Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

The link between diet and the progression of Multiple Sclerosis (MS) is a topic of growing interest and investigation within the medical community. This review explored the mechanisms through which dietary interventions can impact the course of MS and shape the clinical outcomes and quality of life of individuals with the disease. By synthesizing current knowledge from clinical studies and observational research, the review aimed to provide insights into the role of diet in managing MS. A comprehensive literature search was conducted, focusing on the effect of diet and dietary patterns on the progression of MS. Key findings indicated that individuals with higher diet quality exhibit reduced disability levels and lower symptom severity, emphasizing the importance of maintaining a healthy diet and adopting a holistic, healthy lifestyle in managing MS. The review also delved into the potential impact of macronutrients, vitamins, and minerals on the progression of MS, highlighting the importance of adequate nutrient intake for optimal health outcomes. Additionally, the study explored the association between dietary intake variations and the severity of MS, suggesting that further investigation is needed to understand the potential implications of nutrient deficiencies in MS patients. Overall, the review serves as a valuable resource for healthcare professionals and individuals living with MS, providing evidence-based dietary approaches that may help optimize health outcomes and mitigate the burden of the disease. It also calls for future research directions in the critical area of dietary management of MS to enhance our understanding and improve patient care.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X325602240910075218
2024-10-21
2025-11-16
Loading full text...

Full text loading...

References

  1. AlshanqitiM. AlotaibiF. AlahmedJ. AlrehailiM. AlalwiS. MansuriD.F. Prevalence of multiple sclerosis in Saudi Arabia.Int. J. Adv. Res.20164121581160010.21474/IJAR01/2560
    [Google Scholar]
  2. Atlas of MS; Mapping multiple sclerosis around the world.2023Available from: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms
    [Google Scholar]
  3. GabyA. Multiple Sclerosis.Glob. Adv. Health Med.201321505610.7453/gahmj.2013.2.1.009 24381825
    [Google Scholar]
  4. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.201719111010.22074/cellj.2016.4867 28367411
    [Google Scholar]
  5. MagyariM. Koch-HenriksenN. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis.J. Neurol. Neurosurg. Psychiatry202293771672210.1136/jnnp‑2022‑328994 35393340
    [Google Scholar]
  6. NgoS.T. SteynF.J. McCombeP.A. Gender differences in autoimmune disease.Front. Neuroendocrinol.201435334736910.1016/j.yfrne.2014.04.004 24793874
    [Google Scholar]
  7. GorisA. VandeberghM. McCauleyJ.L. SaarelaJ. CotsapasC. Genetics of multiple sclerosis: Lessons from polygenicity.Lancet Neurol.202221983084210.1016/S1474‑4422(22)00255‑1 35963264
    [Google Scholar]
  8. BarrieW. YangY. Irving-PeaseE.K. AttfieldK.E. ScorranoG. JensenL.T. ArmenA.P. DimopoulosE.A. SternA. Refoyo-MartinezA. PearsonA. RamsøeA. GaunitzC. DemeterF. JørkovM.L.S. MøllerS.B. SpringborgB. KlassenL. HyldgårdI.M. WickmannN. VinnerL. KorneliussenT.S. AllentoftM.E. SikoraM. KristiansenK. RodriguezS. NielsenR. IversenA.K.N. LawsonD.J. FuggerL. WillerslevE. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations.Nature2024625799432132810.1038/s41586‑023‑06618‑z 38200296
    [Google Scholar]
  9. MahadD.H. TrappB.D. LassmannH. Pathological mechanisms in progressive multiple sclerosis.Lancet Neurol.201514218319310.1016/S1474‑4422(14)70256‑X 25772897
    [Google Scholar]
