Skip to content
2000
image of Advances in Microbiome Research: Implications for Infectious Disease Management and Treatment

Abstract

Introduction

The human microbiome plays a pivotal role in health and disease, with microbial imbalances (dysbiosis) increasingly linked to heightened susceptibility to infections and exacerbated disease severity. This review explores how the microbiome confers protection through mechanisms, such as colonization resistance, immune modulation, and antimicrobial metabolite production, while also examining its potential as a predictive tool for infection risk and outcomes, as exemplified in COVID-19.

Methods

This article synthesizes current literature on microbiome dynamics, leveraging advances in high-throughput sequencing, bioinformatics, and machine learning to analyze microbial profiles and identify biomarkers. It evaluates microbiome-based therapeutic strategies, including probiotics, prebiotics, and engineered microbes, and assesses challenges in translating these approaches into clinical practice.

Results

Microbiome profiles demonstrate prognostic value in predicting infection risk and severity, supported by enhanced analytical tools that enable precise biomarker discovery for diagnostics and personalized medicine. Therapeutic interventions show promise in restoring microbial balance and combating infections, though clinical adoption is hindered by variability, regulatory hurdles, and the need for standardized methodologies.

Conclusion

Integrating microbiome insights into clinical practice requires rigorous clinical trials, standardized protocols, and resolution of ethical and regulatory challenges. Future research should focus on elucidating microbiome-host-pathogen interactions and developing targeted interventions, and advanced computational models are critical to unlocking the full potential of microbiome-based diagnostics and therapeutics for infectious disease management.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344384934250624040634
2025-07-02
2025-10-04
Loading full text...

Full text loading...

References

  1. Gao Y. Inflammation and gut microbiota in the alcoholic liver disease. Food Med Homol 2024 1 2 9420020 10.26599/FMH.2024.9420020 39123621
    [Google Scholar]
  2. Liu Y.M. Liu C. Deng Y.S. Beneficial effects of dietary herbs on high-fat diet-induced obesity linking with modulation of gut microbiota. Food Med Homol 2025 2 2 9420034 10.26599/FMH.2025.9420034
    [Google Scholar]
  3. Shan S. Yin R. Shi J. Gut microbiota remodeling drived by dietary millet protein prevents the metabolic syndrome. Food Sci. Hum. Wellness 2024 13 4 1987 2001 10.26599/FSHW.2022.9250165
    [Google Scholar]
  4. Zhang Y. Zhou L. Xia J. Dong C. Luo X. Human microbiome and its medical applications. Front. Mol. Biosci. 2022 8 703585 10.3389/fmolb.2021.703585 35096962
    [Google Scholar]
  5. Raynes E.A. Harris M.J. Bossuah K.A. Bradley W.C. Microbiome: Its role in health and disease. FASEB J. 2020 34 S1 1 1 10.1096/fasebj.2020.34.s1.04310
    [Google Scholar]
  6. Montecchiani V. Fanos V. Human microbiome and allergy. Pediatr. Allergy Immunol. 2020 31 S26 5 7 10.1111/pai.13360 33236419
    [Google Scholar]
  7. Athar A. Rasool A. Muzaffar H.S. The human microbiome: A critical player in health and disease. World J Biol Biotechnol 2023 8 1 31 10.33865/wjb.008.01.1000
    [Google Scholar]
  8. Chen Y. Zhou J. Wang L. Role and mechanism of gut microbiota in human disease. Front. Cell. Infect. Microbiol. 2021 11 625913 10.3389/fcimb.2021.625913 33816335
    [Google Scholar]
