Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background

Viral infections continue to be a major global health issue, causing over five million fatalities and millions of hospitalizations every year. Existing vaccines and commonly used antiviral drugs often exhibit significant side effects and limited efficacy. In contrast, recent studies have shown that plant extracts and their bioactive compounds possess considerable antiviral activity, along with a favourable safety profile for long-term use. These findings have spurred increased interest in the discovery and development of novel plant-derived antiviral agents.

Aim

This review emphasizes the significance of plant-derived antiviral compounds and their corresponding therapeutic targets. It provides a comprehensive overview of recent research on phytochemicals with potential antiviral activity against a wide range of viruses. By consolidating current findings, this review serves as a unified and up-to-date resource on contemporary plant-based antiviral bioactive compounds used in the treatment of human viral infections.

Methods

The antiviral efficacy of selected phytoactive compounds was analysed through detailed molecular mechanism studies, supported by and/or experimental models. Key herbs were reviewed for their active compounds and antiviral activities against specific viruses like influenza, HIV, HBV, HCV, HSV SARS-CoV-2, and measles. The study also analyzed the results, comparing their mechanisms of action, such as immune modulation, inhibition of viral entry, or interference with replication, while also discussing limitations and gaps in current research.

Results

Evidence from the literature suggests that the notable selectivity of herbal bioactive compounds toward viral target proteins may underlie their antiviral activity. Additionally, findings from , and studies indicate that these compounds exert their effects by binding to specific host cell components, thereby protecting the host from viral infection. This review identifies and summarizes over 150 plant-derived antiviral bioactive compounds, along with their respective mechanisms of action, that have demonstrated efficacy against various selected viruses.

Conclusion

Plant-derived compounds, such as alkaloids, flavonoids, phenolics, terpenoids, and coumarins, exhibit significant antiviral potential. Given the limited number of approved antiviral drugs, cellular and molecular evidence supports herbal bioactives as promising alternatives for developing effective antiviral therapies, offering a natural and safer approach to combating viral infections.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344376918250328054623
2025-11-01
2025-12-07
Loading full text...

Full text loading...

References

  1. WangS. WangY. LuY. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine.J. Integr. Med.202018427528310.1016/j.joim.2020.04.001 32446813
    [Google Scholar]
  2. RaiK.R. ShresthaP. YangB. Acute infection of viral pathogens and their innate immune escape.Front. Microbiol.20211267202610.3389/fmicb.2021.672026 34239508
    [Google Scholar]
  3. MohanS. Elhassan TahaM.M. MakeenH.A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules.Molecules20202521487810.3390/molecules25214878 33105694
    [Google Scholar]
  4. BhuttaZ.A. SommerfeldJ. LassiZ.S. SalamR.A. DasJ.K. Global burden, distribution, and interventions for infectious diseases of poverty.Infect. Dis. Poverty2014312110.1186/2049‑9957‑3‑21 25110585
    [Google Scholar]
  5. GaspariniR. AmiciziaD. LaiP.L. PanattoD. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly.Hum. Vaccin. Immunother.201281212810.4161/hv.8.1.17622 22252007
    [Google Scholar]
  6. NovákováL. PavlíkJ. ChrenkováL. MartinecO. ČervenýL. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.J. Pharm. Biomed. Anal.201814737839910.1016/j.jpba.2017.07.003 29031512
    [Google Scholar]
  7. TrovatoM. SartoriusR. D’ApiceL. MancoR. De BerardinisP. Viral emerging diseases: Challenges in developing vaccination strategies.Front. Immunol.202011213010.3389/fimmu.2020.02130 33013898
    [Google Scholar]
  8. MartinezJ.P. SasseF. BrönstrupM. DiezJ. MeyerhansA. Antiviral drug discovery: Broad-spectrum drugs from nature.Nat. Prod. Rep.2015321294810.1039/C4NP00085D 25315648
    [Google Scholar]
  9. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  10. Andrighetti-FröhnerC.R. SinceroT.C.M. da SilvaA.C. Antiviral evaluation of plants from Brazilian atlantic tropical forest.Fitoterapia2005763-437437810.1016/j.fitote.2005.03.010 15890472
    [Google Scholar]