  10. SinghS. DallengaT. WinklerA. RoemerS. MaruschakB. SiebertH. BrückW. StadelmannC. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.J. Neuroinflammation20171415710.1186/s12974‑017‑0831‑8 28302146
    [Google Scholar]
  11. KammaE. LasisiW. LibnerC. NgH.S. PlemelJ.R. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics.J. Neuroinflammation20221914510.1186/s12974‑022‑02408‑y 35144628
    [Google Scholar]
  12. ParrillaG.E. GuptaV. WallR.V. SalkarA. BasavarajappaD. MirzaeiM. ChitranshiN. GrahamS.L. YouY. The role of myelin in neurodegeneration: Implications for drug targets and neuroprotection strategies.Rev. Neurosci.202435327129210.1515/revneuro‑2023‑0081 37983528
    [Google Scholar]
  13. DisantoG. MorahanJ.M. BarnettM.H. GiovannoniG. RamagopalanS.V. The evidence for a role of B cells in multiple sclerosis.Neurology2012781182383210.1212/WNL.0b013e318249f6f0 22411958
    [Google Scholar]
  14. ManousakiD. RichardsJ.B. Vitamin D deficiency is an etiological factor for MS – Yes.Mult. Scler.201925563763910.1177/1352458518809301 30499750
    [Google Scholar]
  15. HuangJ. KockumI. StridhP. Trends in the environmental risks associated with earlier onset in multiple sclerosis.Mult. Scler. Relat. Disord.20226810425010.1016/j.msard.2022.104250 36544313
    [Google Scholar]
  16. HuangW.J. ChenW.W. ZhangX. Multiple sclerosis: Pathology, diagnosis and treatments.Exp. Ther. Med.20171363163316610.3892/etm.2017.4410 28588671
    [Google Scholar]
  17. RiccioP. RossanoR. Nutrition facts in multiple sclerosis.ASN Neuro20157110.1177/1759091414568185 25694551
    [Google Scholar]
  18. StoiloudisP. KesidouE. BakirtzisC. SintilaS.A. KonstantinidouN. BozikiM. GrigoriadisN. The role of diet and interventions on multiple sclerosis: A review.Nutrients2022146115010.3390/nu14061150 35334810
    [Google Scholar]
  19. BroosJ.Y. van der BurgtR.T.M. KoningsJ. RijnsburgerM. WerzO. de VriesH.E. GieraM. KooijG. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: Fueling or dampening disease progression?J. Neuroinflammation20242112110.1186/s12974‑023‑02981‑w 38233951
    [Google Scholar]
  20. AlAmmarW.A. AlbeeshF.H. IbrahimL.M. AlgindanY.Y. YamaniL.Z. KhattabR.Y. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review.Nutr. Neurosci.202124756957910.1080/1028415X.2019.1659560 31462182
    [Google Scholar]
  21. KhattabR. AlgindanY. Chapter 28 - Dietary management of multiple sclerosis.Nutrition in Neurological Disorders.2023Academic Press52754310.1016/B978‑0‑323‑89834‑8.00045‑3
    [Google Scholar]
  22. KairallaM.A. AburasA.A. AlshelmaniM.I. Effect of diet supplemented with graded levels of ginger (Zingiber officinale) powder on growth performance, hematological parameters, and serum lipids of broiler chickens.Arch. Razi Inst.20227762089209510.22092/ARI.2022.359958.2524 37274916
    [Google Scholar]
  23. KairallaM. AlshelmaniM. AburasA. Effect of diet supplemented with graded levels of garlic (Allium sativum L.) powder on growth performance, carcass characteristics, blood hematology and biochemistry of broiler.Open Vet. J.202212559560110.5455/OVJ.2022.v12.i5.1 36589396
    [Google Scholar]
  24. Majdi AbdelfarajK. Mohamed IdrisA. MohamedM. I. Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens.Arch. Razi Inst.20237851647165610.22092/ARI.2023.78.5.1647 38590686
    [Google Scholar]
  25. GuglielmettiM. GrossoG. FerrarisC. BergamaschiR. TavazziE. La MalfaA. WahidahH.A.Q. TagliabueA. Ultra-processed foods consumption is associated with multiple sclerosis severity.Front. Neurol.202314108672010.3389/fneur.2023.1086720 36761349
    [Google Scholar]
  26. Pivovarova-RamichO. ZimmermannH.G. PaulF. Multiple sclerosis and circadian rhythms: Can diet act as a treatment?Acta Physiol.20232374e1393910.1111/apha.13939 36700353
    [Google Scholar]