  9. Panthee B. Gyawali S. Panthee P. Techato K. Environmental and human microbiome for health. Life 2022 12 3 456 10.3390/life12030456 35330207
    [Google Scholar]
  10. El-Sayed A. Aleya L. Kamel M. Microbiota’s role in health and diseases. Environ. Sci. Pollut. Res. Int. 2021 28 28 36967 36983 10.1007/s11356‑021‑14593‑z 34043164
    [Google Scholar]
  11. Zheng D. Liwinski T. Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020 30 6 492 506 10.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  12. Manos J. The human microbiome in disease and pathology. Acta Pathol Microbiol Scand Suppl 2022 130 12 690 705 10.1111/apm.13225 35393656
    [Google Scholar]
  13. Heston S.M. Hurst J.H. Kelly M.S. Understanding the influence of the microbiome on childhood infections. Expert Rev. Anti Infect. Ther. 2024 22 7 529 545 10.1080/14787210.2024.2340664 38605646
    [Google Scholar]
  14. Mori G. Morrison M. Blumenthal A. Microbiome-immune interactions in tuberculosis. PLoS Pathog. 2021 17 4 1009377 10.1371/journal.ppat.1009377 33857251
    [Google Scholar]
  15. Dodero V.I. Morré S.A. Behzadi P. Editorial: Gut microbiota and immunity in health and disease: Dysbiosis and eubiosis’s effects on the human body. Front. Immunol. 2024 15 1536258 10.3389/fimmu.2024.1536258 39742257
    [Google Scholar]
  16. Somboro A.M. Diallo D. Holl J.L. Maiga M. The role of the microbiome in inflammation during tuberculosis. EBioMedicine 2021 68 103435 10.1016/j.ebiom.2021.103435 34139429
    [Google Scholar]
  17. Behzadi P. Dodero V.I. Golubnitschaja O. Systemic inflammation as the health-related communication tool between the human host and gut microbiota in the framework of predictive, preventive, and personalized medicine. In: Wang W, Ed All Around Suboptimal Health. Cham Springer Nature Switzerland 2024 Vol. 18 203 241 10.1007/978‑3‑031‑46891‑9_15
    [Google Scholar]
  18. Wipperman M.F. Bhattarai S.K. Vorkas C.K. Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis. Nat. Commun. 2021 12 1 1141 10.1038/s41467‑021‑21475‑y 33602926
    [Google Scholar]
  19. González R. Elena S.F. The interplay between the host microbiome and pathogenic viral infections. MBio 2021 12 6 e02496 e21 10.1128/mBio.02496‑21 34724817
    [Google Scholar]
  20. Maksymowicz M. Ręka G. Machowiec P. Piecewicz-Szczęsna H. The role of microbiota in pathogenesis and development of viral infections. J. Educ. Health Sport 2021 11 12 320 326 10.12775/JEHS.2021.11.12.025
    [Google Scholar]
  21. Spragge F. Bakkeren E. Jahn M.T. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023 382 6676 eadj3502 10.1126/science.adj3502 38096285
    [Google Scholar]
  22. Strain R. Stanton C. Ross R.P. Effect of diet on pathogen performance in the microbiome. Pakistan: MRR. 2022 10.20517/mrr.2021.10
    [Google Scholar]
  23. Chen Y. Xiao L. Zhou M. Zhang H. The microbiota: A crucial mediator in gut homeostasis and colonization resistance. Front. Microbiol. 2024 15 1417864 10.3389/fmicb.2024.1417864 39165572
    [Google Scholar]
  24. Kogut M.H. Lee A. Santin E. Microbiome and pathogen interaction with the immune system. Poult. Sci. 2020 99 4 1906 1913 10.1016/j.psj.2019.12.011 32241470
    [Google Scholar]
  25. Bernardo-Cravo A.P. Schmeller D.S. Chatzinotas A. Vredenburg V.T. Loyau A. Environmental factors and host microbiomes shape host–pathogen dynamics. Trends Parasitol. 2020 36 7 616 633 10.1016/j.pt.2020.04.010 32402837
    [Google Scholar]
  26. Maciel-Fiuza M.F. Muller G.C. Campos D.M.S. Role of gut microbiota in infectious and inflammatory diseases. Front. Microbiol. 2023 14 1098386 10.3389/fmicb.2023.1098386 37051522