  11. PalD. LalP. Plants showing anti-viral activity with emphasis on secondary metabolites and biological screening.In: Anti-Viral Metabolites from Medicinal Plants.ChamSpringer International Publishing2024299510.1007/978‑3‑031‑12199‑9_2
    [Google Scholar]
  12. PalD. SahaS. SamantaA. Medicinal plants as a source of anti-viral metabolite(s): An introduction. Anti-Viral Metabolites from Medicinal Plants.ChamSpringer International Publishing202312710.1007/978‑3‑030‑83350‑3_1‑1
    [Google Scholar]
  13. WatkinsT. ReschW. IrlbeckD. SwanstromR. Selection of high-level resistance to human immunodeficiency virus type 1 protease inhibitors.Antimicrob. Agents Chemother.200347275976910.1128/AAC.47.2.759‑769.2003 12543689
    [Google Scholar]
  14. MerryT. AstrautsovaS. Alternative approaches to antiviral treatments: Focusing on glycosylation as a target for antiviral therapy.Biotechnol. Appl. Biochem.201056310310910.1042/BA20100010 20649513
    [Google Scholar]
  15. BelaynehY.M. YosephT. AhmedS. A cross-sectional study of herbal medicine use and contributing factors among pregnant women on antenatal care follow-up at Dessie Referral Hospital, Northeast Ethiopia.BMC Complement. Med. Ther.202222114610.1186/s12906‑022‑03628‑8 35610698
    [Google Scholar]
  16. SiowY.L. GongY. Au-YeungK.K.W. WooC.W.H. ChoyP.C. Emerging issues in traditional chinese medicine.Nat Health Prod Therap20150101321334
    [Google Scholar]
  17. GhoshS. BishalA. GhoshS.K. Herbal medicines: A potent approach to human diseases, their chief compounds, formulations, present status, and future aspects.IJMST202310144246410.15379/ijmst.v10i1.2608
    [Google Scholar]
  18. HardyK. Paleomedicine and the evolutionary context of medicinal plant use.Rev. Bras. Farmacogn.202131111510.1007/s43450‑020‑00107‑4 33071384
    [Google Scholar]
  19. ShresthaS. FoxmanB. BerusJ. The role of influenza in the epidemiology of pneumonia.Sci. Rep.2015511531410.1038/srep15314 26486591
    [Google Scholar]
  20. LinaB. History of influenza pandemics.Paleomicrobiology. RaoultD. DrancourtM. Berlin, HeidelbergSpringer Berlin Heidelberg200819921110.1007/978‑3‑540‑75855‑6_12
    [Google Scholar]
  21. KilbourneE.D. Influenza pandemics of the 20th century.Emerg. Infect. Dis.200612191410.3201/eid1201.051254 16494710
    [Google Scholar]
  22. ChowA. MaS. LingA.E. ChewS.K. Influenza-associated deaths in tropical Singapore.Emerg. Infect. Dis.200612111412110.3201/eid1201.050826 16494727
    [Google Scholar]
  23. TaubenbergerJ.K. KashJ.C. Influenza virus evolution, host adaptation, and pandemic formation.Cell Host Microbe20107644045110.1016/j.chom.2010.05.009 20542248
    [Google Scholar]
  24. SuS. GuM. LiuD. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China.Trends Microbiol.201725971372810.1016/j.tim.2017.06.008 28734617
    [Google Scholar]
  25. ZhirnovO.P. LvovD.K. Avian flu: For whom the bell tolls?Probl. Virol.202469210111810.36233/10.36233/0507‑4088‑213 38843017
    [Google Scholar]
  26. ZhangT. YinC. BoydD.F. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis.Cell2020180611151129.e1310.1016/j.cell.2020.02.050 32200799
    [Google Scholar]
  27. MuthuriS.G. VenkatesanS. MylesP.R. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data.Lancet Respir. Med.20142539540410.1016/S2213‑2600(14)70041‑4 24815805
    [Google Scholar]
  28. GaspariniR. AmiciziaD. LaiP.L. BragazziN.L. PanattoD. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs.J. Prev. Med. Hyg.20145536985 25902573
    [Google Scholar]
  29. MuthuriS.G. VenkatesanS. MylesP.R. Impact of neuraminidase inhibitors on influenza A(H1N1) pdm09‐related pneumonia: An individual participant data meta‐analysis.Influenza Other Respir. Viruses201610319220410.1111/irv.12363 26602067
    [Google Scholar]
  30. WangX. JiaW. ZhaoA. WangX. Anti‐influenza agents from plants and traditional Chinese medicine.Phytother. Res.200620533534110.1002/ptr.1892 16619359
    [Google Scholar]
  31. Asl NajjariA.H. RajabiZ. Vasfi MarandiM. DehghanG. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2.Vet. Res. Forum201563227231 26893813
    [Google Scholar]
  32. SongX. ChenJ. SakwiwatkulK. LiR. HuS. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re.Int. Immunopharmacol.201010335135610.1016/j.intimp.2009.12.009 20034596
    [Google Scholar]
  33. DerksenA. KühnJ. HafeziW. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus.J. Ethnopharmacol.201618814415210.1016/j.jep.2016.05.016 27178637
    [Google Scholar]
  34. DroebnerK. EhrhardtC. PoetterA. LudwigS. PlanzO. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice.Antiviral Res.200776111010.1016/j.antiviral.2007.04.001 17573133
    [Google Scholar]
  35. TranT.T. KimM. JangY. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense.BMC Complement. Altern. Med.201717116210.1186/s12906‑017‑1675‑6 28327126
