Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Introduction

The human microbiome plays a pivotal role in health and disease, with microbial imbalances (dysbiosis) increasingly linked to heightened susceptibility to infections and exacerbated disease severity. This review explores how the microbiome confers protection through mechanisms, such as colonization resistance, immune modulation, and antimicrobial metabolite production, while also examining its potential as a predictive tool for infection risk and outcomes, as exemplified in COVID-19.

Methods

This article synthesizes current literature on microbiome dynamics, leveraging advances in high-throughput sequencing, bioinformatics, and machine learning to analyze microbial profiles and identify biomarkers. It evaluates microbiome-based therapeutic strategies, including probiotics, prebiotics, and engineered microbes, and assesses challenges in translating these approaches into clinical practice.

Results

Microbiome profiles demonstrate prognostic value in predicting infection risk and severity, supported by enhanced analytical tools that enable precise biomarker discovery for diagnostics and personalized medicine. Therapeutic interventions show promise in restoring microbial balance and combating infections, though clinical adoption is hindered by variability, regulatory hurdles, and the need for standardized methodologies.

Conclusion

Integrating microbiome insights into clinical practice requires rigorous clinical trials, standardized protocols, and resolution of ethical and regulatory challenges. Future research should focus on elucidating microbiome-host-pathogen interactions and developing targeted interventions, and advanced computational models are critical to unlocking the full potential of microbiome-based diagnostics and therapeutics for infectious disease management.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344384934250624040634
2025-11-01
2025-12-06
Loading full text...

Full text loading...

References

  1. GaoY. Inflammation and gut microbiota in the alcoholic liver disease.Food Med Homol202412942002010.26599/FMH.2024.9420020 39123621
    [Google Scholar]
  2. LiuY.M. LiuC. DengY.S. Beneficial effects of dietary herbs on high-fat diet-induced obesity linking with modulation of gut microbiota.Food Med Homol202522942003410.26599/FMH.2025.9420034
    [Google Scholar]
  3. ShanS. YinR. ShiJ. Gut microbiota remodeling drived by dietary millet protein prevents the metabolic syndrome.Food Sci. Hum. Wellness20241341987200110.26599/FSHW.2022.9250165
    [Google Scholar]
  4. ZhangY. ZhouL. XiaJ. DongC. LuoX. Human microbiome and its medical applications.Front. Mol. Biosci.2022870358510.3389/fmolb.2021.703585 35096962
    [Google Scholar]
  5. RaynesE.A. HarrisM.J. BossuahK.A. BradleyW.C. Microbiome: Its role in health and disease.FASEB J.202034S11110.1096/fasebj.2020.34.s1.04310
    [Google Scholar]
  6. MontecchianiV. FanosV. Human microbiome and allergy.Pediatr. Allergy Immunol.202031S265710.1111/pai.13360 33236419
    [Google Scholar]
  7. AtharA. RasoolA. MuzaffarH.S. The human microbiome: A critical player in health and disease.World J Biol Biotechnol2023813110.33865/wjb.008.01.1000
    [Google Scholar]
  8. ChenY. ZhouJ. WangL. Role and mechanism of gut microbiota in human disease.Front. Cell. Infect. Microbiol.20211162591310.3389/fcimb.2021.625913 33816335
    [Google Scholar]
