Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

The human population is growing and alternate food options are needed to provide food and nutritional security to mankind. Reduced agricultural output as a result of climate change and increased demand for grains because of continuous population growth have created a gap between demand and supply of food. Buckwheat is a pseudocereal crop plant with high nutritional value that can be included as an alternate food in our diet. It is a traditional crop plant grown in the high mountains of the Himalayas for food as well as fodder. It completes its life cycle in 3-4 months, so is mostly grown as a second crop in between main crops like maize and barley. It also acts as a green manure by improving the phosphorus content of the soil. Buckwheat has high nutritional value as it is rich in essential amino acids, vitamin B, trace elements, and other nutrients. The main bioactive compounds identified in buckwheat are rutin, quercetin, isoquercetin, d-chiroinositol, resveratol, and vitexin, which are responsible for its pharmacological properties. Research focused on value addition by exploring its nutritional, pharmaceutical, and other alternative uses of commercial importance, is needed for reviving buckwheat cultivation practices and its conservation. Considering the multifarious applications of buckwheat, this review summarizes the currently available knowledge on the agronomic and nutraceutical significance of buckwheat to project its value as a future crop in the avenue of agriculture and functional food.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X323710240719073908
2024-08-27
2025-10-11
Loading full text...

Full text loading...

References

  1. AhmadF RajA. Buckwheat: A legacy on the verge of extinction in Ladakh.Cur. Sci.20121031
    [Google Scholar]
  2. RanaJ.C. Buckwheat genetic resources management in India.Proc. 9th Int. Symp. BuckwheatPrague Aug 182004271282
    [Google Scholar]
  3. ShaoJ.R. ZhouM.L. ZhuX.M. WangD.Z. BaiD.Q. Fagopyrum wenchuanense and Fagopyrum qiangcai, two new species of Polygonaceae from Sichuan, China.Novon201121225626110.3417/2009107
    [Google Scholar]
  4. TangZ. HuangL. GouJ. ChenH. HanX. Genetic relationships among buckwheat (Fagopyrum) species from southwest China based on chloroplast and nuclear SSR markers.J. Genet.201493384985310.1007/s12041‑014‑0439‑z 25572246
    [Google Scholar]
  5. ZhouM.L. ZhangQ. ZhengY.D. TangY. LiF.L. ZhuX.M. ShaoJ.R. Fagopyrum hailuogouense (Polygonaceae), one new species from Sichuan, China.Novon201524222222410.3417/2013039
    [Google Scholar]
  6. HouL.L. ZhouM.L. ZhangQ. QiL.P. YangX.B. TangY. ZhuX.M. ShaoJ.R. Fagopyrum luojishanense, a new species of Polygonaceae from Sichuan, China.Novon2015241222610.3417/2013047
    [Google Scholar]
  7. ChenQ.F. HuangX.Y. LiH.Y. YangL.J. CuiY.S. Recent progress in perennial buckwheat development.Sustainability201810253610.3390/su10020536
    [Google Scholar]
  8. RanaJ.C. ChauhanR.C. SharmaT.R. GuptaN. Analyzing problems and prospects of buckwheat cultivation in India.Eur. J. Plant Sci. Biotechnol.2012625056
    [Google Scholar]
  9. GaneshpurkarA. SalujaA.K. The pharmacological potential of rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.025 28344465
    [Google Scholar]
  10. The state of food insecurity in the world 2004.RomeFood and Agricultural Organization2005
    [Google Scholar]
  11. AllenS. de BrauwA. Nutrition sensitive value chains: Theory, progress, and open questions.Glob. Food Secur.201816222810.1016/j.gfs.2017.07.002
    [Google Scholar]
  12. The future of food and agriculture: Trends and challenges.RomeFood and Agriculture Organization of the United Nations2017
    [Google Scholar]
  13. AlshelmaniM.I. AbdallaE.A. KakaU. BasitM.A. Nontraditional feedstuffs as an alternative in poultry feed.In: Advances in poultry nutrition research.IntechOpen202110.5772/intechopen.95946