    [Google Scholar]
  36. LeeM.M. ChoW.K. ChaM.H. YimN.H. YangH.J. MaJ.Y. The antiviral activity of Thuja orientalis folium against influenza A virus.Virus Res.202333519919910.1016/j.virusres.2023.199199 37582473
    [Google Scholar]
  37. ShiY. ZhangB. LuY. Antiviral activity of phenanthrenes from the medicinal plant Bletilla striata against influenza A virus.BMC Complement. Altern. Med.201717127310.1186/s12906‑017‑1780‑6 28532402
    [Google Scholar]
  38. ChengJ.C. LiawC.C. LinM.K. Anti-influenza virus activity and chemical components from the parasitic plant Cuscuta japonica choisy on Dimocarpus longans Lour.Molecules20202519442710.3390/molecules25194427 32993192
    [Google Scholar]
  39. GabAllahB.M. Antiviral activity of water extracts of some medicinal and nutritive plants from the apiaceae family.Novel Res Microbiol J20204272573510.21608/nrmj.2020.84021
    [Google Scholar]
  40. Glatthaar-SaalmüllerB. FalA.M. SchönknechtK. ConradF. SieversH. SaalmüllerA. Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract.Phytomedicine2015221091192010.1016/j.phymed.2015.06.006 26321740
    [Google Scholar]
  41. MoradiM-T. KarimiA. ShahraniM. HashemiL. Ghaffari-GooshehM-S. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions.Avicenna J. Med. Biotechnol.2019114285291 31908736
    [Google Scholar]
  42. ShojiM. WooS.Y. MasudaA. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar.BMC Complement. Altern. Med.20171719610.1186/s12906‑017‑1612‑8 28173854
    [Google Scholar]
  43. ZhengX. ChenZ. ShiS. Forsythiaside A improves influenza A virus infection through TLR7 signaling pathway in the lungs of mice.BMC Complement. Med. Ther.202222116410.1186/s12906‑022‑03644‑8 35733131
    [Google Scholar]
  44. ZhangL. ChenJ. KeC. Ethanol extract of Caesalpinia decapetala inhibits influenza virus infection in vitro and in vivo.Viruses202012555710.3390/v12050557 32443510
    [Google Scholar]
  45. MohamedMS IdrissMT AlruwailiNK AlotaibiNH ElsamanT MohamedMA Investigation of the potential anti-influenza activity of five plants grown in sudan and used folklorically for respiratory infections.J App Pharm Sci20201060546110.7324/JAPS.2020.10608
    [Google Scholar]
  46. ZhangT. LoC.Y. XiaoM. ChengL. Pun MokC.K. ShawP.C. Anti-influenza virus phytochemicals from Radix Paeoniae alba and characterization of their neuraminidase inhibitory activities.J. Ethnopharmacol.202025311267110.1016/j.jep.2020.112671 32081739
    [Google Scholar]
  47. ChavanR. ShindeP. GirkarK. MadageR. ChowdharyA. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts.Pharmacognosy Res.20168210511110.4103/0974‑8490.172562 27034600
    [Google Scholar]
  48. ChoiJ.G. KimY.S. KimJ.H. ChungH.S. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition.Sci. Rep.2019911213210.1038/s41598‑019‑48430‑8 31431635
    [Google Scholar]
  49. KoushikJ GhoshS GhoshA Silver nanoparticles loaded with bark extract of Sterculia foetida: Their green synthesis, characterization, and antibacterial activity evaluation.BJ20241311910.70099/BJ/2024.01.03.17
    [Google Scholar]
  50. PandeyA. GalvaniA.P. The global burden of HIV and prospects for control.Lancet HIV2019612e809e81110.1016/S2352‑3018(19)30230‑9 31439533
    [Google Scholar]
  51. SulemanM. KhanS.U. HussainT. Cardiovascular challenges in the era of antiretroviral therapy for AIDS/HIV: A comprehensive review of research advancements, pathophysiological insights, and future directions.Curr. Probl. Cardiol.202449310235310.1016/j.cpcardiol.2023.102353 38128638
    [Google Scholar]
  52. Vidya VijayanK.K. KarthigeyanK.P. TripathiS.P. HannaL.E. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections.Front. Immunol.2017858010.3389/fimmu.2017.00580 28588579
    [Google Scholar]
  53. WilenC.B. TiltonJ.C. DomsR.W. HIV: Cell binding and entry.Cold Spring Harb. Perspect. Med.201228a006866a610.1101/cshperspect.a006866 22908191
    [Google Scholar]
  54. PoltronieriP. SunB. MallardoM. RNA viruses: RNA roles in pathogenesis, coreplication and viral load.Curr. Genomics201516532733510.2174/1389202916666150707160613 27047253
    [Google Scholar]
  55. KuznetsovY.G. McPhersonA. Atomic force microscopy in imaging of viruses and virus-infected cells.Microbiol. Mol. Biol. Rev.201175226828510.1128/MMBR.00041‑10 21646429
    [Google Scholar]
  56. LazarusJ.V. Safreed-HarmonK. BartonS.E. Beyond viral suppression of HIV - The new quality of life frontier.BMC Med.20161419410.1186/s12916‑016‑0640‑4
    [Google Scholar]
  57. TanserF. BärnighausenT. GrapsaE. ZaidiJ. NewellM.L. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa.Science2013339612296697110.1126/science.1228160 23430656