  9. PantheeB. GyawaliS. PantheeP. TechatoK. Environmental and human microbiome for health.Life202212345610.3390/life12030456 35330207
    [Google Scholar]
  10. El-SayedA. AleyaL. KamelM. Microbiota’s role in health and diseases.Environ. Sci. Pollut. Res. Int.20212828369673698310.1007/s11356‑021‑14593‑z 34043164
    [Google Scholar]
  11. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  12. ManosJ. The human microbiome in disease and pathology.Acta Pathol Microbiol Scand Suppl20221301269070510.1111/apm.13225 35393656
    [Google Scholar]
  13. HestonS.M. HurstJ.H. KellyM.S. Understanding the influence of the microbiome on childhood infections.Expert Rev. Anti Infect. Ther.202422752954510.1080/14787210.2024.2340664 38605646
    [Google Scholar]
  14. MoriG. MorrisonM. BlumenthalA. Microbiome-immune interactions in tuberculosis.PLoS Pathog.2021174100937710.1371/journal.ppat.1009377 33857251
    [Google Scholar]
  15. DoderoV.I. MorréS.A. BehzadiP. Editorial: Gut microbiota and immunity in health and disease: Dysbiosis and eubiosis’s effects on the human body.Front. Immunol.202415153625810.3389/fimmu.2024.1536258 39742257
    [Google Scholar]
  16. SomboroA.M. DialloD. HollJ.L. MaigaM. The role of the microbiome in inflammation during tuberculosis.EBioMedicine20216810343510.1016/j.ebiom.2021.103435 34139429
    [Google Scholar]
  17. BehzadiP. DoderoV.I. GolubnitschajaO. Systemic inflammation as the health-related communication tool between the human host and gut microbiota in the framework of predictive, preventive, and personalized medicine.All Around Suboptimal Health. WangW. ChamSpringer Nature Switzerland2024Vol. 1820324110.1007/978‑3‑031‑46891‑9_15
    [Google Scholar]
  18. WippermanM.F. BhattaraiS.K. VorkasC.K. Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis.Nat. Commun.2021121114110.1038/s41467‑021‑21475‑y 33602926
    [Google Scholar]
  19. GonzálezR. ElenaS.F. The interplay between the host microbiome and pathogenic viral infections.MBio2021126e02496e2110.1128/mBio.02496‑21 34724817
    [Google Scholar]
  20. MaksymowiczM. RękaG. MachowiecP. Piecewicz-SzczęsnaH. The role of microbiota in pathogenesis and development of viral infections.J. Educ. Health Sport2021111232032610.12775/JEHS.2021.11.12.025
    [Google Scholar]
  21. SpraggeF. BakkerenE. JahnM.T. Microbiome diversity protects against pathogens by nutrient blocking.Science20233826676eadj350210.1126/science.adj3502 38096285
    [Google Scholar]
  22. StrainR. StantonC. RossR.P. Effect of diet on pathogen performance in the microbiome.Microbiome Res Rep202211310.20517/mrr.2021.10
    [Google Scholar]
  23. ChenY. XiaoL. ZhouM. ZhangH. The microbiota: A crucial mediator in gut homeostasis and colonization resistance.Front. Microbiol.202415141786410.3389/fmicb.2024.1417864 39165572
    [Google Scholar]
  24. KogutM.H. LeeA. SantinE. Microbiome and pathogen interaction with the immune system.Poult. Sci.20209941906191310.1016/j.psj.2019.12.011 32241470
    [Google Scholar]
  25. Bernardo-CravoA.P. SchmellerD.S. ChatzinotasA. VredenburgV.T. LoyauA. Environmental factors and host microbiomes shape host–pathogen dynamics.Trends Parasitol.202036761663310.1016/j.pt.2020.04.010 32402837
    [Google Scholar]
  26. Maciel-FiuzaM.F. MullerG.C. CamposD.M.S. Role of gut microbiota in infectious and inflammatory diseases.Front. Microbiol.202314109838610.3389/fmicb.2023.1098386 37051522
    [Google Scholar]
  27. PopeJ.L. TomkovichS. JobinC. Influence of commensal microbiota and metabolite for mucosal immunity.Amsterdam, NetherlandsElsevier202014316410.1016/B978‑0‑12‑811924‑2.00009‑2