    [Google Scholar]
  14. ChrungooN.K. ChettryU. Buckwheat: A critical approach towards assessment of its potential as a super crop.Indian J. Genet. Plant Breed.202181112310.31742/IJGPB.81.1.1
    [Google Scholar]
  15. SinghM. MalhotraN. SharmaK. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world?Genet. Resour. Crop Evol.20206771639165810.1007/s10722‑020‑00961‑0
    [Google Scholar]
  16. Calderón-MontañoJ.M. Burgos-MorónE. Pérez-GuerreroC. López-LázaroM. A review on the dietary flavonoid kaempferol.Mini Rev. Med. Chem.201111429834410.2174/138955711795305335 21428901
    [Google Scholar]
  17. TömösköziS. LangóB. Buckwheat: Its unique nutritional and health-promoting attributes.In: Gluten-free ancient grains.Woodhead Publishing2017161177
    [Google Scholar]
  18. GheldofN. WangX.H. EngesethN.J. Buckwheat honey increases serum antioxidant capacity in humans.J. Agric. Food Chem.20035151500150510.1021/jf025897t 12590505
    [Google Scholar]
  19. QinW. LunC. The clinical observation of buckwheat for the treatment of diabetes.Zhonghua Neifenmi Daixie Zazhi199285253
    [Google Scholar]
  20. IshiiS. KatsumuraT. ShiozukaC. OoyauchiK. KawasakiK. TakigawaS. FukushimaT. TokujiY. KinoshitaM. OhnishiM. KawaharaM. OhbaK. Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice.Biosci. Biotechnol. Biochem.200872123148315710.1271/bbb.80324 19060399
    [Google Scholar]
  21. GuoX. ZhuK. ZhangH. YaoH. Anti-tumor activity of a novel protein obtained from tartary buckwheat.Int. J. Mol. Sci.201011125201521110.3390/ijms11125201 21614202
    [Google Scholar]
  22. JoshiD.C. ChaudhariG.V. SoodS. KantL. PattanayakA. ZhangK. FanY. JanovskáD. MegličV. ZhouM. Revisiting the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach.Planta2019250378380110.1007/s00425‑018‑03080‑4 30623242
    [Google Scholar]
  23. BhardwajN. KaurJ. Strategies for in situ conservation and cultivation of buckwheat (Fagopyrum spp.)-A potential pseudocereal of North Western Himalayas.Him. J. Agric. Res20204611321
    [Google Scholar]
  24. SuzukiT. MorishitaT. Bitterness generation, rutin hydrolysis, and development of trace rutinosidase variety in tartary buckwheat.In: Molecular breeding and nutritional aspects of buckwheat.Academic Press201634535310.1016/B978‑0‑12‑803692‑1.00027‑4
    [Google Scholar]
  25. KairallaM. AlshelmaniM. AburasA. Effect of diet supplemented with graded levels of garlic (Allium sativum L.) powder on growth performance, carcass characteristics, blood hematology and biochemistry of broiler.Open Vet. J.202212559560110.5455/OVJ.2022.v12.i5.1 36589396
    [Google Scholar]
  26. Majdi AbdelfarajK. Mohamed IdrisA. MohamedM. I. Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens.Arch. Razi Inst.202378516471656 38590686
    [Google Scholar]
  27. KimJ.Y. SonB.K. LeeS.S. Effects of adlay, buckwheat, and barley on transit time and the antioxidative system in obesity induced rats.Nutr. Res. Pract.20126320821210.4162/nrp.2012.6.3.208 22808344
    [Google Scholar]
  28. CaoW. ChenW.J. SuoZ.R. YaoY.P. Protective effects of ethanolic extracts of buckwheat groats on DNA damage caused by hydroxyl radicals.Food Res. Int.200841992492910.1016/j.foodres.2007.10.014
    [Google Scholar]
  29. ChoiJ.Y. ChoE.J. LeeH.S. LeeJ.M. YoonY.H. LeeS. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model.Food Chem. Toxicol.20135310511110.1016/j.fct.2012.11.002 23219778
    [Google Scholar]
  30. LeeC.C. ShenS.R. LaiY.J. WuS.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury.Food Funct.20134579480210.1039/c3fo30389f 23584161
    [Google Scholar]
  31. KarkiR. ParkC.H. KimD.W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7).J. Integr. Med.201311424625210.3736/jintegrmed2013036 23867243
    [Google Scholar]