    [Google Scholar]
  27. Pope J.L. Tomkovich S. Jobin C. Influence of commensal microbiota and metabolite for mucosal immunity. Amsterdam, Netherlands Elsevier 2020 143 164 10.1016/B978‑0‑12‑811924‑2.00009‑2
    [Google Scholar]
  28. Yoo J. Groer M. Dutra S. Sarkar A. McSkimming D. Gut microbiota and immune system interactions. Microorganisms 2020 8 10 1587 10.3390/microorganisms8101587 33076307
    [Google Scholar]
  29. Wiertsema S.P. van Bergenhenegouwen J. Garssen J. Knippels L.M.J. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 2021 13 3 886 10.3390/nu13030886 33803407
    [Google Scholar]
  30. Jin H. Guan L. Luo S. Role and mechanism of gut microbiota and its metabolites in host defense against infection. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2024 36 3 326 331 10.3760/cma.j.cn121430‑20231011‑00860 38538365
    [Google Scholar]
  31. Schaefer A.K. Melnyk J.E. He Z. Del Rosario F. Grimes C.L. Pathogen-and microbial-associated molecular patterns (PAMPs/MAMPs) and the innate immune response in Crohn’s disease. In: Immunity and Inflammation in Health and Disease. Amsterdam, Netherlands Elsevier 2018 175 187
    [Google Scholar]
  32. Ratajczak W. Rył A. Mizerski A. Walczakiewicz K. Sipak O. Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 2019 66 1 1 12 10.18388/abp.2018_2648 30831575
    [Google Scholar]
  33. Sun M. Ma N. He T. Johnston L.J. Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr. 2020 60 10 1760 1768 10.1080/10408398.2019.1598334 30924357
    [Google Scholar]
  34. Rolland A. Douard V. Lapaque N. Role of pattern recognition receptors and microbiota-derived ligands in obesity. Front Microbiomes 2024 3 1324476 10.3389/frmbi.2024.1324476
    [Google Scholar]
  35. Erturk-Hasdemir D. Ochoa-Repáraz J. Kasper D.L. Kasper L.H. Exploring the gut-brain axis for the control of CNS inflammatory demyelination: Immunomodulation by Bacteroides fragilis’ polysaccharide A. Front. Immunol. 2021 12 662807 10.3389/fimmu.2021.662807 34025663
    [Google Scholar]
  36. Merad M. Martin J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020 20 6 355 362 10.1038/s41577‑020‑0331‑4 32376901
    [Google Scholar]
  37. Chhibber-Goel J. Gopinathan S. Sharma A. Interplay between severities of COVID-19 and the gut microbiome: Implications of bacterial co-infections? Gut Pathog. 2021 13 1 14 10.1186/s13099‑021‑00407‑7 33632296
    [Google Scholar]
  38. Yuan Y. Lu L. Bo N. Chaoyue Y. Haiyang Y. Allicin ameliorates intestinal barrier damage via microbiota-regulated short-chain fatty acids-TLR4/MyD88/NF-κB cascade response in acrylamide-induced rats. J. Agric. Food Chem. 2021 69 43 12837 12852 10.1021/acs.jafc.1c05014 34694121
    [Google Scholar]
  39. Zhang L. Chu J. Hao W. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators Inflamm. 2021 2021 1 12 10.1155/2021/5110276 34447287
    [Google Scholar]
  40. Campbell C. Kandalgaonkar M.R. Golonka R.M. Yeoh B.S. Vijay-Kumar M. Saha P. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy. Biomedicines 2023 11 2 294 10.3390/biomedicines11020294 36830830
    [Google Scholar]
  41. Panwar R.B. Sequeira R.P. Clarke T.B. Microbiota-mediated protection against antibiotic-resistant pathogens. Genes Immun. 2021 22 5-6 255 267 10.1038/s41435‑021‑00129‑5 33947987
    [Google Scholar]
  42. Tan C.Y. Ramirez Z.E. Surana N.K. A modern-world view of host–microbiota–pathogen interactions. J. Immunol. 2021 207 7 1710 1718 10.4049/jimmunol.2100215 34544813
    [Google Scholar]