    [Google Scholar]
  28. YooJ. GroerM. DutraS. SarkarA. McSkimmingD. Gut microbiota and immune system interactions.Microorganisms2020810158710.3390/microorganisms8101587 33076307
    [Google Scholar]
  29. WiertsemaS.P. van BergenhenegouwenJ. GarssenJ. KnippelsL.M.J. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies.Nutrients202113388610.3390/nu13030886 33803407
    [Google Scholar]
  30. JinH. GuanL. LuoS. Role and mechanism of gut microbiota and its metabolites in host defense against infection.Zhonghua Wei Zhong Bing Ji Jiu Yi Xue202436332633110.3760/cma.j.cn121430‑20231011‑00860 38538365
    [Google Scholar]
  31. SchaeferA.K. MelnykJ.E. HeZ. Del RosarioF. GrimesC.L. Pathogen-and microbial-associated molecular patterns (PAMPs/MAMPs) and the innate immune response in Crohn’s disease.Immunity and Inflammation in Health and Disease.Amsterdam, NetherlandsElsevier2018175187
    [Google Scholar]
  32. RatajczakW. RyłA. MizerskiA. WalczakiewiczK. SipakO. LaszczyńskaM. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs).Acta Biochim. Pol.201966111210.18388/abp.2018_2648 30831575
    [Google Scholar]
  33. SunM. MaN. HeT. JohnstonL.J. MaX. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR).Crit. Rev. Food Sci. Nutr.202060101760176810.1080/10408398.2019.1598334 30924357
    [Google Scholar]
  34. RollandA. DouardV. LapaqueN. Role of pattern recognition receptors and microbiota-derived ligands in obesity.Front. Microbiomes20243132447610.3389/frmbi.2024.1324476
    [Google Scholar]
  35. Erturk-HasdemirD. Ochoa-RepárazJ. KasperD.L. KasperL.H. Exploring the gut-brain axis for the control of CNS inflammatory demyelination: Immunomodulation by Bacteroides fragilis’ polysaccharide A.Front. Immunol.20211266280710.3389/fimmu.2021.662807 34025663
    [Google Scholar]
  36. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑4 32376901
    [Google Scholar]
  37. Chhibber-GoelJ. GopinathanS. SharmaA. Interplay between severities of COVID-19 and the gut microbiome: Implications of bacterial co-infections?Gut Pathog.20211311410.1186/s13099‑021‑00407‑7 33632296
    [Google Scholar]
  38. YuanY. LuL. BoN. ChaoyueY. HaiyangY. Allicin ameliorates intestinal barrier damage via microbiota-regulated short-chain fatty acids-TLR4/MyD88/NF-κB cascade response in acrylamide-induced rats.J. Agric. Food Chem.20216943128371285210.1021/acs.jafc.1c05014 34694121
    [Google Scholar]
  39. ZhangL. ChuJ. HaoW. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications.Mediators Inflamm.2021202111210.1155/2021/5110276 34447287
    [Google Scholar]
  40. CampbellC. KandalgaonkarM.R. GolonkaR.M. YeohB.S. Vijay-KumarM. SahaP. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy.Biomedicines202311229410.3390/biomedicines11020294 36830830
    [Google Scholar]
  41. PanwarR.B. SequeiraR.P. ClarkeT.B. Microbiota-mediated protection against antibiotic-resistant pathogens.Genes Immun.2021225-625526710.1038/s41435‑021‑00129‑5 33947987
    [Google Scholar]
  42. TanC.Y. RamirezZ.E. SuranaN.K. A modern-world view of host–microbiota–pathogen interactions.J. Immunol.202120771710171810.4049/jimmunol.2100215 34544813
    [Google Scholar]
  43. WangL. HeY. LiH. AiQ. YuJ. The microbiota protects against Pseudomonas aeruginosa pneumonia via γδ T cell-neutrophil axis in mice.Microbes Infect.202022829430210.1016/j.micinf.2020.04.003 32305502
    [Google Scholar]