  32. ZhengC. HuC. MaX. PengC. ZhangH. QinL. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.).Gaertn. Food Chem.2012132143343810.1016/j.foodchem.2011.11.017 26434312
    [Google Scholar]
  33. LiY. DuanS. JiaH. BaiC. ZhangL. WangZ. Flavonoids from tartary buckwheat induce G2M cell cycle arrest and apoptosis in human hepatoma HepG2 cells.Acta Biochim. Biophys. Sin.201446646047010.1093/abbs/gmu023 24760952
    [Google Scholar]
  34. LeungE.H.W. NgT.B. A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells.J. Pept. Sci.2007131176276710.1002/psc.891 17828793
    [Google Scholar]
  35. LeeC.C. HsuW.H. ShenS.R. ChengY.H. Wu, SC Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice.Exp. Diabetes Res.2012
    [Google Scholar]
  36. LeeD.G. JangI.S. YangK.E. YoonS.J. BaekS. LeeJ.Y. SuzukiT. ChungK.Y. WooS.H. ChoiJ.S. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes.Acta Pharm.201666229730210.1515/acph‑2016‑0021 27279072
    [Google Scholar]
  37. WangX.T. ZhuZ.Y. ZhaoL. SunH.Q. MengM. ZhangJ.Y. ZhangY. Structural characterization and inhibition on α- d -glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum.Carbohydr. Polym.201615367968510.1016/j.carbpol.2016.08.024 27561539
    [Google Scholar]
  38. ZhuF. Buckwheat proteins and peptides: Biological functions and food applications.Trends Food Sci. Technol.202111015516710.1016/j.tifs.2021.01.081
    [Google Scholar]
  39. ChengF. HanL. XiaoY. PanC. LiY. GeX. ZhangY. YanS. WangM. d-chiro-Inositol ameliorates high fat diet-induced hepatic steatosis and insulin resistance via PKCε-PI3K/AKT pathway.J. Agric. Food Chem.201967215957596710.1021/acs.jafc.9b01253 31066268
    [Google Scholar]
  40. BertiC. RisoP. BrusamolinoA. PorriniM. Effect on appetite control of minor cereal and pseudocereal products.Br. J. Nutr.200594585085810.1079/BJN20051563 16277791
    [Google Scholar]
  41. Su-QueL. Ya-NingM. Xing-PuL. Ye-LunZ. Guang-YaoS. Hui-JuanM. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects.Nutr. J.20131216410.1186/1475‑2891‑12‑64 23680007
    [Google Scholar]
  42. ZhangH.W. ZhangY.H. LuM.J. TongW.J. CaoG.W. Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolian-Chinese populations in Inner Mongolia, China.Clin. Exp. Pharmacol. Physiol.200734983884410.1111/j.1440‑1681.2007.04614.x 17645626
    [Google Scholar]
  43. WieslanderG. FabjanN. VogrincicM. KreftI. JansonC. Spetz-NyströmU. VombergarB. TagessonC. LeandersonP. NorbäckD. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care centre staffs.Tohoku J. Exp. Med.2011225212313010.1620/tjem.225.123 21931228
    [Google Scholar]
  44. BijlaniR.L. SudS. SahiA. GandhiB.M. TandonB.N. Effect of sieved buckwheat (Fagopyrum esculentum) flour supplementation on lipid profile and glucose tolerance.Indian J. Physiol. Pharmacol.19852926974 3005170
    [Google Scholar]
  45. BijlaniR.L. GandhiB.M. GuptaM.C. ManochaS. TandonB.N. Effect of whole buckwheat (Fagopyrum esculentum) flour supplementation on lipid profile & glucose tolerance.Indian J. Med. Res.198581162168 2989169
    [Google Scholar]
  46. HeJ. KlagM.J. WheltonP.K. MoJ.P. ChenJ.Y. QianM.C. MoP.S. HeG.Q. Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China.Am. J. Clin. Nutr.199561236637210.1093/ajcn/61.2.366 7840076
    [Google Scholar]
  47. YangN. LiY.M. ZhangK. JiaoR. MaK.Y. ZhangR. RenG. ChenZ.Y. Hypocholesterolemic activity of buckwheat flour is mediated by increasing sterol excretion and down-regulation of intestinal NPC1L1 and ACAT2.J. Funct. Foods2014631131810.1016/j.jff.2013.10.020
    [Google Scholar]
  48. ZhangC. ZhangR. LiY.M. LiangN. ZhaoY. ZhuH. HeZ. LiuJ. HaoW. JiaoR. MaK.Y. ChenZ.Y. Cholesterol-lowering activity of Tartary buckwheat protein.J. Agric. Food Chem.20176591900190610.1021/acs.jafc.7b00066 28199789
    [Google Scholar]
  49. TangY. DingM.Q. TangY.X. WuY.M. ShaoJ.R. ZhouM.L. Germplasm resources of buckwheat in China.In: Molecular breeding and nutritional aspects of buckwheat.Academic Press2016132010.1016/B978‑0‑12‑803692‑1.00002‑X