  27. BagurM.J. MurciaM.A. Jiménez-MonrealA.M. TurJ.A. BibiloniM.M. AlonsoG.L. Martínez-ToméM. Influence of diet in multiple sclerosis: A systematic review.Adv. Nutr.20178346347210.3945/an.116.014191 28507011
    [Google Scholar]
  28. SchwarzS. LewelingH. Multiple sclerosis and nutrition.Mult. Scler.2005111243210.1191/1352458505ms1119oa 15732263
    [Google Scholar]
  29. ZhaoS. HanT. PeiX. SongY. ZhangY. LiuL. WangX. HouW. SunC. The association of diet carbohydrates consumption with cognitive function among US older adults modification by daily fasting duration.Front. Aging Neurosci.20221499100710.3389/fnagi.2022.991007 36225887
    [Google Scholar]
  30. RiccioP. RossanoR. LaroccaM. TrottaV. MennellaI. VitaglioneP. EttorreM. GraveriniA. De SantisA. Di MonteE. ConiglioM.G. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study.Exp. Biol. Med.2016241662063510.1177/1535370215618462 26785711
    [Google Scholar]
  31. FitzgeraldK.C. TyryT. SalterA. CofieldS.S. CutterG. FoxR. MarrieR.A. Diet quality is associated with disability and symptom severity in multiple sclerosis.Neurology2018901e1e1110.1212/WNL.0000000000004768 29212827
    [Google Scholar]
  32. MartinK. CofieldS.S. CrossA.H. GossA.M. RajiC.A. RinkerJ.R. WuG.F. BlairJ. FuchsA. GhezziL. GreenK. PaceF. PastoriG. TaylorM.G. PiccioL. WingoB.C. Functional outcomes of diets in multiple sclerosis (FOOD for MS): Protocol for a parallel arm randomized feeding trial for low glycemic load and calorie restriction.Contemp. Clin. Trials202414310758410.1016/j.cct.2024.107584 38821260
    [Google Scholar]
  33. HawkinsM.A.W. KeirnsN.G. HelmsZ. Carbohydrates and cognitive function.Curr. Opin. Clin. Nutr. Metab. Care201821430230710.1097/MCO.0000000000000471 29851417
    [Google Scholar]
  34. PorterL. ShoushtarizadehA. JelinekG.A. BrownC.R. LimC.K. de LiveraA.M. JacobsK.R. WeilandT.J. Metabolomic biomarkers of multiple sclerosis: A systematic review.Front. Mol. Biosci.2020757413310.3389/fmolb.2020.574133 33381517
    [Google Scholar]
  35. MurgiaF. LoreficeL. NotoA. SpadaM. FrauJ. FenuG. CogheG. GaglianoA. AtzoriL. CoccoE. Metabolomic changes in patients affected by multiple sclerosis and treated with fingolimod.Metabolites202313342810.3390/metabo13030428 36984868
    [Google Scholar]
  36. PritzkerL.B. JoshiS. GowanJ.J. HarauzG. MoscarelloM.A. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D.Biochemistry200039185374538110.1021/bi9925569 10820008
    [Google Scholar]
  37. MurgiaF. LoreficeL. PoddigheS. FenuG. SecciM.A. MarrosuM.G. CoccoE. AtzoriL. Multi-platform characterization of cerebrospinal fluid and serum metabolome of patients affected by relapsing–remitting and primary progressive multiple sclerosis.J. Clin. Med.20209386310.3390/jcm9030863 32245176
    [Google Scholar]
  38. RajdaC. MajláthZ. PukoliD. VécseiL. Kynurenines and multiple sclerosis: The dialogue between the immune system and the central nervous system.Int. J. Mol. Sci.2015168182701828210.3390/ijms160818270 26287161
    [Google Scholar]
  39. LoreficeL. MurgiaF. FenuG. FrauJ. CogheG. MurruM.R. TranquilliS. ViscontiA. MarrosuM.G. AtzoriL. CoccoE. Assessing the metabolomic profile of multiple sclerosis patients treated with interferon beta 1a by 1H-NMR spectroscopy.Neurotherapeutics201916379780710.1007/s13311‑019‑00721‑8 30820880
    [Google Scholar]
  40. CruzatV.F. KrauseM. NewsholmeP. Amino acid supplementation and impact on immune function in the context of exercise.J. Int. Soc. Sports Nutr.20141116110.1186/s12970‑014‑0061‑8 25530736
    [Google Scholar]
  41. YangL. ChuZ. LiuM. ZouQ. LiJ. LiuQ. WangY. WangT. XiangJ. WangB. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy.J. Hematol. Oncol.20231615910.1186/s13045‑023‑01453‑1 37277776
    [Google Scholar]