  44. LeshemA. LiwinskiT. ElinavE. Immune-microbiota interplay and colonization resistance in infection.Mol. Cell202078459761310.1016/j.molcel.2020.03.001 32208169
    [Google Scholar]
  45. HoyerK.K. Tejeda-GaribayS. ZhaoL. HumN. LootsG. Microbiome protection against coccidioidesgrowth.J. Immunol.20232101_Supplement24124810.4049/jimmunol.210.Supp.241.18
    [Google Scholar]
  46. NobsS.P. ElinavE. Remembering past infections: Training exercise for gut microbes.Cell Res.202131437537610.1038/s41422‑021‑00481‑1 33623111
    [Google Scholar]
  47. PlesniarskiA. SiddikA.B. SuR.C. The microbiome as a key regulator of female genital tract barrier function.Front. Cell. Infect. Microbiol.20211179062710.3389/fcimb.2021.790627 34976864
    [Google Scholar]
  48. ZenobiaC. HerpoldtK.L. FreireM. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases?NPJ Vaccines2021618010.1038/s41541‑021‑00341‑4 34078913
    [Google Scholar]
  49. StencelA. Do seasonal microbiome changes affect infection susceptibility, contributing to seasonal disease outbreaks?BioEssays2021431200014810.1002/bies.202000148 33165975
    [Google Scholar]
  50. FasanoA. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases.F1000 Res.202096910.12688/f1000research.20510.1 32051759
    [Google Scholar]
  51. WuM. LiH. YuH. Disturbances of vaginal microbiome composition in human papillomavirus infection and cervical carcinogenesis: A qualitative systematic review.Front. Oncol.20221294174110.3389/fonc.2022.941741 35903684
    [Google Scholar]
  52. BeattyD.S. AokiL.R. RappazzoB. Predictable changes in eelgrass microbiomes with increasing wasting disease prevalence across 23° latitude in the northeastern pacific.mSystems202274e00224e2210.1128/msystems.00224‑22 35856664
    [Google Scholar]
  53. YeohY.K. ZuoT. LuiG.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.Gut202170469870610.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  54. ZhouR. NgS.K. SungJ.J.Y. GohW.W.B. WongS.H. Data pre-processing for analyzing microbiome data – A mini review.Comput. Struct. Biotechnol. J.2023214804481510.1016/j.csbj.2023.10.001 37841330
    [Google Scholar]
  55. SwiftD. CresswellK. JohnsonR. StilianoudakisS. WeiX. A review of normalization and differential abundance methods for microbiome counts data.Wiley Interdiscip. Rev. Comput. Stat.2023151586
    [Google Scholar]
  56. Marcos-ZambranoL.J. Karaduzovic-HadziabdicK. LoncarT.T. Applications of machine learning in human microbiome studies: A review on feature selection, biomarker identification, disease prediction and treatment.Front. Microbiol.20211263451110.3389/fmicb.2021.634511 33737920
    [Google Scholar]
  57. MohrA.E. Ortega-SantosC.P. WhisnerC.M. Klein-SeetharamanJ. JasbiP. Navigating challenges and opportunities in multi-omics integration for personalized healthcare.Biomedicines2024127149610.3390/biomedicines12071496 39062068
    [Google Scholar]
  58. PapoutsoglouG. TarazonaS. LopesM.B. Machine learning approaches in microbiome research: Challenges and best practices.Front. Microbiol.202314126188910.3389/fmicb.2023.1261889 37808286
    [Google Scholar]
  59. MullerE. ShiryanI. BorensteinE. Multi-omic integration of microbiome data for identifying disease-associated modules.bioRxiv20231710.1101/2023.07.03.547607
    [Google Scholar]
  60. GehrigJ.L. PortikD.M. DriscollM.D. Finding the right fit: Evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data.Microb. Genom.20228300079410.1099/mgen.0.000794 35302439
    [Google Scholar]