    [Google Scholar]
  50. ZhouM. TangY.U. DengX. RuanC. KreftI. TangY. WuY. Overview of buckwheat resources in the world.Buckwheat germplasm in the world.Academic Press20181710.1016/B978‑0‑12‑811006‑5.00001‑X
    [Google Scholar]
  51. MisraA. RoyS. SinghS.K. RathiR.S. HarishG.D. Morphological diversity of buckwheat (Fagopyrum spp.) landraces from Northeast India.Indian J. Plant. Genet. Resour.2019321111710.5958/0976‑1926.2019.00002.0
    [Google Scholar]
  52. CampbellC.G. Fagopyrum esculentum Moench. In: Promoting the Conservation and Use of Underutilized and Neglected Crops; International Plant Genetic Resources Institute: Rome19771995
    [Google Scholar]
  53. FarooqS. RehmanR.U. PirzadahT.B. MalikB. DarF.A. TahirI. Cultivation, agronomic practices, and growth performance of buckwheat.In: Molecular breeding and nutritional aspects of buckwheat.Academic Press201629931910.1016/B978‑0‑12‑803692‑1.00023‑7
    [Google Scholar]
  54. FabioA.D. Parraga, G rigin, production and utilization of pseudocereals. In: Pseudocereals; Chemistry and technology.201712710.1002/9781118938256.ch1
    [Google Scholar]
  55. Production of buckwheat in world + (total) 1994-2020.2022Available from: http://www.fao.org/faostat/en/#data/QC/visualize
  56. RanaJ.C. SinghA. SharmaY. PradheepK. MendirattaN. Dynamics of plant bioresources in Western Himalayan region of India- watershed based study.Current Science2010982192203
    [Google Scholar]
  57. XuanT.D. Allelopathic plants: Buckwheat (Fagopyrum spp.).Allelopathy J.200413137148
    [Google Scholar]
  58. IqbalZ. HiradateS. NodaA. IsojimaS.I. FujiiY. Allelopathy of buckwheat: Assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomine and other related alkaloids as allelochemicals.Weed Biol. Manage.20022211011510.1046/j.1445‑6664.2002.00055.x
    [Google Scholar]
  59. HaramotoE.R. GallandtE.R. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus retroflexus).Weed Sci.200553570270810.1614/WS‑04‑163R.1
    [Google Scholar]
  60. GéneauC.E. WäckersF.L. LukaH. DanielC. BalmerO. Selective flowers to enhance biological control of cabbage pests by parasitoids.Basic Appl. Ecol.2012131859310.1016/j.baae.2011.10.005
    [Google Scholar]
  61. JacquemartA.L. CawoyV. KinetJ.M. LedentJ.F. QuinetM. Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today.Eur. J. Plant Sci. Biotechnol.2012621
    [Google Scholar]
  62. OhsawaR. NakataniC. Inter-and intra-cultivar variations in the allelopathic effect of leaf aqueous extract of buckwheat (Fagopyrum esculentum Moench) on the growth of lettuce seedling.Fagopyrum2005222124
    [Google Scholar]
  63. KumarV. BrainardD.C. BellinderR.R. Suppression of Powell amaranth (Amaranthus powellii), shepherd’s-purse (Capsella bursa-pastoris), and corn chamomile (Anthemis arvensis) by buckwheat residues: role of nitrogen and fungal pathogens.Weed Sci.200856227128010.1614/WS‑07‑106.1
    [Google Scholar]
  64. FalquetB. GfellerA. PourcelotM. TschuyF. WirthJ. Weed suppression by common buckwheat: A review.Environ. Control Biol.20155311610.2525/ecb.53.1
    [Google Scholar]
  65. CreamerN.G. BaldwinK.R. An evaluation of summer cover crops for use in vegetable production systems in North Carolina.HortScience200035460060310.21273/HORTSCI.35.4.600
    [Google Scholar]
  66. LeatherG.R. Sunflowers (Helianthus annuus) are allelopathic to weeds.Weed Sci.1983311374210.1017/S004317450006851X
    [Google Scholar]
  67. LockermanR.H. PutnamA.R. Growth inhibitors in cucumber plants and seeds1.J. Am. Soc. Hortic. Sci.1981106441842210.21273/JASHS.106.4.418
    [Google Scholar]
  68. TominagaT. UezuT. Weed suppression by buckwheat.Curr. Adv. Buckwheat Res.19952693697
    [Google Scholar]