  43. Wang L. He Y. Li H. Ai Q. Yu J. The microbiota protects against Pseudomonas aeruginosa pneumonia via γδ T cell-neutrophil axis in mice. Microbes Infect. 2020 22 8 294 302 10.1016/j.micinf.2020.04.003 32305502
    [Google Scholar]
  44. Leshem A. Liwinski T. Elinav E. Immune-microbiota interplay and colonization resistance in infection. Mol. Cell 2020 78 4 597 613 10.1016/j.molcel.2020.03.001 32208169
    [Google Scholar]
  45. Hoyer K.K. Tejeda-Garibay S. Zhao L. Hum N. Loots G. Microbiome protection against coccidioidesgrowth. J. Immunol. 2023 210 1 Supplement. 241 248 10.4049/jimmunol.210.Supp.241.18
    [Google Scholar]
  46. Nobs S.P. Elinav E. Remembering past infections: Training exercise for gut microbes. Cell Res. 2021 31 4 375 376 10.1038/s41422‑021‑00481‑1 33623111
    [Google Scholar]
  47. Plesniarski A. Siddik A.B. Su R.C. The microbiome as a key regulator of female genital tract barrier function. Front. Cell. Infect. Microbiol. 2021 11 790627 10.3389/fcimb.2021.790627 34976864
    [Google Scholar]
  48. Zenobia C. Herpoldt K.L. Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021 6 1 80 10.1038/s41541‑021‑00341‑4 34078913
    [Google Scholar]
  49. Stencel A. Do seasonal microbiome changes affect infection susceptibility, contributing to seasonal disease outbreaks? BioEssays 2021 43 1 2000148 10.1002/bies.202000148 33165975
    [Google Scholar]
  50. Fasano A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000 Res. 2020 9 69 10.12688/f1000research.20510.1 32051759
    [Google Scholar]
  51. Wu M. Li H. Yu H. Disturbances of vaginal microbiome composition in human papillomavirus infection and cervical carcinogenesis: A qualitative systematic review. Front. Oncol. 2022 12 941741 10.3389/fonc.2022.941741 35903684
    [Google Scholar]
  52. Beatty D.S. Aoki L.R. Rappazzo B. Predictable changes in eelgrass microbiomes with increasing wasting disease prevalence across 23° latitude in the northeastern pacific. mSystems 2022 7 4 e00224 e22 10.1128/msystems.00224‑22 35856664
    [Google Scholar]
  53. Yeoh Y.K. Zuo T. Lui G.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021 70 4 698 706 10.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  54. Zhou R. Ng S.K. Sung J.J.Y. Goh W.W.B. Wong S.H. Data pre-processing for analyzing microbiome data – A mini review. Comput. Struct. Biotechnol. J. 2023 21 4804 4815 10.1016/j.csbj.2023.10.001 37841330
    [Google Scholar]
  55. Swift D. Cresswell K. Johnson R. Stilianoudakis S. Wei X. A review of normalization and differential abundance methods for microbiome counts data. Wiley Interdiscip. Rev. Comput. Stat. 2023 15 1586
    [Google Scholar]
  56. Marcos-Zambrano L.J. Karaduzovic-Hadziabdic K. Loncar T.T. Applications of machine learning in human microbiome studies: A review on feature selection, biomarker identification, disease prediction and treatment. Front. Microbiol. 2021 12 634511 10.3389/fmicb.2021.634511 33737920
    [Google Scholar]
  57. Mohr A.E. Ortega-Santos C.P. Whisner C.M. Klein-Seetharaman J. Jasbi P. Navigating challenges and opportunities in multi-omics integration for personalized healthcare. Biomedicines 2024 12 7 1496 10.3390/biomedicines12071496 39062068
    [Google Scholar]
  58. Papoutsoglou G. Tarazona S. Lopes M.B. Machine learning approaches in microbiome research: Challenges and best practices. Front. Microbiol. 2023 14 1261889 10.3389/fmicb.2023.1261889 37808286
    [Google Scholar]
  59. Muller E. Shiryan I. Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. bioRxiv 2023 1 7 10.1101/2023.07.03.547607
    [Google Scholar]
  60. Gehrig J.L. Portik D.M. Driscoll M.D. Finding the right fit: Evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb. Genom. 2022 8 3 000794 10.1099/mgen.0.000794 35302439