  61. GerasimovaY. AliH. NadeemU. Challenges for pathologists in implementing clinical microbiome diagnostic testing.J. Pathol. Clin. Res.20241057000210.1002/2056‑4538.70002 39289163
    [Google Scholar]
  62. LehtinenM.J. HibberdA.A. MännikköS. Nasal microbiota clusters associate with inflammatory response, viral load, and symptom severity in experimental rhinovirus challenge.Sci. Rep.2018811141110.1038/s41598‑018‑29793‑w 30061588
    [Google Scholar]
  63. FishbeinS.R.S. RobinsonJ.I. HinkT. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis.eLife2022117280110.7554/eLife.72801 35083969
    [Google Scholar]
  64. ChongJ. LiuP. ZhouG. XiaJ. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data.Nat. Protoc.202015379982110.1038/s41596‑019‑0264‑1 31942082
    [Google Scholar]
  65. LuY. ZhouG. EwaldJ. PangZ. ShiriT. XiaJ. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data.Nucleic Acids Res.202351W1W310-810.1093/nar/gkad407 37166960
    [Google Scholar]
  66. EstakiM. JiangL. BokulichN.A. QIIME 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data.Curr. Protoc. Bioinformatics202070110010.1002/cpbi.100 32343490
    [Google Scholar]
  67. ShenK. DinA.U. SinhaB. ZhouY. QianF. ShenB. Translational informatics for human microbiota: Data resources, models and applications.Brief. Bioinform.2023243bbad16810.1093/bib/bbad168 37141135
    [Google Scholar]
  68. Ammer-HerrmenauC. PfistererN. Van Den BergT. GavrilovaI. AmanzadaA. SinghS.K. Comprehensive wet-bench and bioinformatics workflow for complex microbiota using oxford nanopore technologies.mSystems202164e007502110.1128/msystems.00750‑21
    [Google Scholar]
  69. MargolisE.B. MaronG. SunY. Microbiota predict infections and acute graft-versus-host disease after pediatric allogeneic hematopoietic stem cell transplantation.J. Infect. Dis.2023228562763610.1093/infdis/jiad190 37249910
    [Google Scholar]
  70. AbbasiN. FnuN. ShahZ. MuhammadF. Machine learning models for predicting susceptibility to infectious diseases based on microbiome profiles.J Knowl Learn Sci Tech202434354710.60087/jklst.v3.n4.p35
    [Google Scholar]
  71. NobreJ.G. DelgadinhoM. SilvaC. Gut microbiota profile of COVID-19 patients: Prognosis and risk stratification (MicroCOVID-19 study).Front. Microbiol.202213103542210.3389/fmicb.2022.1035422 36483197
    [Google Scholar]
  72. Moreira-RosárioA. MarquesC. PinheiroH. Gut microbiota diversity and C-reactive protein are predictors of disease severity in COVID-19 patients.Front. Microbiol.20211270502010.3389/fmicb.2021.705020 34349747
    [Google Scholar]
  73. AlbrichW.C. GhoshT.S. Ahearn-FordS. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2.Gut Microbes2022141207313110.1080/19490976.2022.2073131 35574937
    [Google Scholar]
  74. YadavA. PandeyR. Viral infectious diseases severity: Co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity.Front. Immunol.202213105603610.3389/fimmu.2022.1056036 36532032
    [Google Scholar]
  75. VassilopoulouL. Spyromitrou-XioufiP. LadomenouF. Effectiveness of probiotics and synbiotics in reducing duration of acute infectious diarrhea in pediatric patients in developed countries: A systematic review and meta-analysis.Eur. J. Pediatr.202118092907292010.1007/s00431‑021‑04046‑7 33825068
    [Google Scholar]
  76. CollinsonS. DeansA. Padua-ZamoraA. Probiotics for treating acute infectious diarrhoea.Cochrane Libr.2020202012CD00304810.1002/14651858.CD003048.pub4 33295643
    [Google Scholar]