  42. ZielińskaM. MichońskaI. Macronutrients, vitamins and minerals in the diet of multiple sclerosis patients.Postepy Psychiatr. Neurol.202231312813710.5114/ppn.2022.121730 37082222
    [Google Scholar]
  43. BahrL.S. BockM. LiebscherD. Bellmann-StroblJ. FranzL. PrüßA. SchumannD. PiperS.K. KesslerC.S. SteckhanN. MichalsenA. PaulF. MählerA. Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a randomized controlled study.Trials2020211310.1186/s13063‑019‑3928‑9 31898518
    [Google Scholar]
  44. CalderP.C. Omega-3 fatty acids and inflammatory processes: From molecules to man.Biochem. Soc. Trans.20174551105111510.1042/BST20160474 28900017
    [Google Scholar]
  45. BishtB. DarlingW.G. GrossmannR.E. ShivapourE.T. LutgendorfS.K. SnetselaarL.G. HallM.J. ZimmermanM.B. WahlsT.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue.J. Altern. Complement. Med.201420534735510.1089/acm.2013.0188 24476345
    [Google Scholar]
  46. Weinstock-GuttmanB. BaierM. ParkY. FeichterJ. Lee-KwenP. GallagherE. VenkatramanJ. MeksawanK. DeinehertS. PendergastD. AwadA.B. RamanathanM. MunschauerF. RudickR. Low fat dietary intervention with ω-3 fatty acid supplementation in multiple sclerosis patients.Prostaglandins Leukot. Essent. Fatty Acids200573539740410.1016/j.plefa.2005.05.024 16099630
    [Google Scholar]
  47. SedighiyanM. DjafarianK. DabiriS. AbdolahiM. Shab-BidarS. The effects of omega-3 supplementation on the expanded disability status scale and inflammatory cytokines in multiple sclerosis patients: A systematic review and meta-analysis.CNS Neurol. Disord. Drug Targets201918752352910.2174/1871527318666190516083008 31096898
    [Google Scholar]
  48. KimJ.S. Soto-DiazK. BinghamT.W. SteelmanA.J. DasA. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model.J. Biol. Chem.2023299210288610.1016/j.jbc.2023.102886 36626985
    [Google Scholar]
  49. Ghasemi DarestaniN. BahramiA. MozafarianM.R. Esmalian AfyouniN. AkhavanfarR. AboualiR. MoradianA. LoraseS. Association of polyunsaturated fatty acid intake on inflammatory gene expression and multiple sclerosis: A systematic review and meta-analysis.Nutrients20221421462710.3390/nu14214627 36364885
    [Google Scholar]
  50. PoggioliR. HiraniK. JoganiV.G. RicordiC. Modulation of inflammation and immunity by omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders.Eur. Rev. Med. Pharmacol. Sci.202327157380740010.26355/eurrev_202308_33310 37606147
    [Google Scholar]
  51. HoffmanK. DoyleW.J. SchumacherS.M. Ochoa-RepárazJ. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis.Front. Nutr.202310114674810.3389/fnut.2023.1146748 37063324
    [Google Scholar]
  52. TsogkaA. KitsosD.K. StavrogianniK. GiannopapasV. ChasiotisA. ChristouliN. TsivgoulisG. TzartosJ.S. GiannopoulosS. Modulating the gut microbiome in multiple sclerosis management: A systematic review of current interventions.J. Clin. Med.20231224761010.3390/jcm12247610 38137679
    [Google Scholar]
  53. AbdullaN.R. LohT.C. FooH.L. AlshelmaniM.I. AkitH. Influence of dietary ratios of n-6: n-3 fatty acid on gene expression, fatty acid profile in liver and breast muscle tissues, serum lipid profile, and immunoglobulin in broiler chickens.J. Appl. Poult. Res.201928245446910.3382/japr/pfz008
    [Google Scholar]
  54. SimopoulosAP The omega-6/omega-3 fatty acid ratio: Health implications.Nutrition – Santé201017526727510.1051/ocl.2010.0325
    [Google Scholar]
  55. DiNicolantonioJ.J. O’KeefeJ. The importance of maintaining a low omega-6/omega-3 ratio for reducing the risk of autoimmune diseases, asthma, and allergies.Mo. Med.20211185453459 34658440
    [Google Scholar]
  56. BrennanM.S. PatelH. AllaireN. Effects of a low-fat plant-based diet in subjects with relapsing multiple sclerosis (MS): A pilot study.Mult. Scler. Relat. Disord.20215510310510.1016/j.msard.2021.103105
    [Google Scholar]