    [Google Scholar]
  58. BangsbergD.R. KroetzD.L. DeeksS.G. Adherence-resistance relationships to combination HIV antiretroviral therapy.Curr. HIV/AIDS Rep.200742657210.1007/s11904‑007‑0010‑0 17547827
    [Google Scholar]
  59. BockC. LengauerT. Managing drug resistance in cancer: Lessons from HIV therapy.Nat. Rev. Cancer201212749450110.1038/nrc3297 22673150
    [Google Scholar]
  60. CraggG.M. NewmanD.J. Plants as a source of anti‐cancer and anti‐HIV agents.Ann. Appl. Biol.2003143212713310.1111/j.1744‑7348.2003.tb00278.x
    [Google Scholar]
  61. BarrecaM.L. FerroS. RaoA. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors.J. Med. Chem.200548227084708810.1021/jm050549e 16250669
    [Google Scholar]
  62. HolecA.D. MandalS. PrathipatiP.K. DestacheC.J. Nucleotide reverse transcriptase inhibitors: A thorough review, present status and future perspective as HIV therapeutics.Curr. HIV Res.201815641142110.2174/1570162X15666171120110145 29165087
    [Google Scholar]
  63. NairV. ChiG. HIV integrase inhibitors as therapeutic agents in AIDS.Rev. Med. Virol.200717427729510.1002/rmv.539 17503547
    [Google Scholar]
  64. KaurR. SharmaP. GuptaG.K. Ntie-KangF. KumarD. Structure-activity-relationship and mechanistic insights for anti-HIV natural products.Molecules2020259207010.3390/molecules25092070 32365518
    [Google Scholar]
  65. PalshetkarA. PathareN. JadhavN. In vitro anti-HIV activity of some Indian medicinal plant extracts.BMC Complement. Med. Ther.20202016910.1186/s12906‑020‑2816‑x 32143607
    [Google Scholar]
  66. Siwe-NoundouX. NdintehD.T. OlivierD.K. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation.S. Afr. J. Bot.201912249850310.1016/j.sajb.2018.08.010
    [Google Scholar]
  67. CalliesO. BedoyaL.M. BeltránM. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina.J. Nat. Prod.20157851045105510.1021/np501025r 25927586
    [Google Scholar]
  68. VidalV. PotteratO. LouvelS. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium.J. Nat. Prod.201275341441910.1021/np200855d 22148316
    [Google Scholar]
  69. SzlávikL. GyurisÁ. MinárovitsJ. ForgoP. MolnárJ. HohmannJ. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids.Planta Med.200470987187310.1055/s‑2004‑827239 15386196
    [Google Scholar]
  70. JodhR. TawarM. BehereS. RandhaveN. JirapureP. IngleS. A review on Calendula officinalis.Res J Pharmacogn Phytochem202315151010.52711/0975‑4385.2023.00002
    [Google Scholar]
  71. GongH. LiS. HeL. KasimuR. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China.BMC Complement. Altern. Med.20171719510.1186/s12906‑017‑1605‑7 28173792
    [Google Scholar]
  72. MocanuM.L. AmarieiS. Elderberries—A source of bioactive compounds with antiviral action.Plants202211674010.3390/plants11060740 35336621
    [Google Scholar]
  73. BunluepuechK. TewtrakulS. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations.Songklanakarin J. Sci. Technol.2011336693697
    [Google Scholar]
  74. CoronaA. SeibtS. SchallerD. Garcinol from Garcinia indica inhibits HIV‐1 reverse transcriptase‐associated ribonuclease H.Arch Pharm20213549210012310.1002/ardp.202100123 34008218
    [Google Scholar]
  75. HarnettS.M. OosthuizenV. van de VenterM. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus.J. Ethnopharmacol.2005961-211311910.1016/j.jep.2004.08.038 15588658
    [Google Scholar]
  76. SalehiB. KumarN. ŞenerB. Medicinal plants used in the treatment of human immunodeficiency virus.Int. J. Mol. Sci.2018195145910.3390/ijms19051459 29757986
    [Google Scholar]
  77. WidodoA. WidiyantiP. PrajogoB. Antiviral activity of Justicia gendarussa Burm.f. leaves against hiv-infected MT-4 cells.Afr. J. Infect. Dis.2018121S364310.21010/ajid.v12i1S.4 29619428
    [Google Scholar]
  78. ParkG. KimE. SonY.J. Anti-inflammatory effect of Torilidis fructus ethanol extract through inhibition of Src.Pharm. Biol.20175512074208210.1080/13880209.2017.1362011 28832235
    [Google Scholar]
  79. HarnetiD. SupratmanU. Phytochemistry and biological activities of Aglaia species.Phytochemistry202118111254010.1016/j.phytochem.2020.112540 33130371
    [Google Scholar]
  80. KapewangoloP. TawhaT. NawindaT. KnottM. HansR. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity.S. Afr. J. Bot.201610614014310.1016/j.sajb.2016.06.009
    [Google Scholar]
  81. IshizukaK. TsutsumiY. BabaM. Inhibition of HIV-1 reverse transcriptase activity by the extracts of indian plants.J Biol Macromol2020201172210.14533/jbm.20.17
    [Google Scholar]
  82. Musarra-PizzoM. PennisiR. Ben-AmorI. MandalariG. SciortinoM.T. Antiviral activity exerted by natural products against human viruses.Viruses202113582810.3390/v13050828 34064347
