumin with cholesterol-based cationic liposomes.Bioorg. Khim.201339449750310.7868/S0132342313030032 24707732
    [Google Scholar]
  204. HardwickJ. TaylorJ. MehtaM. SatijaS. PaudelK.R. HansbroP.M. ChellappanD.K. BebawyM. DuaK. Targeting cancer using curcumin encapsulated vesicular drug delivery Systems.Curr. Pharm. Des.202127121410.2174/18734286MTA4dNTgg2 32723255
    [Google Scholar]
  205. ZhangL. ManS. QiuH. LiuZ. ZhangM. MaL. GaoW. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin.Environ. Toxicol. Pharmacol.201648313810.1016/j.etap.2016.09.021 27716533
    [Google Scholar]
  206. Sahab-NegahS. AriakiaF. Jalili-NikM. AfshariA.R. SalehiS. SaminiF. RajabzadehG. GorjiA. Curcumin loaded in niosomal nanoparticles improved the antitumor effects of free curcumin on glioblastoma stem-like cells: An In vitro study.Mol. Neurobiol.20205783391341110.1007/s12035‑020‑01922‑5 32430842
    [Google Scholar]
  207. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: Biological activities and modern pharmaceutical forms.Antibiotics202211213510.3390/antibiotics11020135 35203738
    [Google Scholar]
  208. ZhangZ. JiangM. FangJ. YangM. ZhangS. YinY. LiD. MaoL. FuX. HouY. FuX. FanC. SunB. Enhanced therapeutic potential of nanocurcumin against subarachnoid hemorrhage-induced blood‒brain barrier disruption through inhibition of inflammatory response and oxidative stress.Mol. Neurobiol.201754111410.1007/s12035‑015‑9635‑y 26708209
    [Google Scholar]
  209. DendeC. MeenaJ. NagarajanP. NagarajV.A. PandaA.K. PadmanabanG. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria.Sci. Rep.2017711006210.1038/s41598‑017‑10672‑9 28855623
    [Google Scholar]
  210. WangW. ZhuR. XieQ. LiA. XiaoY. LiK. LiuH. WangS. CuiD. WangS. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles.Int. J. Nanomedicine201273667367710.2147/IJN.S30428 22888226
    [Google Scholar]
  211. MengN. GongY. ZhangJ. MuX. SongZ. FengR. ZhangH. A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice.J. Biomater. Appl.201933794695410.1177/0885328218815328 30541364
    [Google Scholar]
  212. MimcheP.N. TaramelliD. VivasL. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria.Malar. J.201110S1S1010.1186/1475‑2875‑10‑S1‑S10 21411011
    [Google Scholar]
  213. Martí Coma-CrosE. BioscaA. LanteroE. MancaM.L. CaddeoC. GutiérrezL. RamírezM. Borgheti-CardosoL.N. ManconiM. Fernàndez-BusquetsX. Antimalarial activity of orally administered curcumin incorporated in eudragit®-containing liposomes.Int. J. Mol. Sci.2018195136110.3390/ijms19051361 29734652
    [Google Scholar]
  214. AkhtarF. RizviM.M.A. KarS.K. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice.Biotechnol. Adv.201230131032010.1016/j.biotechadv.2011.05.009 21619927
    [Google Scholar]
  215. KurupV.P. BarriosC.S. RajuR. JohnsonB.D. LevyM.B. FinkJ.N. Immune response modulation by curcumin in a latex allergy model.Clin. Mol. Allergy20075111210.1186/1476‑7961‑5‑1 17254346
    [Google Scholar]
  216. ZhuT. ChenZ. ChenG. WangD. TangS. DengH. WangJ. LiS. LanJ. TongJ. LiH. DengX. ZhangW. SunJ. TuY. LuoW. LiC. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPAR γ -Dependent NF - κ b signaling pathway in vivo and in vitro.Mediators Inflamm.2019201911510.1155/2019/4927430 31073274
    [Google Scholar]
  217. WongJ-Y. Yin NgZ. MehtaM. ShuklaS.D. PanneerselvamJ. MadheswaranT. GuptaG. NegiP. KumarP. PillayV. HsuA. HansbroN.G. WarkP. BebawyM. HansbroP.M. DuaK. ChellappanD.K. Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: an in vitro study.Nanomedicine202015302955297010.2217/nnm‑2020‑0260 33252322