  57. KousparouC. FyrillaM. StephanouA. PatrikiosI. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as bioactive molecules in neurodegenerative diseases.Int. J. Mol. Sci.202324131071710.3390/ijms241310717 37445890
    [Google Scholar]
  58. Dere YelkenH. ElciM.P. TurkerP.F. DemirkayaS. Omega fatty acid ratios and neurodegeneration in a healthy environment.Prostaglandins Other Lipid Mediat.202417010679910.1016/j.prostaglandins.2023.10679937977351
    [Google Scholar]
  59. Ramirez-RamirezV. Macias-IslasM.A. OrtizG.G. Pacheco-MoisesF. Torres-SanchezE.D. Sorto-GomezT.E. Cruz-RamosJ.A. Orozco-AviñaG. Celis de la RosaA.J. Efficacy of fish oil on serum of TNF α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b.Oxid. Med. Cell. Longev.201320131810.1155/2013/709493 23861993
    [Google Scholar]
  60. JelinekG.A. HadgkissE.J. WeilandT.J. PereiraN.G. MarckC.H. van der MeerD.M. Association of fish consumption and omega 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis.Int. J. Neurosci.20131231179280110.3109/00207454.2013.803104 23713615
    [Google Scholar]
  61. Sorto-GomezT.E. OrtizG.G. Pacheco-MoisesF.P. Torres-SanchezE.D. Ramirez-RamirezV. Macias-IslasM.A. de la RosaA.C. Velázquez-BrizuelaI.E. Effect of fish oil on glutathione redox system in multiple sclerosis.Am. J. Neurodegener. Dis.201652145151 27335704
    [Google Scholar]
  62. SwankR.L. DuganB.B. Effect of low saturated fat diet in early and late cases of multiple sclerosis.Lancet19903368706373910.1016/0140‑6736(90)91533‑G 1973220
    [Google Scholar]
  63. HadgkissE.J. JelinekG.A. WeilandT.J. PereiraN.G. MarckC.H. van der MeerD.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis.Nutr. Neurosci.201518312513610.1179/1476830514Y.0000000117 24628020
    [Google Scholar]
  64. SwankR.L. GoodwinJ. Review of MS patient survival on a Swank low saturated fat diet.Nutrition200319216116210.1016/S0899‑9007(02)00851‑1 12591551
    [Google Scholar]
  65. YadavV. MarracciG. KimE. SpainR. CameronM. OversS. RiddehoughA. LiD.K.B. McDougallJ. LoveraJ. MurchisonC. BourdetteD. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial.Mult. Scler. Relat. Disord.20169809010.1016/j.msard.2016.07.001 27645350
    [Google Scholar]
  66. EspositoS. BonavitaS. SparacoM. GalloA. TedeschiG. The role of diet in multiple sclerosis: A review.Nutr. Neurosci.201821637739010.1080/1028415X.2017.1303016 28338444
    [Google Scholar]
  67. HoareS. LithanderF. van der MeiI. PonsonbyA.L. LucasR. ChapmanC. CoulthardA. DearK. DwyerT. KilpatrickT. LucasR.M. McMichaelT. PenderM.P. PonsonbyA-L. TaylorB. ValeryP.C. van der MeiI. WilliamsD. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study.Mult. Scler.201622788489210.1177/1352458515604380 26362904
    [Google Scholar]
  68. SharifiM.H. KeshaniP. SalehiA. JaladatA.M. MirzaeiZ. NiksereshtA. Association between multiple sclerosis and dietary patterns based on the traditional concept of food nature: A case-control study in Iran.BMC Neurol.202121145310.1186/s12883‑021‑02483‑3 34794406
    [Google Scholar]
  69. BozikiM.K. KesidouE. TheotokisP. MentisA.F.A. KarafoulidouE. MelnikovM. SviridovaA. RogovskiV. BoykoA. GrigoriadisN. Microbiome in multiple sclerosis: Where are we, what we know and do not know.Brain Sci.202010423410.3390/brainsci10040234 32295236
    [Google Scholar]
  70. WahlsT.L. ChenardC.A. SnetselaarL.G. Review of two popular eating plans within the multiple sclerosis community: Low saturated fat and modified paleolithic.Nutrients201911235210.3390/nu11020352 30736445
    [Google Scholar]
  71. KuchkuntlaA.R. ShahM. VelapatiS. GershuniV.M. RajjoT. NandaS. HurtR.T. MundiM.S. Ketogenic diet: An endocrinologist perspective.Curr. Nutr. Rep.20198440241010.1007/s13668‑019‑00297‑x 31705484
    [Google Scholar]