    [Google Scholar]
  61. Gerasimova Y. Ali H. Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J. Pathol. Clin. Res. 2024 10 5 70002 10.1002/2056‑4538.70002 39289163
    [Google Scholar]
  62. Lehtinen M.J. Hibberd A.A. Männikkö S. Nasal microbiota clusters associate with inflammatory response, viral load, and symptom severity in experimental rhinovirus challenge. Sci. Rep. 2018 8 1 11411 10.1038/s41598‑018‑29793‑w 30061588
    [Google Scholar]
  63. Fishbein S.R.S. Robinson J.I. Hink T. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 2022 11 72801 10.7554/eLife.72801 35083969
    [Google Scholar]
  64. Chong J. Liu P. Zhou G. Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020 15 3 799 821 10.1038/s41596‑019‑0264‑1 31942082
    [Google Scholar]
  65. Lu Y. Zhou G. Ewald J. Pang Z. Shiri T. Xia J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023 51 W1 W310-8 10.1093/nar/gkad407 37166960
    [Google Scholar]
  66. Estaki M. Jiang L. Bokulich N.A. QIIME 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinformatics 2020 70 1 100 10.1002/cpbi.100 32343490
    [Google Scholar]
  67. Shen K. Din A.U. Sinha B. Zhou Y. Qian F. Shen B. Translational informatics for human microbiota: Data resources, models and applications. Brief. Bioinform. 2023 24 3 bbad168 10.1093/bib/bbad168 37141135
    [Google Scholar]
  68. Ammer-Herrmenau C. Pfisterer N. Van Den Berg T. Gavrilova I. Amanzada A. Singh S.K. Comprehensive wet-bench and bioinformatics workflow for complex microbiota using oxford nanopore technologies. mSystems 2021 6 4 e0075021 10.1128/msystems.00750‑21
    [Google Scholar]
  69. Margolis E.B. Maron G. Sun Y. Microbiota predict infections and acute graft-versus-host disease after pediatric allogeneic hematopoietic stem cell transplantation. J. Infect. Dis. 2023 228 5 627 636 10.1093/infdis/jiad190 37249910
    [Google Scholar]
  70. Abbasi N. Fnu N. Shah Z. Muhammad F. Machine learning models for predicting susceptibility to infectious diseases based on microbiome profiles. J Knowl Learn Sci Tech 2024 3 4 35 47 10.60087/jklst.v3.n4.p35
    [Google Scholar]
  71. Nobre J.G. Delgadinho M. Silva C. Gut microbiota profile of COVID-19 patients: Prognosis and risk stratification (MicroCOVID-19 study). Front. Microbiol. 2022 13 1035422 10.3389/fmicb.2022.1035422 36483197
    [Google Scholar]
  72. Moreira-Rosário A. Marques C. Pinheiro H. Gut microbiota diversity and C-reactive protein are predictors of disease severity in COVID-19 patients. Front. Microbiol. 2021 12 705020 10.3389/fmicb.2021.705020 34349747
    [Google Scholar]
  73. Albrich W.C. Ghosh T.S. Ahearn-Ford S. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes 2022 14 1 2073131 10.1080/19490976.2022.2073131 35574937
    [Google Scholar]
  74. Yadav A. Pandey R. Viral infectious diseases severity: Co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front. Immunol. 2022 13 1056036 10.3389/fimmu.2022.1056036 36532032
    [Google Scholar]
  75. Vassilopoulou L. Spyromitrou-Xioufi P. Ladomenou F. Effectiveness of probiotics and synbiotics in reducing duration of acute infectious diarrhea in pediatric patients in developed countries: A systematic review and meta-analysis. Eur. J. Pediatr. 2021 180 9 2907 2920 10.1007/s00431‑021‑04046‑7 33825068
    [Google Scholar]
  76. Collinson S. Deans A. Padua-Zamora A. Probiotics for treating acute infectious diarrhoea. Cochrane Libr. 2020 2020 12 CD003048 10.1002/14651858.CD003048.pub4 33295643
    [Google Scholar]