  69. Kato-NoguchiH. SugimotoH. YamadaM. Buckwheat seedlings may inhibit other plant growth by allelopathic substances.Environ. Control Biol.2007451273210.2525/ecb.45.27
    [Google Scholar]
  70. KalinovaJ. VrchotovaN. TriskaJ. Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench).J. Agric. Food Chem.200755166453645910.1021/jf070795u 17630762
    [Google Scholar]
  71. IqbalZ. HiradateS. NodaA. IsojimaS. FujiiY. Allelopathic activity of buckwheat: Isolation and characterization of phenolics.Weed Sci.200351565766210.1614/0043‑1745(2003)051[0657:AAOBIA]2.0.CO;2
    [Google Scholar]
  72. FujiiY. Allelochemicals from buckwheat and tartary buckwheat and practical weed control in the field.Proceedings of the 20th Asian-Pacific Weed Science Society ConferenceHo Chi Minh City, Vietnam 7-11 November2005227233
    [Google Scholar]
  73. GoliszA. LataB. GawronskiS.W. FujiiY. Specific and total activities of the allelochemicals identified in buckwheat.Weed Biol. Manage.20077316417110.1111/j.1445‑6664.2007.00252.x
    [Google Scholar]
  74. KalinovaJ. VrchotovaN. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds.J. Agric. Food Chem.20095772719272510.1021/jf803633f 19253962
    [Google Scholar]
  75. BrownM.W. Flowering ground cover plants for pest management in peach and apple orchards.IOBC WPRS Bull.2001245379382
    [Google Scholar]
  76. PontinD.R. WadeM.R. KehrliP. WrattenS.D. Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems.Ann. Appl. Biol.20061481394710.1111/j.1744‑7348.2005.00037.x
    [Google Scholar]
  77. FréchetteB. CormierD. ChouinardG. VanoosthuyseF. LucasÉ. Apple aphid, Aphis spp. (Hemiptera: Aphididae), and predator populations in an apple orchard at the non-bearing stage: The impact of ground cover and cultivar.Eur. J. Entomol.2008105352152910.14411/eje.2008.069
    [Google Scholar]
  78. ValenzuelaH. SmithJ. Sustainable agriculture green manure crops.Trop. Agric.2002213
    [Google Scholar]
  79. IrvinN.A. Bistline-EastA. HoddleM.S. The effect of an irrigated buckwheat cover crop on grape vine productivity, and beneficial insect and grape pest abundance in southern California.Biol. Control201693728310.1016/j.biocontrol.2015.11.009
    [Google Scholar]
  80. PottsS.G. VulliamyB. DafniA. Ne’emanG. WillmerP. Linking bees and flowers: How do floral communities structure pollinator communities?Ecology200384102628264210.1890/02‑0136
    [Google Scholar]
  81. SutterL. JeanneretP. BartualA.M. BocciG. AlbrechtM. Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant crop‐pollinating bees through complementary increase in key floral resources.J. Appl. Ecol.20175461856186410.1111/1365‑2664.12907
    [Google Scholar]
  82. MallingerR.E. FrancoJ.G. Prischmann-VoldsethD.A. PrasifkaJ.R. Annual cover crops for managed and wild bees: Optimal plant mixtures depend on pollinator enhancement goals.Agric. Ecosyst. Environ.201927310711610.1016/j.agee.2018.12.006
    [Google Scholar]
  83. TebohJ.M. FranzenD.W. Buckwheat (Fagopyrum esculentum Moench) potential to contribute solubilized soil phosphorus to subsequent crops.Commun. Soil Sci. Plant Anal.201142131544155010.1080/00103624.2011.581724
    [Google Scholar]
  84. N’DayegamiyeA. TranT.S. Effects of green manures on soil organic matter and wheat yields and N nutrition.Can. J. Soil Sci.200181437138210.4141/S00‑034
    [Google Scholar]
  85. DasS.K. AvastheR.K. SinghM. Buckwheat: The natural enhancer in rhizosphere phosphorus.Curr. Sci.2015109101763
    [Google Scholar]
  86. ZhuY-G. HeY-Q. SmithS.E. SmithF.A. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source.Plant Soil200223911810.1023/A:1014958029905
    [Google Scholar]
  87. LunnJ. ButtrissJ.L. Carbohydrates and dietary fibre.Nutr. Bull.2007321216410.1111/j.1467‑3010.2007.00616.x
    [Google Scholar]
  88. QinP. WangQ. ShanF. HouZ. RenG. Nutritional composition and flavonoids content of flour from different buckwheat cultivars.Int. J. Food Sci. Technol.201045595195810.1111/j.1365‑2621.2010.02231.x