  72. CincottaM.C. EngelhardM.M. StankeyM. GoldmanM.D. Fatigue and fluid hydration status in multiple sclerosis: A hypothesis.Mult. Scler.201622111438144310.1177/1352458516663854 27542703
    [Google Scholar]
  73. KalnickaD. FranciscoA. SinghA. Hydration and cognitive function in multiple sclerosis: A systematic review.Mult. Scler. Int.20212021137613710.1155/2021/1376137
    [Google Scholar]
  74. KaniniaS. StuartC.M. GaleaI. Dehydration associates with lower urinary tract symptoms in progressive multiple sclerosis.Eur. J. Neurol.2024313e1617510.1111/ene.16175 38117533
    [Google Scholar]
  75. FrohmanT.C. CastroW. ShahA. CourtneyA. OrtstadtJ. DavisS.L. LoganD. AbrahamT. AbrahamJ. RemingtonG. TreadawayK. GravesD. HartJ. StuveO. LemackG. GreenbergB. FrohmanE.M. Symptomatic therapy in multiple sclerosis.Ther. Adv. Neurol. Disord.201142839810.1177/1756285611400658 21694806
    [Google Scholar]
  76. TamJ. GrossM.D. CheungA. MelvilleP.M. KimJ.M. WeissbartS.J. Fluid intake and urinary symptoms in patients with multiple sclerosis.J. Urol.202020461284128910.1097/JU.0000000000001309 32924823
    [Google Scholar]
  77. RamsaransingG.S.M. MellemaS.A. De KeyserJ. Dietary patterns in clinical subtypes of multiple sclerosis: An exploratory study.Nutr. J.2009813610.1186/1475‑2891‑8‑36 19664270
    [Google Scholar]
  78. Katz SandI. The role of diet in multiple sclerosis: Mechanistic connections and current evidence.Curr. Nutr. Rep.20187315016010.1007/s13668‑018‑0236‑z 30117071
    [Google Scholar]
  79. MoravejolahkamiA.R. PaknahadZ. ChitsazA. Association of dietary patterns with systemic inflammation, quality of life, disease severity, relapse rate, severity of fatigue and anthropometric measurements in MS patients.Nutr. Neurosci.2020231292093010.1080/1028415X.2019.1580831 30896320
    [Google Scholar]
  80. BromleyL. HorvathP.J. BennettS.E. Weinstock-GuttmanB. RayA.D. Impact of nutritional intake on function in people with mild-to-moderate multiple sclerosis.Int. J. MS Care20192111910.7224/1537‑2073.2017‑039 30833865
    [Google Scholar]
  81. Al-TemaimiR.A. AlroughaniR. Dietary factors associated with multiple sclerosis risk in kuwait.Int. J. Nutr. Pharmacol. Neurol. Dis.20221220020510.4103/ijnpnd.ijnpnd_13_22
    [Google Scholar]
  82. BrownR.B. Multiple sclerosis and sodium toxicity: Controversy and future directions for low-salt interventions.Sclerosis20231192110.3390/sclerosis1010003
    [Google Scholar]
  83. PugliattiM. People with MS should consume a low-salt diet – Commentary.Mult. Scler.201622141781178210.1177/1352458516669003 27609132
    [Google Scholar]
  84. FarezM.F. FiolM.P. GaitánM.I. QuintanaF.J. CorrealeJ. Sodium intake is associated with increased disease activity in multiple sclerosis.J. Neurol. Neurosurg. Psychiatry2015861263110.1136/jnnp‑2014‑307928 25168393
    [Google Scholar]
  85. ProbstY. MowbrayE. SvensenE. ThompsonK. A systematic review of the impact of dietary sodium on autoimmunity and inflammation related to multiple sclerosis.Adv. Nutr.201910590291010.1093/advances/nmz032 31079157
    [Google Scholar]
  86. McDonaldJ. GravesJ. WaldmanA. LotzeT. SchreinerT. BelmanA. GreenbergB. Weinstock-GuttmanB. AaenG. TillemaJ.M. HartJ. LuluS. NessJ. HarrisY. RubinJ. CandeeM. KruppL.B. GormanM. BensonL. RodriguezM. ChitnisT. MarS. BarcellosL.F. LaraiaB. RoseJ. RoalstadS. SimmonsT. CasperT.C. WaubantE. A case-control study of dietary salt intake in pediatric-onset multiple sclerosis.Mult. Scler. Relat. Disord.20166879210.1016/j.msard.2016.02.011 27063630
    [Google Scholar]
  87. FitzgeraldK.C. MungerK.L. HartungH.P. FreedmanM.S. MontalbánX. EdanG. WickleinE.M. RadueE.W. KapposL. PohlC. AscherioA. Sodium intake and multiple sclerosis activity and progression in BENEFIT.Ann. Neurol.2017821202910.1002/ana.24965 28556498
    [Google Scholar]