  77. DarbandiA. AsadiA. GhanavatiR. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20.Int. J. Infect. Dis.20211059110410.1016/j.ijid.2021.02.011 33578007
    [Google Scholar]
  78. ZhaoY. DongB.R. HaoQ. Probiotics for preventing acute upper respiratory tract infections.Cochrane Libr.202220228CD00689510.1002/14651858.CD006895.pub4 36001877
    [Google Scholar]
  79. Domínguez RubioA.P. D’AntoniC.L. PiuriM. PérezO.E. Probiotics, their extracellular vesicles and infectious diseases.Front. Microbiol.20221386472010.3389/fmicb.2022.864720 35432276
    [Google Scholar]
  80. SharifS. GreerA. SkorupskiC. Probiotics in critical illness: A systematic review and meta-analysis of randomized controlled trials.Crit. Care Med.20225081175118610.1097/CCM.0000000000005580 35608319
    [Google Scholar]
  81. AggarwalN. BreedonA.M.E. DavisC.M. HwangI.Y. ChangM.W. Engineering probiotics for therapeutic applications: Recent examples and translational outlook.Curr. Opin. Biotechnol.20206517117910.1016/j.copbio.2020.02.016 32304955
    [Google Scholar]
  82. CruzK.C.P. EnekeghoL.O. StuartD.T. Bioengineered probiotics: Synthetic biology can provide live cell therapeutics for the treatment of foodborne diseases.Front. Bioeng. Biotechnol.20221089047910.3389/fbioe.2022.890479 35656199
    [Google Scholar]
  83. HuangY. LinX. YuS. ChenR. ChenW. Intestinal engineered probiotics as living therapeutics: Chassis selection, colonization enhancement, gene circuit design, and biocontainment.ACS Synth. Biol.202211103134315310.1021/acssynbio.2c00314 36094344
    [Google Scholar]
  84. BarraM. DaninoT. GarridoD. Engineered probiotics for detection and treatment of inflammatory intestinal diseases.Front. Bioeng. Biotechnol.2020826510.3389/fbioe.2020.00265 32296696
    [Google Scholar]
  85. KangM. ChoeD. KimK. ChoB.K. ChoS. Synthetic biology approaches in the development of engineered therapeutic microbes.Int. J. Mol. Sci.20202122874410.3390/ijms21228744 33228099
    [Google Scholar]
  86. KumarP. SinhaR. ShuklaP. Artificial intelligence and synthetic biology approaches for human gut microbiome.Crit. Rev. Food Sci. Nutr.20226282103212110.1080/10408398.2020.1850415 33249867
    [Google Scholar]
  87. MugwandaK. HameseS. Van ZylW.F. Recent advances in genetic tools for engineering probiotic lactic acid bacteria.Biosci. Rep.2023431BSR2021129910.1042/BSR20211299 36597861
    [Google Scholar]
  88. MengJ. LiuS. WuX. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases.Crit. Rev. Microbiol.202450330031410.1080/1040841X.2023.2190392 36946080
    [Google Scholar]
  89. CarlsonP.E. Regulatory considerations for fecal microbiota transplantation products.Cell Host Microbe202027217317510.1016/j.chom.2020.01.018 32053787
    [Google Scholar]
  90. GrigoryanZ. ShenM.J. TwardusS.W. BeuttlerM.M. ChenL.A. Bateman-HouseA. Fecal microbiota transplantation: Uses, questions, and ethics.Med. Microecology2020610002710.1016/j.medmic.2020.100027 33834162
    [Google Scholar]
  91. PeeryA.F. KellyC.R. KaoD. AGA clinical practice guideline on fecal microbiota–based therapies for select gastrointestinal diseases.Gastroenterology2024166340943410.1053/j.gastro.2024.01.008 38395525
    [Google Scholar]
  92. SungJ.J.Y. WongS.H. What is unknown in using microbiota as a therapeutic?J. Gastroenterol. Hepatol.2022371394410.1111/jgh.15716 34668228
    [Google Scholar]
  93. AlamM.Z. MaslankaJ.R. AbtM.C. Immunological consequences of microbiome-based therapeutics.Front. Immunol.202313104647210.3389/fimmu.2022.1046472 36713364