    [Google Scholar]
  89. Repo‐Carrasco‐ValenciaR. AranaJ.V. Carbohydrates of kernels.In: Pseudocereals. Chemistry and Technology; Wiley,2017134970
    [Google Scholar]
  90. RóżańskaD. MikośK. Regulska-IlowB. Assessment of the glycemic index of groats available on the Polish food market.Rocz. Panstw. Zakl. Hig.20207118187 32227786
    [Google Scholar]
  91. ZhuF. Chemical composition and health effects of Tartary buckwheat.Food Chem.201620323124510.1016/j.foodchem.2016.02.050 26948610
    [Google Scholar]
  92. GaoJ. KreftI. ChaoG. WangY. LiuX. WangL. WangP. GaoX. FengB. Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch.Food Chem.201619055255810.1016/j.foodchem.2015.05.122 26213009
    [Google Scholar]
  93. Guardiola-MárquezC.E. Santana-GálvezJ. Jacobo-VelázquezD.A. Association of dietary fiber to food components.In: Science and Technology of Fibers in food systems.ChamSpringer2020457010.1007/978‑3‑030‑38654‑2_3
    [Google Scholar]
  94. DziedzicK. GóreckaD. SzwengielA. SulewskaH. KreftI. GujskaE. WalkowiakJ. The content of dietary fibre and polyphenols in morphological parts of buckwheat (Fagopyrum tataricum).Plant Foods Hum. Nutr.2018731828810.1007/s11130‑018‑0659‑0 29435700
    [Google Scholar]
  95. TovarA.R. Guevara-CruzM. Serralde ZúñigaA.E. TorresN. Dietary fiber and hyperlipidemia and cardiovascular disease.In: Science and Technology of Fibers in Food Systems.ChamSpringer202021923910.1007/978‑3‑030‑38654‑2_10
    [Google Scholar]
  96. SkrabanjaV. KreftI. GolobT. ModicM. IkedaS. IkedaK. KreftS. BonafacciaG. KnappM. KosmeljK. Nutrient content in buckwheat milling fractions.Cereal Chem.200481217217610.1094/CCHEM.2004.81.2.172
    [Google Scholar]
  97. HudaM.N. LuS. JahanT. DingM. JhaR. ZhangK. ZhangW. GeorgievM.I. ParkS.U. ZhouM. Treasure from garden: Bioactive compounds of buckwheat.Food Chem.202133512765310.1016/j.foodchem.2020.127653 32739818
    [Google Scholar]
  98. JoshiD.C. ZhangK. WangC. ChandoraR. KhurshidM. LiJ. HeM. GeorgievM.I. ZhouM. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective.Biotechnol. Adv.20203910747910.1016/j.biotechadv.2019.107479 31707074
    [Google Scholar]
  99. ChristaK. Soral-ŚmietanaM. Buckwheat grains and buckwheat products - Nutritional and prophylactic value of their components - A review.Czech J. Food Sci.200826315316210.17221/1602‑CJFS
    [Google Scholar]
  100. D’AmicoS. SchoenlechnerR. TömöskösziS. LangóB. Proteins and amino acids of kernels.In: Pseudocereals. Chemistry and Technology; Wiley20171394118
    [Google Scholar]
  101. JanssenF. PaulyA. RomboutsI. JansensK.J.A. DeleuL.J. DelcourJ.A. Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective.Compr. Rev. Food Sci. Food Saf.2017161395810.1111/1541‑4337.12240 33371541
    [Google Scholar]
  102. LiH. Buckwheat.In: Bioactive Factors and Processing Technology for Cereal Foods.SingaporeSpringer201913714910.1007/978‑981‑13‑6167‑8_8
    [Google Scholar]
  103. BhinderS. KaurA. SinghB. YadavM.P. SinghN. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties.Food Res. Int.202013010894610.1016/j.foodres.2019.108946 32156390
    [Google Scholar]
  104. GeR.H. WangH. Nutrient components and bioactive compounds in tartary buckwheat bran and flour as affected by thermal processing.Int. J. Food Prop.202023112713710.1080/10942912.2020.1713151
    [Google Scholar]
  105. BonafacciaG. MarocchiniM. KreftI. Composition and technological properties of the flour and bran from common and tartary buckwheat.Food Chem.200380191510.1016/S0308‑8146(02)00228‑5
    [Google Scholar]
  106. TienN.N.T. TrinhL.N.D. InoueN. MoritaN. HungP.V. Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan.Cereal Chem.201895561562410.1002/cche.10069
    [Google Scholar]
  107. SubediN. Changes in phytochemical properties of buckwheat varieties on malting. Doctoral dissertation2018