  77. Darbandi A. Asadi A. Ghanavati R. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20. Int. J. Infect. Dis. 2021 105 91 104 10.1016/j.ijid.2021.02.011 33578007
    [Google Scholar]
  78. Zhao Y. Dong B.R. Hao Q. Probiotics for preventing acute upper respiratory tract infections. Cochrane Libr. 2022 2022 8 CD006895 10.1002/14651858.CD006895.pub4 36001877
    [Google Scholar]
  79. Domínguez Rubio A.P. D’Antoni C.L. Piuri M. Pérez O.E. Probiotics, their extracellular vesicles and infectious diseases. Front. Microbiol. 2022 13 864720 10.3389/fmicb.2022.864720 35432276
    [Google Scholar]
  80. Sharif S. Greer A. Skorupski C. Probiotics in critical illness: A systematic review and meta-analysis of randomized controlled trials. Crit. Care Med. 2022 50 8 1175 1186 10.1097/CCM.0000000000005580 35608319
    [Google Scholar]
  81. Aggarwal N. Breedon A.M.E. Davis C.M. Hwang I.Y. Chang M.W. Engineering probiotics for therapeutic applications: Recent examples and translational outlook. Curr. Opin. Biotechnol. 2020 65 171 179 10.1016/j.copbio.2020.02.016 32304955
    [Google Scholar]
  82. Cruz K.C.P. Enekegho L.O. Stuart D.T. Bioengineered probiotics: Synthetic biology can provide live cell therapeutics for the treatment of foodborne diseases. Front. Bioeng. Biotechnol. 2022 10 890479 10.3389/fbioe.2022.890479 35656199
    [Google Scholar]
  83. Huang Y. Lin X. Yu S. Chen R. Chen W. Intestinal engineered probiotics as living therapeutics: Chassis selection, colonization enhancement, gene circuit design, and biocontainment. ACS Synth. Biol. 2022 11 10 3134 3153 10.1021/acssynbio.2c00314 36094344
    [Google Scholar]
  84. Barra M. Danino T. Garrido D. Engineered probiotics for detection and treatment of inflammatory intestinal diseases. Front. Bioeng. Biotechnol. 2020 8 265 10.3389/fbioe.2020.00265 32296696
    [Google Scholar]
  85. Kang M. Choe D. Kim K. Cho B.K. Cho S. Synthetic biology approaches in the development of engineered therapeutic microbes. Int. J. Mol. Sci. 2020 21 22 8744 10.3390/ijms21228744 33228099
    [Google Scholar]
  86. Kumar P. Sinha R. Shukla P. Artificial intelligence and synthetic biology approaches for human gut microbiome. Crit. Rev. Food Sci. Nutr. 2022 62 8 2103 2121 10.1080/10408398.2020.1850415 33249867
    [Google Scholar]
  87. Mugwanda K. Hamese S. Van Zyl W.F. Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci. Rep. 2023 43 1 BSR20211299 10.1042/BSR20211299 36597861
    [Google Scholar]
  88. Meng J. Liu S. Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit. Rev. Microbiol. 2024 50 3 300 314 10.1080/1040841X.2023.2190392 36946080
    [Google Scholar]
  89. Carlson P.E. Regulatory considerations for fecal microbiota transplantation products. Cell Host Microbe 2020 27 2 173 175 10.1016/j.chom.2020.01.018 32053787
    [Google Scholar]
  90. Grigoryan Z. Shen M.J. Twardus S.W. Beuttler M.M. Chen L.A. Bateman-House A. Fecal microbiota transplantation: Uses, questions, and ethics. Med Microecology 2020 6 100027 10.1016/j.medmic.2020.100027 33834162
    [Google Scholar]
  91. Peery A.F. Kelly C.R. Kao D. AGA clinical practice guideline on fecal microbiota–based therapies for select gastrointestinal diseases. Gastroenterology 2024 166 3 409 434 10.1053/j.gastro.2024.01.008 38395525
    [Google Scholar]
  92. Sung J.J.Y. Wong S.H. What is unknown in using microbiota as a therapeutic? J. Gastroenterol. Hepatol. 2022 37 1 39 44 10.1111/jgh.15716 34668228
    [Google Scholar]
  93. Alam M.Z. Maslanka J.R. Abt M.C. Immunological consequences of microbiome-based therapeutics. Front. Immunol. 2023 13 1046472 10.3389/fimmu.2022.1046472 36713364