    [Google Scholar]
  83. Popović-DjordjevićJ. QuispeC. GiordoR. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs.Eur. J. Med. Chem.202223311421710.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  84. GujjetiR P MamidalaE Anti-HIV activity of phytosterol isolated from Aerva lanata roots.PJ201691112610.5530/pj.2017.1.19
    [Google Scholar]
  85. ChinsembuK.C. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants.Rev. Bras. Farmacogn.201929450452810.1016/j.bjp.2018.10.006
    [Google Scholar]
  86. BeasleyR.P. HwangL.Y. LinC.C. Incidence of hepatitis B virus infections in preschool children in Taiwan.J. Infect. Dis.1982146219820410.1093/infdis/146.2.198 7108271
    [Google Scholar]
  87. InoueT. TanakaY. HepatitisB. Hepatitis B virus and its sexually transmitted infection - An update.Microb. Cell20163941943610.15698/mic2016.09.527 28357379
    [Google Scholar]
  88. NebbiaG. PeppaD. MainiM.K. Hepatitis B infection: Current concepts and future challenges.QJM2012105210911310.1093/qjmed/hcr270 22252919
    [Google Scholar]
  89. TsukudaS. WatashiK. Hepatitis B virus biology and life cycle.Antiviral Res.202018210492510.1016/j.antiviral.2020.104925 32866519
    [Google Scholar]
  90. WeiJ. LinL. SuX. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells.Biomed. Rep.20142114715110.3892/br.2013.205 24649087
    [Google Scholar]
  91. WeiZ.Q. ZhangY.H. KeC.Z. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.World J. Gastroenterol.201723346252626010.3748/wjg.v23.i34.6252 28974891
    [Google Scholar]
  92. WuY.H. Naturally derived anti-hepatitis B virus agents and their mechanism of action.World J. Gastroenterol.201622118820410.3748/wjg.v22.i1.188 26755870
    [Google Scholar]
  93. HeK. MaY.B. CaoT.W. Seven new secoiridoids with anti-hepatitis B virus activity from Swertia angustifolia.Planta Med.201278881482010.1055/s‑0031‑1298381 22441835
    [Google Scholar]
  94. WeiP.H. WuS.Z. MuX.M. Effect of alcohol extract of Acanthus ilicifolius L. on anti-duck hepatitis B virus and protection of liver.J. Ethnopharmacol.20151601510.1016/j.jep.2014.10.050 25446633
    [Google Scholar]
  95. ThanigaivelS. DurgadeviH. BalasubramaniamJ. MythilyV. ElanchezhiyanM. Comparative evaluation of the anti-hepatitis B virus activity of Centella Asiatica and Camellia sinensis (Green Tea).BMC Infect. Dis.201414S3P2110.1186/1471‑2334‑14‑S3‑P21
    [Google Scholar]
  96. XuH.B. MaY.B. HuangX.Y. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus.J. Ethnopharmacol.201517113114010.1016/j.jep.2015.05.040 26051832
    [Google Scholar]
  97. LvJ.J. WangY.F. ZhangJ.M. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica.Org. Biomol. Chem.201412438764877410.1039/C4OB01196A 25268491
    [Google Scholar]
  98. DaiJ.J. TaoH.M. MinQ.X. ZhuQ.H. Anti-hepatitis B virus activities of friedelolactones from Viola diffusa Ging.Phytomedicine2015227-872472910.1016/j.phymed.2015.05.001 26141758
    [Google Scholar]
  99. LiY.Q. WangS.F. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum.Biotechnol. Lett.2006281183784110.1007/s10529‑006‑9007‑9 16786250
    [Google Scholar]
  100. SadieaR.Z. SultanaS. ChakiB.M. Phytomedicines to target hepatitis B virus DNA replication: Current limitations and future approaches.Int. J. Mol. Sci.2022233161710.3390/ijms23031617 35163539
    [Google Scholar]
  101. SorianoV. VispoE. PovedaE. Directly acting antivirals against hepatitis C virus.J. Antimicrob. Chemother.20116681673168610.1093/jac/dkr215 21652618
    [Google Scholar]
  102. SmythB.P. O’ConnorJ.J. BarryJ. KeenanE. Retrospective cohort study examining incidence of HIV and hepatitis C infection among injecting drug users in Dublin.J. Epidemiol. Community Health200357431031110.1136/jech.57.4.310 12646549
    [Google Scholar]
  103. ModrowS. FalkeD. TruyenU. SchätzlH. Viruses with single-stranded, positive-sense RNA genomes. Molecular Virology.Berlin, HeidelbergSpringer Berlin Heidelberg201318534910.1007/978‑3‑642‑20718‑1_14
    [Google Scholar]
  104. IrshadM. MankotiaD.S. IrshadK. An insight into the diagnosis and pathogenesis of hepatitis C virus infection.World J. Gastroenterol.201319447896790910.3748/wjg.v19.i44.7896 24307784
    [Google Scholar]
  105. DenaroM. SmeriglioA. BarrecaD. Antiviral activity of plants and their isolated bioactive compounds: An update.Phytother. Res.202034474276810.1002/ptr.6575 31858645
    [Google Scholar]
  106. KurniawanJ. Pangenotypic direct acting antivirals treatment for chronic hepatitis C infection.Indones J Gastroenterol Hepatol Dig Endosc20202111210.24871/21120201‑2
    [Google Scholar]