  88. ZostawaJ. AdamczykJ. SowaP. Adamczyk-SowaM. The influence of sodium on pathophysiology of multiple sclerosis.Neurol. Sci.201738338939810.1007/s10072‑016‑2802‑8 28078565
    [Google Scholar]
  89. DastoorpoorM. NabaviS.M. MajdinasabN. Zare JavidA. Ahmadi AngaliK. SeyedtabibM. A case–control study of drinking beverages and the risk of multiple sclerosis in Iran.J. Health Popul. Nutr.20234212210.1186/s41043‑023‑00364‑8 36959679
    [Google Scholar]
  90. Soda, sugar-sweetened beverages linked to more severe symptoms for people with multiple sclerosis.Available from: www.sciencedaily.com/releases/2019/03/190305162008.htm
  91. AscherioA. MungerK.L. WhiteR. KöchertK. SimonK.C. PolmanC.H. FreedmanM.S. HartungH.P. MillerD.H. MontalbánX. EdanG. BarkhofF. PleimesD. RadüE.W. SandbrinkR. KapposL. PohlC. Vitamin D as an early predictor of multiple sclerosis activity and progression.JAMA Neurol.201471330631410.1001/jamaneurol.2013.5993 24445558
    [Google Scholar]
  92. JayasingheM. PrathirajaO. KayaniA.M.A. JenaR. CalderaD. SilvaM.S. SinghalM. PierreJ.Jr The role of diet and gut microbiome in multiple sclerosis.Cureus2022149e2897510.7759/cureus.28975 36237764
    [Google Scholar]
  93. MehrabaniG. AminianS. MehrabaniG. RabieeM. Dietetic plans within the multiple sclerosis community: A review.Int. J. Nurs. Sci.2019411422
    [Google Scholar]
  94. TredinnickA.R. ProbstY.C. Evaluating the effects of dietary interventions on disease progression and symptoms of adults with multiple sclerosis: An umbrella review.Adv. Nutr.20201161603161510.1093/advances/nmaa063 32504530
    [Google Scholar]
  95. SchepiciG. SilvestroS. BramantiP. MazzonE. The gut microbiota in multiple sclerosis: An overview of clinical trials.Cell Transplant.201928121507152710.1177/0963689719873890 31512505
    [Google Scholar]
  96. ObeidR. McCaddonA. HerrmannW. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases.Clin. Chem. Lab. Med.200745121590160610.1515/CCLM.2007.356 18067446
    [Google Scholar]
  97. BitarafanS. HarirchianM-H. NafissiS. SahraianM.A. ToghaM. SiassiF. SaedisomeoliaA. AlipourE. MohammadpourN. ChamaryM. HonarvarN.M. Saboor-YaraghiA.A. Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients.Iran. J. Neurol.20141312832 24800044
    [Google Scholar]
  98. ChangJ.J. MackW.J. SaverJ.L. SanossianN. Magnesium: Potential roles in neurovascular disease.Front. Neurol.201455210.3389/fneur.2014.00052 24782823
    [Google Scholar]
  99. SochaK. KochanowiczJ. KarpińskaE. SoroczyńskaJ. JakoniukM. MariakZ. BorawskaM.H. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis.Nutr. J.20141316210.1186/1475‑2891‑13‑62 24943732
    [Google Scholar]
  100. SantangeloC. VarìR. ScazzocchioB. De SanctiP. GiovanniniC. D’ArchivioM. MasellaR. Antiinflammatory activity of extra virgin olive oil polyphenols: Which role in the prevention and treatment of immunemediated inflammatory diseases?Endocr. Metab. Immune Disord. Drug Targets2017181365010.2174/1871530317666171114114321 29141574
    [Google Scholar]
  101. LoonstraF.C. de RuiterL.R.J. SchoonheimM.M. MoraalB. StrijbisE.M.M. de JongB.A. UitdehaagB.M.J. The role of diet in multiple sclerosis onset and course: Results from a nationwide retrospective birth‐year cohort.Ann. Clin. Transl. Neurol.20231081268128310.1002/acn3.51788 37421227
    [Google Scholar]
  102. PekmezovicT.D. Kisic TepavcevicD.B. MesarosS.T. Dujmovic BasuroskiI.B. StojsavljevicN.S. DrulovicJ.S. Food and dietary patterns and multiple sclerosis: A case-control study in Belgrade (Serbia).Ital. J. Public Health200961818710.2427/5808
    [Google Scholar]
  103. SkovgaardL. TrénelP. WestergaardK. KnudsenA.K. Dietary patterns and their associations with symptom levels among people with multiple sclerosis: A real-world digital study.Neurol. Ther.20231241335135710.1007/s40120‑023‑00505‑5 37311967