    [Google Scholar]
  94. LiwinskiT. LeshemA. ElinavE. Breakthroughs and bottlenecks in microbiome research.Trends Mol. Med.202127429830110.1016/j.molmed.2021.01.003 33563544
    [Google Scholar]
  95. ZhangZ.J. LehmannC.J. ColeC.G. PamerE.G. Translating microbiome research from and to the clinic.Annu. Rev. Microbiol.202276143546010.1146/annurev‑micro‑041020‑022206 35655344
    [Google Scholar]
  96. SharmaA. DasP. BuschmannM. GilbertJ.A. The future of microbiome‐based therapeutics in clinical applications.Clin. Pharmacol. Ther.2020107112312810.1002/cpt.1677 31617205
    [Google Scholar]
  97. LaudesM. GeislerC. RohmannN. BouwmanJ. PischonT. SchlichtK. Microbiota in health and disease—potential clinical applications.Nutrients20211311386610.3390/nu13113866 34836121
    [Google Scholar]
  98. ZauraE. PappalardoV.Y. BuijsM.J. VolgenantC.M.C. BrandtB.W. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting.Periodontol. 2000202185121023610.1111/prd.12359 33226702
    [Google Scholar]
  99. SelwayC.A. EisenhoferR. WeyrichL.S. Microbiome applications for pathology: Challenges of low microbial biomass samples during diagnostic testing.J. Pathol. Clin. Res.2020629710610.1002/cjp2.151 31944633
    [Google Scholar]
  100. DouglasR. The clinical implications of microbiome research.Int. Forum Allergy Rhinol.2021112919210.1002/alr.22707 33047866
    [Google Scholar]
  101. AshiqueS. HoushyariM. IslamA. PalR. GhazanfarS. Taghizadeh-HesaryF. The role of microbiota in nasopharyngeal cancer: Where do we stand?Oral Oncol.202415810698210.1016/j.oraloncology.2024.106982 39153457
    [Google Scholar]
  102. TingN.L.N. LauH.C.H. YuJ. Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes.Gut20227171412142510.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  103. YouW. ZhuY. WeiA, Du J, Wang Y, Zheng P, Tu M, Wang H, Wen L, Yang X. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile.Journal of Neurotrauma.2022391-222723710.1089/neu.2020.7526
    [Google Scholar]
  104. OgunjobiT.T. OkaforA.M-A. OhuonuN.I. NebolisaN.M. AbimboluA.K. AjayiR.O. Navigating the Complexity of the Human Microbiome: Implications for Biomedical Science and Disease Treatment.Dubai, UAEMEDIN202410.47852/bonviewMEDIN42022988
    [Google Scholar]
  105. YoungR.B. MarcelinoV.R. ChonwerawongM. GulliverE.L. ForsterS.C. Key technologies for progressing discovery of microbiome-based medicines.Front. Microbiol.20211268593510.3389/fmicb.2021.685935 34239510
    [Google Scholar]
  106. BiemondJ.J. McDonaldB. HaakB.W. Leveraging the microbiome in the treatment of sepsis: Potential pitfalls and new perspectives.Curr. Opin. Crit. Care202329212312910.1097/MCC.0000000000001019 36762681
    [Google Scholar]
  107. CassottaM. Forbes-HernándezT.Y. CalderónI.R. Links between nutrition, infectious diseases, and microbiota: Emerging technologies and opportunities for human-focused research.Nutrients2020126182710.3390/nu12061827 32575399
    [Google Scholar]
  108. GaoY. LiD. LiuY.X. Microbiome research outlook: Past, present, and future.Protein Cell2023141070971210.1093/procel/pwad031 37219087
    [Google Scholar]
  109. WilkinsonJ.E. FranzosaE.A. EverettC. A framework for microbiome science in public health.Nat. Med.202127576677410.1038/s41591‑021‑01258‑0 33820996
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344384934250624040634
Loading
/content/journals/raaidd/10.2174/0127724344384934250624040634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test