  107. JavedT. AshfaqU.A. RiazS. RehmanS. RiazuddinS. In-vitro antiviral activity of Solanum nigrum against Hepatitis C virus.Virol. J.2011812610.1186/1743‑422X‑8‑26 21247464
    [Google Scholar]
  108. RehmanS. IjazB. FatimaN. MuhammadS.A. RiazuddinS. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.Biomed. Pharmacother.20168388189110.1016/j.biopha.2016.08.002 27513212
    [Google Scholar]
  109. YousafT. RafiqueS. WahidF. Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus.Microb. Pathog.201811815415810.1016/j.micpath.2018.03.030 29571723
    [Google Scholar]
  110. WahyuniT.S. TumewuL. PermanasariA.A. Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus.Virol. J.201310125910.1186/1743‑422X‑10‑259 24089993
    [Google Scholar]
  111. JamshidiZ. HashemiM. Yazdian-RobatiR. EtemadL. SalmasiZ. KesharwaniP. Effects of Boswellia species on viral infections with particular attention to SARS-CoV-2.Inflammopharmacology20223051541155310.1007/s10787‑022‑01037‑4 35882701
    [Google Scholar]
  112. RavikumarY.S. RayU. NandhithaM. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source.Virus Res.20111581-2899710.1016/j.virusres.2011.03.014 21440018
    [Google Scholar]
  113. RatnoglikS.L. AokiC. SudarmonoP. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus.Microbiol. Immunol.201458318819410.1111/1348‑0421.12133 24438164
    [Google Scholar]
  114. JardimA.C.G. ShimizuJ.F. RahalP. HarrisM. Plant-derived antivirals against hepatitis C virus infection.Virol. J.20181513410.1186/s12985‑018‑0945‑3 29439720
    [Google Scholar]
  115. LinC.W. LoC.W. TsaiC.N. PanT.C. ChenP.Y. YuM.J. Aeginetia indica decoction inhibits hepatitis C virus life cycle.Int. J. Mol. Sci.201819120810.3390/ijms19010208 29315273
    [Google Scholar]
  116. HungT.C. JasseyA. LinC.J. Methanolic extract of Rhizoma coptidis inhibits the early viral entry steps of hepatitis C virus infection.Viruses2018101266910.3390/v10120669 30486350
    [Google Scholar]
  117. BachmetovL. Gal-TanamyM. ShapiraA. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity.J. Viral Hepat.2012192e81e8810.1111/j.1365‑2893.2011.01507.x 22239530
    [Google Scholar]
  118. ZuoG. LiZ. ChenL. XuX. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease.Antiviral Res.2007761869210.1016/j.antiviral.2007.06.001 17624450
    [Google Scholar]
  119. QianX.J. ZhangX.L. ZhaoP. A schisandra-derived compound schizandronic acid inhibits entry of Pan-HCV genotypes into human hepatocytes.Sci. Rep.2016612726810.1038/srep27268 27252043
    [Google Scholar]
  120. LeeS. YoonK.D. LeeM. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase.Br. J. Pharmacol.2016173119121110.1111/bph.13358 26445091
    [Google Scholar]
  121. LiS. KodamaE.N. InoueY. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication.Antivir. Chem. Chemother.201020623924810.3851/IMP1597 20710064
    [Google Scholar]
  122. WagonerJ. NegashA. KaneO.J. Multiple effects of silymarin on the hepatitis C virus lifecycle.Hepatology20105161912192110.1002/hep.23587 20512985
    [Google Scholar]
  123. LookerK.J. WeltonN.J. SabinK.M. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: A population attributable fraction analysis using published epidemiological data.Lancet Infect. Dis.202020224024910.1016/S1473‑3099(19)30470‑0 31753763
    [Google Scholar]
  124. ZhuS. Viejo-BorbollaA. Pathogenesis and virulence of herpes simplex virus.Virulence20211212670270210.1080/21505594.2021.1982373 34676800
    [Google Scholar]
  125. ForniD. PontremoliC. ClericiM. PozzoliU. CaglianiR. SironiM. Recent out-of-Africa migration of human herpes simplex viruses.Mol. Biol. Evol.20203751259127110.1093/molbev/msaa001 31917410
    [Google Scholar]
  126. DropulicL.K. CohenJ.I. Update on new antivirals under development for the treatment of double-stranded DNA virus infections.Clin. Pharmacol. Ther.201088561061910.1038/clpt.2010.178 20881959
    [Google Scholar]
  127. ChuanasaT. PhromjaiJ. LipipunV. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice.Antiviral Res.2008801627010.1016/j.antiviral.2008.05.002 18565600
    [Google Scholar]
  128. CopelandA.M. NewcombW.W. BrownJ.C. Herpes simplex virus replication: Roles of viral proteins and nucleoporins in capsid-nucleus attachment.J. Virol.20098341660166810.1128/JVI.01139‑08 19073727
    [Google Scholar]
  129. ChangJ.Y. BalchC. PuccioJ. OhH.S. A narrative review of alternative symptomatic treatments for herpes simplex virus.Viruses2023156131410.3390/v15061314 37376614
    [Google Scholar]
  130. BenzekriR. LimamF. BouslamaL. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action.Adv Trad Med202020222323110.1007/s13596‑020‑00430‑0
    [Google Scholar]