    [Google Scholar]
  94. Liwinski T. Leshem A. Elinav E. Breakthroughs and bottlenecks in microbiome research. Trends Mol. Med. 2021 27 4 298 301 10.1016/j.molmed.2021.01.003 33563544
    [Google Scholar]
  95. Zhang Z.J. Lehmann C.J. Cole C.G. Pamer E.G. Translating microbiome research from and to the clinic. Annu. Rev. Microbiol. 2022 76 1 435 460 10.1146/annurev‑micro‑041020‑022206 35655344
    [Google Scholar]
  96. Sharma A. Das P. Buschmann M. Gilbert J.A. The future of microbiome‐based therapeutics in clinical applications. Clin. Pharmacol. Ther. 2020 107 1 123 128 10.1002/cpt.1677 31617205
    [Google Scholar]
  97. Laudes M. Geisler C. Rohmann N. Bouwman J. Pischon T. Schlicht K. Microbiota in health and disease—potential clinical applications. Nutrients 2021 13 11 3866 10.3390/nu13113866 34836121
    [Google Scholar]
  98. Zaura E. Pappalardo V.Y. Buijs M.J. Volgenant C.M.C. Brandt B.W. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontol. 2000 2021 85 1 210 236 10.1111/prd.12359 33226702
    [Google Scholar]
  99. Selway C.A. Eisenhofer R. Weyrich L.S. Microbiome applications for pathology: Challenges of low microbial biomass samples during diagnostic testing. J. Pathol. Clin. Res. 2020 6 2 97 106 10.1002/cjp2.151 31944633
    [Google Scholar]
  100. Douglas R. The clinical implications of microbiome research. Int. Forum Allergy Rhinol. 2021 11 2 91 92 10.1002/alr.22707 33047866
    [Google Scholar]
  101. Ashique S. Houshyari M. Islam A. Pal R. Ghazanfar S. Taghizadeh-Hesary F. The role of microbiota in nasopharyngeal cancer: Where do we stand? Oral Oncol. 2024 158 106982 10.1016/j.oraloncology.2024.106982 39153457
    [Google Scholar]
  102. Ting N.L.N. Lau H.C.H. Yu J. Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut 2022 71 7 1412 1425 10.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  103. You W. Zhu Y. Wei A. Du J, Wang Y, Zheng P, Tu M, Wang H, Wen L, Yang X. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. Journal. of Neurotrauma 2022 39 1-2 227 237 10.1089/neu.2020.7526
    [Google Scholar]
  104. Ogunjobi T.T. Okafor A.M-A. Ohuonu N.I. Nebolisa N.M. Abimbolu A.K. Ajayi R.O. Navigating the Complexity of the Human Microbiome: Implications for Biomedical Science and Disease Treatment. Dubai, UAE MEDIN 2024 10.47852/bonviewMEDIN42022988
    [Google Scholar]
  105. Young R.B. Marcelino V.R. Chonwerawong M. Gulliver E.L. Forster S.C. Key technologies for progressing discovery of microbiome-based medicines. Front. Microbiol. 2021 12 685935 10.3389/fmicb.2021.685935 34239510
    [Google Scholar]
  106. Biemond J.J. McDonald B. Haak B.W. Leveraging the microbiome in the treatment of sepsis: Potential pitfalls and new perspectives. Curr. Opin. Crit. Care 2023 29 2 123 129 10.1097/MCC.0000000000001019 36762681
    [Google Scholar]
  107. Cassotta M. Forbes-Hernández T.Y. Calderón I.R. Links between nutrition, infectious diseases, and microbiota: Emerging technologies and opportunities for human-focused research. Nutrients 2020 12 6 1827 10.3390/nu12061827 32575399
    [Google Scholar]
  108. Gao Y. Li D. Liu Y.X. Microbiome research outlook: Past, present, and future. Protein Cell 2023 14 10 709 712 10.1093/procel/pwad031 37219087
    [Google Scholar]
  109. Wilkinson J.E. Franzosa E.A. Everett C. A framework for microbiome science in public health. Nat. Med. 2021 27 5 766 774 10.1038/s41591‑021‑01258‑0 33820996
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344384934250624040634
Loading
/content/journals/raaidd/10.2174/0127724344384934250624040634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test