    [Google Scholar]
  104. MohsenG. StroemerA. MayrA. KunsorgA. StoppeC. WittmannM. VeltenM. Effects of omega-3 fatty acids on postoperative inflammatory response: A systematic review and meta-analysis.Nutrients20231515341410.3390/nu15153414 37571352
    [Google Scholar]
  105. SerhanC.N. KrishnamoorthyS. RecchiutiA. ChiangN. Novel anti-inflammatory--pro-resolving mediators and their receptors.Curr. Top. Med. Chem.201111662964710.2174/1568026611109060629 21261595
    [Google Scholar]
  106. FengJ. ZhengY. GuoM. AresI. MartínezM. Lopez-TorresB. Martínez-LarrañagaM.R. WangX. AnadónA. MartínezM.A. Oxidative stress, the blood–brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants.Acta Pharm. Sin. B202313103988402410.1016/j.apsb.2023.07.010 37799389
    [Google Scholar]
  107. PĂdureanuR. AlbuC.V. PĂdureanuV. BugĂA.M. Oxidative stress and vitamin D as predictors in multiple sclerosis.Curr. Health Sci. J.202046437137810.12865/CHSJ.46.04.07 33717511
    [Google Scholar]
  108. ZhangS.Y. GuiL.N. LiuY.Y. ShiS. ChengY. Oxidative stress marker aberrations in multiple sclerosis: A meta-analysis study.Front. Neurosci.20201482310.3389/fnins.2020.00823 32982663
    [Google Scholar]
  109. BellaviteP. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action.Antioxidants202312228010.3390/antiox12020280 36829840
    [Google Scholar]
  110. AmiriB. Yazdani TabriziM. NaziriM. MoradiF. ArzaghiM. ArchinI. BehaeinF. Bagheri PourA. GhannadikhoshP. ImanparvarS. Akhtari KohneshahriA. Sanaye AbbasiA. ZerangianN. AlijanzadehD. GhayyemH. AzizinezhadA. Ahmadpour YoushanluiM. PoudinehM. Neuroprotective effects of flavonoids: Endoplasmic reticulum as the target.Front. Neurosci.202418134815110.3389/fnins.2024.1348151 38957188
    [Google Scholar]
  111. NeyL.M. WipplingerM. GrossmannM. EngertN. WegnerV.D. MosigA.S. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol.202313323001410.1098/rsob.23001436977462
    [Google Scholar]
  112. BronziniM. MaglioneA. RossoR. MattaM. MasuzzoF. RollaS. ClericoM. Feeding the gut microbiome: Impact on multiple sclerosis.Front. Immunol.202314117601610.3389/fimmu.2023.1176016 37304278
    [Google Scholar]
  113. YadavS.K. ItoK. Dhib-JalbutS. Interaction of the gut microbiome and immunity in multiple sclerosis: Impact of diet and immune therapy.Int. J. Mol. Sci.202324191475610.3390/ijms241914756 37834203
    [Google Scholar]
  114. JiJ. JinW. LiuS.J. JiaoZ. LiX. Probiotics, prebiotics, and postbiotics in health and disease.MedComm202346e42010.1002/mco2.420
    [Google Scholar]
  115. SandersM.E. MerensteinD.J. ReidG. GibsonG.R. RastallR.A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic.Nat. Rev. Gastroenterol. Hepatol.2019161060561610.1038/s41575‑019‑0173‑3 31296969
    [Google Scholar]
  116. GaloppinM. KariS. SoldatiS. PalA. RivalM. EngelhardtB. AstierA. ThouvenotE. Full spectrum of vitamin D immunomodulation in multiple sclerosis: Mechanisms and therapeutic implications.Brain Commun.202244fcac17110.1093/braincomms/fcac171 35813882
    [Google Scholar]
  117. FerenčíkM. EbringerL. Modulatory effects of selenium and zinc on the immune system.Folia Microbiol200348341742610.1007/BF02931378 12879758
    [Google Scholar]
  118. ShakoorH. FeehanJ. Al DhaheriA.S. AliH.I. PlatatC. IsmailL.C. ApostolopoulosV. StojanovskaL. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?Maturitas20211431910.1016/j.maturitas.2020.08.00333308613
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X325602240910075218
Loading
/content/journals/rafna/10.2174/012772574X325602240910075218
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diet; dietary pattern; macronutrients; multiple sclerosis; progression; vitamins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test