  131. Musarra-PizzoM. PennisiR. Ben-AmorI. SmeriglioA. MandalariG. SciortinoM.T. In vitro Anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from Pistachios Kernels (Pistacia vera L.).Plants20209226710.3390/plants9020267 32085514
    [Google Scholar]
  132. GeethangiliM. DingS.T. A review of the phytochemistry and pharmacology of Phyllanthus urinaria L.Front. Pharmacol.20189110910.3389/fphar.2018.01109 30327602
    [Google Scholar]
  133. KesharwaniA. PolachiraS.K. NairR. AgarwalA. MishraN.N. GuptaS.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids.BMC Complement. Altern. Med.201717111010.1186/s12906‑017‑1620‑8 28196487
    [Google Scholar]
  134. GescherK. KühnJ. HafeziW. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1.Fitoterapia201182340841310.1016/j.fitote.2010.11.022 21129454
    [Google Scholar]
  135. BertolJ.W. RigottoC. de PáduaR.M. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata.Antiviral Res.2011921738010.1016/j.antiviral.2011.06.015 21763352
    [Google Scholar]
  136. GavanjiS. SayedipourS.S. LarkiB. BakhtariA. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture.J. Acute Med.201553626810.1016/j.jacme.2015.07.001
    [Google Scholar]
  137. PereraW.P.R.T. LiyanageJ.A. DissanayakeK.G.C. Antiviral potential of selected medicinal herbs and their isolated natural products.BioMed Res. Int.202120211787240610.1155/2021/7872406 34926691
    [Google Scholar]
  138. RoufR. UddinS.J. SarkerD.K. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data.Trends Food Sci. Technol.202010421923410.1016/j.tifs.2020.08.006 32836826
    [Google Scholar]
  139. AdigunaS.P. PanggabeanJ.A. AtikanaA. Antiviral activities of andrographolide and its derivatives: Mechanism of action and delivery system.Pharmaceuticals20211411110210.3390/ph14111102 34832884
    [Google Scholar]
  140. XiangY. PeiY. QuC. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-D-glucose from Phyllanthus emblica L. (Euphorbiaceae).Phytother. Res.201125797598210.1002/ptr.3368 21213355
    [Google Scholar]
  141. ChengH.Y. LinC.C. LinT.C. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn.Antiviral Res.200255344745510.1016/S0166‑3542(02)00077‑3 12206882
    [Google Scholar]
  142. HuangW. ChenX. LiQ. Inhibition of intercellular adhesion in herpex simplex virus infection by glycyrrhizin.Cell Biochem. Biophys.201262113714010.1007/s12013‑011‑9271‑8 21874590
    [Google Scholar]
  143. GhoshM. CivraA. RittàM. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro.Arch. Virol.2016161123509351410.1007/s00705‑016‑3032‑3 27581805
    [Google Scholar]
  144. BoffL. SilvaI.T. ArgentaD.F. Strychnos pseudoquina A. St. Hil.: A Brazilian medicinal plant with promising in vitro antiherpes activity.J. Appl. Microbiol.201612161519152910.1111/jam.13279 27566664
    [Google Scholar]
  145. YucharoenR. AnuchapreedaS. TragoolpuaY. Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum Sanctum L., Ocimum Basilicum L. and Ocimum Americanum L.Afr. J. Biotechnol.2011105860866
    [Google Scholar]
  146. YarmolinskyL. ZaccaiM. Ben-ShabatS. MillsD. HuleihelM. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidumin vitro.N. Biotechnol.200926630731310.1016/j.nbt.2009.08.005 19703599
    [Google Scholar]
  147. KonigheimBS In vitro antiviral activity of heterophyllaea pustulata extracts.Nat Prod Commun2012781934578X120070010.1177/1934578X1200700816
    [Google Scholar]
  148. BisignanoC. MandalariG. SmeriglioA. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell.Viruses20179717810.3390/v9070178 28698509
    [Google Scholar]
  149. ChurquiM.P. LindL. ThörnK. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2.J. Ethnopharmacol.201821019219710.1016/j.jep.2017.08.010 28807852
    [Google Scholar]
  150. YelinD. WirtheimE. VetterP. Long-term consequences of COVID-19: Research needs.Lancet Infect. Dis.202020101115111710.1016/S1473‑3099(20)30701‑5 32888409
    [Google Scholar]
  151. GuarnerJ. Three emerging coronaviruses in two decades.Am. J. Clin. Pathol.2020153442042110.1093/ajcp/aqaa029 32053148
    [Google Scholar]
  152. LiuZ. XiaoX. WeiX. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2.J. Med. Virol.202092659560110.1002/jmv.25726 32100877
    [Google Scholar]
  153. SchwartzJ. CapistranoK.J. GluckJ. HezarkhaniA. NaqviA.R. SARS‐CoV‐2, periodontal pathogens, and host factors: The trinity of oral post‐acute sequelae of COVID‐19.Rev. Med. Virol.2024343e254310.1002/rmv.2543 38782605
    [Google Scholar]
  154. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.25681 31967327
    [Google Scholar]
  155. JanaK. GhoshS. DebnathB. Recent advancements of hyaluronic acid nanoscaffolds in arthritis management.ChemistrySelect2024932e20240203510.1002/slct.202402035
    [Google Scholar]