    [Google Scholar]
  108. AhmadM. AhmadF. DarE.A. BhatR.A. MushtaqT. ShahF. Buckwheat (Fagopyrum esculentum)–a neglected crop of high altitude cold arid regions of ladakh: Biology and nutritive value.Int. J. Pure Appl. Biosci.20186139540610.18782/2320‑7051.6001
    [Google Scholar]
  109. AbdullaN.R. LohT.C. FooH.L. AlshelmaniM.I. AkitH. Influence of dietary ratios of n-6: n-3 fatty acid on gene expression, fatty acid profile in liver and breast muscle tissues, serum lipid profile, and immunoglobulin in broiler chickens.J. Appl. Poult. Res.201928245446910.3382/japr/pfz008
    [Google Scholar]
  110. IkedaS. TomuraK. YamashitaY. KreftI. Minerals in buckwheat flours subjected to enzymatic digestion.Fagopyrum2001184548
    [Google Scholar]
  111. Vogel-MikušK. PeliconP. VavpetičP. KreftI. RegvarM. Elemental analysis of edible grains by micro-PIXE: Common buckwheat case study.Nucl. Instrum. Methods Phys. Res. B2009267172884288910.1016/j.nimb.2009.06.104
    [Google Scholar]
  112. PongracP. Vogel-MikušK. RegvarM. VavpetičP. PeliconP. KreftI. Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro-PIXE.J. Agric. Food Chem.20115941275128010.1021/jf103150d 21226516
    [Google Scholar]
  113. PongracP. Vogel-MikušK. JeromelL. VavpetičP. PeliconP. KaulichB. GianoncelliA. EichertD. RegvarM. KreftI. Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum tataricum).Food Res. Int.201354112513110.1016/j.foodres.2013.06.020
    [Google Scholar]
  114. EllisD.R. SaltD.E. Plants, selenium and human health.Curr. Opin. Plant Biol.20036327327910.1016/S1369‑5266(03)00030‑X 12753978
    [Google Scholar]
  115. GolobA. StibiljV. KreftI. GermM. The feasibility of using Tartary buckwheat as a Se-containing food material.J. Chem.201520151410.1155/2015/246042
    [Google Scholar]
  116. ZhouX. HaoT. ZhouY. TangW. XiaoY. MengX. FangX. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination.J. Food Sci. Technol.20155242458246310.1007/s13197‑014‑1290‑1 25829633
    [Google Scholar]
  117. BonafacciaG. GambelliL. FabjanN. KreftI. Trace elements in flour and bran from common and tartary buckwheat.Food Chem.20038311510.1016/S0308‑8146(03)00228‑0
    [Google Scholar]
  118. WijngaardH.H. ArendtE.K. Buckwheat.Cereal Chem.200683439140110.1094/CC‑83‑0391
    [Google Scholar]
  119. BaljeetS.Y. RitikaB.Y. RoshanL.Y. Studies on functional properties and incorporation of buckwheat flour for biscuit making.Int. Food Res. J.2010174
    [Google Scholar]
  120. PongracP. Vogel-MikušK. PotisekM. KovačecE. BudičB. KumpP. RegvarM. KreftI. Mineral and trace element composition and importance for nutritional value of buckwheat grain, groats, and sprouts.In: Molecular Breeding and Nutritional Aspects of Buckwheat.Academic Press201626127110.1016/B978‑0‑12‑803692‑1.00020‑1
    [Google Scholar]
  121. ÖtlesS. CagindiÖ. Cereal based functional foods and nutraceuticals.Acta Sci. Pol. Technol. Aliment.200651107112
    [Google Scholar]
  122. HatcherD.W. BellidoG.G. AndersonM.J. DexterJ.E. HeadD. IzydorczykM. Investigation of empirical and fundamental soba noodle texture parameters prepared with tartary, green testa and common buckwheat.J. Texture Stud.201142649050210.1111/j.1745‑4603.2011.00310.x
    [Google Scholar]
  123. YildizG. BilgiçliN. Effects of whole buckwheat flour on physical, chemical, and sensory properties of flat bread, Lavaş.Czech J. Food Sci.201230653454010.17221/10/2012‑CJFS
    [Google Scholar]
  124. ChlopickaJ. PaskoP. GorinsteinS. JedryasA. ZagrodzkiP. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads.Lebensm. Wiss. Technol.201246254855510.1016/j.lwt.2011.11.009
    [Google Scholar]
  125. HromádkováZ. StavováA. EbringerováA. HirschJ. Effect of buckwheat hull hemicelluloses addition on the bread-making quality of wheat flour.J. Food Nutr. Res.2007
    [Google Scholar]