    [Google Scholar]
  218. ParkJ.Y. ChuG.E. ParkS. ParkC. AryalS. KangW.J. ChoW.G. KeyJ. Therapeutic efficacy of curcumin enhanced by microscale discoidal polymeric particles in a murine asthma model.Pharmaceutics202012873910.3390/pharmaceutics12080739 32781576
    [Google Scholar]
  219. WangW. ZhuR. XieQ. LiA. XiaoY. LiK. LiuH. WangS. CuiD. WangS. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles.Int. J. Nanomed.201273667367710.2147/IJN.S30428 22888226
    [Google Scholar]
  220. SalehiB. Del Prado-AudeloM.L. CortésH. Leyva-GómezG. Stojanović-RadićZ. SinghY.D. PatraJ.K. DasG. MartinsN. MartorellM. Sharifi-RadM. ChoW.C. Sharifi-RadJ. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases.J. Clin. Med.20209374610.3390/jcm9030746 32164244
    [Google Scholar]
  221. PillaiS.C. BorahA. LeM.N.T. KawanoH. HasegawaK. KumarD.S. Co-delivery of curcumin and bioperine via plga nanoparticles to prevent atherosclerotic foam cell formation.Pharmaceutics2021139142010.3390/pharmaceutics13091420 34575496
    [Google Scholar]
  222. J BV.K. RamakrishnaS. MadhusudhanB. Preparation and characterisation of atorvastatin and curcumin-loaded chitosan nanoformulations for oral delivery in atherosclerosis.IET NanobiotecH.20171119610310.1049/iet‑nbt.2016.0062 28476969
    [Google Scholar]
  223. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. BarbalhoS.M. HaberJ.F.S. SinatoraR.V. DetregiachiC.R.P. GirioR.J.S. BuchaimD.V. Cincotto dos Santos BuenoP. The effects of curcumin on diabetes mellitus: A systematic review.Front. Endocrinol.20211266944810.3389/fendo.2021.669448 34012421
    [Google Scholar]
  224. ChauhanP. MahajanS. PrasadG.B.K.S. Preparation and characterization of CS-ZnO-NC nanoparticles for imparting anti-diabetic activities in experimental diabetes.J. Drug Deliv. Sci. Technol.20195273874710.1016/j.jddst.2019.05.020
    [Google Scholar]
  225. Shamsi-GoushkiA. MortazaviZ. MirshekarM.A. MohammadiM. Moradi-KorN. Jafari-MaskouniS. ShahrakiM. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats.Diabetes Metab. Syndr. Obes.2020132337234610.2147/DMSO.S247351 32753918
    [Google Scholar]
  226. GoudaW. HafizN.A. MageedL. AlazzouniA.S. KhalilW.K.B. AfifyM. AbdelmaksoudM.D.E. Effects of nano-curcumin on gene expression of insulin and insulin receptor.Bull. Natl. Res. Cent.201943112810.1186/s42269‑019‑0164‑0
    [Google Scholar]
  227. TongF. ChaiR. JiangH. DongB. In vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles.Int. J. Nanomed.2018131945196210.2147/IJN.S153763 29662310
    [Google Scholar]
  228. GramaC.N. SuryanarayanaP. PatilM.A. RaghuG. BalakrishnaN. KumarM.N.V.R. ReddyG.B. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.PLoS One2013810e7821710.1371/journal.pone.0078217 24155984
    [Google Scholar]
  229. YogarajV. GauthamG. AkshataC. ManikandanR. MuruganE. ArumugamM. Quaternary ammonium poly (amidoamine) dendrimeric encapsulated nanocurcumin efficiently prevents cataract of rat pups through regulation of pro-inflammatory gene expression.J. Drug Deliv. Sci. Technol.20205810178510.1016/j.jddst.2020.101785
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X330008240827052241
Loading
/content/journals/rafna/10.2174/012772574X330008240827052241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test