  126. WójtowiczA. KolasaA. MościckiL. Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks.Pol. J. Food Nutr. Sci.201363423924410.2478/v10222‑012‑0076‑2
    [Google Scholar]
  127. FilipčevB. ŠimurinaO. SakačM. SedejI. JovanovP. PestorićM. Bodroža-SolarovM. Feasibility of use of buckwheat flour as an ingredient in ginger nut biscuit formulation.Food Chem.2011125116417010.1016/j.foodchem.2010.08.055
    [Google Scholar]
  128. HaraguchiY. ImadaY. SawamuraS. Production and characterization of fine matcha (powdered tea leaf) for processed food.Nippon Shokuhin Kagaku Kogaku Kaishi2003501046847310.3136/nskkk.50.468
    [Google Scholar]
  129. ChungS-H. OhH-S. YoonK-H. Prediction of shelf-life of cold buckwheat noodles mixed with vitamin D 2 enriched siitake mushroom and seaweed derived calcium.J. Korean Soc. Food Sci. Nutr.20073691225122910.3746/jkfn.2007.36.9.1225
    [Google Scholar]
  130. ChoyA.L. MorrisonP.D. HughesJ.G. MarriottP.J. SmallD.M. Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour.J. Cereal Sci.201357328128710.1016/j.jcs.2012.11.007
    [Google Scholar]
  131. MaY.J. GuoX.D. LiuH. XuB.N. WangM. Cooking, textural, sensorial, and antioxidant properties of common and tartary buckwheat noodles.Food Sci. Biotechnol.201322115315910.1007/s10068‑013‑0021‑0
    [Google Scholar]
  132. HigasaS. FujiharaS. HayashiA. KimotoK. AoyagiY. Distribution of a novel angiotensin I-converting enzyme inhibitory substance (2″-hydroxynicotianamine) in the flour, plant parts, and processed products of buckwheat.Food Chem.2011125260761310.1016/j.foodchem.2010.08.074
    [Google Scholar]
  133. JuszczakL. FortunaT. Rheology of selected Polish honeys.J. Food Eng.2006751434910.1016/j.jfoodeng.2005.03.049
    [Google Scholar]
  134. VitP. Rodríguez-MalaverA. RondónC. GonzálezI. Luisa Di BernardoM. Ysabel GarcíaM. Bioactive indicators related to bioelements of eight unifloral honeys.Arch. Latinoam. Nutr.2010604405410 21866692
    [Google Scholar]
  135. WilczynskaA. Phenolic content and antioxidant activity of different types of polish honey-a short report.Pol. J. Food Nutr. Sci.2010604
    [Google Scholar]
  136. SochaR. JuszczakL. PietrzykS. GałkowskaD. FortunaT. WitczakT. Phenolic profile and antioxidant properties of Polish honeys.Int. J. Food Sci. Technol.201146352853410.1111/j.1365‑2621.2010.02517.x
    [Google Scholar]
  137. BrudzynskiK. KimL. Storage-induced chemical changes in active components of honey de-regulate its antibacterial activity.Food Chem.201112631155116310.1016/j.foodchem.2010.11.151
    [Google Scholar]
  138. ZielińskaD. Szawara-NowakD. ZielińskiH. Antioxidative and anti-glycation activity of bitter buckwheat tea.Eur. J. Plant Sci. Biotechnol.200937983
    [Google Scholar]
  139. QinP. WuL. YaoY. RenG. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea.Food Res. Int.201350256256710.1016/j.foodres.2011.03.028
    [Google Scholar]
  140. ZielinskaD. Szawara-NowakD. ZielinskiH. Antioxidative and anti-glycation activity of buckwheat hull tea infusion.Int. J. Food Prop.201316122823910.1080/10942912.2010.551308
    [Google Scholar]
  141. KreftI. FabjanN. YasumotoK. Rutin content in buckwheat] (Fagopyrum esculentum Moench) food materials and products.Food Chem.200698350851210.1016/j.foodchem.2005.05.081
    [Google Scholar]
  142. ZielińskiH. MichalskaA. Amigo-BenaventM. del CastilloM.D. PiskułaM.K. Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting.J. Agric. Food Chem.200957114771477610.1021/jf900313e 19415894
    [Google Scholar]
  143. NorbäckD. WieslanderG. A review on epidemiological and clinical studies on buckwheat allergy.Plants202110360710.3390/plants1003060733806876
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X323710240719073908
Loading
/content/journals/rafna/10.2174/012772574X323710240719073908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test