  156. LamersM.M. HaagmansB.L. SARS-CoV-2 pathogenesis.Nat. Rev. Microbiol.202220527028410.1038/s41579‑022‑00713‑0 35354968
    [Google Scholar]
  157. MondelloC. RoccuzzoS. MalfaO. Pathological findings in COVID-19 as a tool to define SARS-CoV-2 pathogenesis. A systematic review.Front. Pharmacol.20211261458610.3389/fphar.2021.614586 33867981
    [Google Scholar]
  158. GhoshR. ChakrabortyA. BiswasA. ChowdhuriS. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective.J. Mol. Struct.2021122912948910.1016/j.molstruc.2020.129489 33100380
    [Google Scholar]
  159. ChenR.H. YangL.J. HamdounS. 1,2,3,4,6-pentagalloyl glucose, a RBD-ACE2 binding inhibitor to prevent SARS-CoV-2 infection.Front. Pharmacol.20211263417610.3389/fphar.2021.634176 33897423
    [Google Scholar]
  160. XieL. ZhaoY.X. ZhengY. LiX.F. The pharmacology and mechanisms of platycodin D, an active Triterpenoid saponin from Platycodon grandiflorus.Front. Pharmacol.202314114885310.3389/fphar.2023.1148853 37089949
    [Google Scholar]
  161. KumarS.B. KrishnaS. PradeepS. Screening of natural compounds from Cyperus rotundus Linn against SARS-CoV-2 main protease (Mpro): An integrated computational approach.Comput. Biol. Med.202113410452410.1016/j.compbiomed.2021.104524 34090015
    [Google Scholar]
  162. NivethaR. BhuvaragavanS. Muthu KumarT. RamanathanK. JanarthananS. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis.J. Biomol. Struct. Dyn.20224021110701108110.1080/07391102.2021.1955009 34431451
    [Google Scholar]
  163. WansriR. LinA.C.K. PengonJ. Semi-synthesis of N-Aryl amide analogs of piperine from Piper nigrum and evaluation of their antitrypanosomal, antimalarial, and anti-sars-cov-2 main protease activities.Molecules2022279284110.3390/molecules27092841 35566194
    [Google Scholar]
  164. MeneguzzoF. CiriminnaR. ZabiniF. PagliaroM. Review of evidence available on hesperidin-rich products as potential tools against covid-19 and hydrodynamic cavitation-based extraction as a method of increasing their production.Processes20208554910.3390/pr8050549
    [Google Scholar]
  165. GhoshR. ChakrabortyA. BiswasA. ChowdhuriS. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches.J. Biomol. Struct. Dyn.202139176747676010.1080/07391102.2020.1802347 32762411
    [Google Scholar]
  166. JinY.H. MinJ.S. JeonS. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections.Phytomedicine20218615344010.1016/j.phymed.2020.153440 33376043
    [Google Scholar]
  167. BanerjeeS. BaidyaS.K. AdhikariN. GhoshB. JhaT. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences.J. Mol. Struct.2023127513464210.1016/j.molstruc.2022.134642 36467615
    [Google Scholar]
  168. MukherjeeP.K. EfferthT. DasB. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications.Phytomedicine20229815393010.1016/j.phymed.2022.153930 35114450
    [Google Scholar]
  169. GyebiG.A. OgunroO.B. AdegunloyeA.P. OgunyemiO.M. AfolabiS.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL pro): An in silico screening of alkaloids and terpenoids from African medicinal plants.J. Biomol. Struct. Dyn.202011310.1080/07391102.2020.1764868 32367767
    [Google Scholar]
  170. PatelU. DesaiK. DabhiR.C. MaruJ.J. ShrivastavP.S. Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): A computational study.J. Mol. Model.202329516110.1007/s00894‑023‑05569‑6 37115321
    [Google Scholar]
  171. PrasanthD.S.N.B.K. MurahariM. ChandramohanV. In-silico strategies of some selected phytoconstituents from Melissa officinalis as SARS CoV-2 main protease and spike protein (COVID-19) inhibitors.Mol. Simul.202147645747010.1080/08927022.2021.1880576
    [Google Scholar]
  172. NadiA. ShiraviA.A. MohammadiZ. AslaniA. ZeinalianM. Thymus vulgaris, a natural pharmacy against COVID-19: A molecular review.J. Herb. Med.20233810063510.1016/j.hermed.2023.100635 36718131
    [Google Scholar]
  173. HabibzadehS. ZohalinezhadM.E. Antiviral activity of Matricaria chamomilla in the treatment of COVID-19: molecular docking study.Eur. J. Integr. Med.20214810197510.1016/j.eujim.2021.101975
    [Google Scholar]
  174. ChengP.W. NgL.T. ChiangL.C. LinC.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro.Clin. Exp. Pharmacol. Physiol.200633761261610.1111/j.1440‑1681.2006.04415.x 16789928
    [Google Scholar]
  175. LiuH. YeF. SunQ. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro.J. Enzyme Inhib. Med. Chem.202136149750310.1080/14756366.2021.1873977 33491508
    [Google Scholar]
  176. FlerovaE. AmbililM. CivanJ.M. Striking cholestatic giant cell hepatitis resulting in fulminant liver failure after Garcinia cambogia use.Int. J. Surg. Pathol.202432361962410.1177/10668969231186926 37461217
    [Google Scholar]
  177. AatiH.Y. IsmailA. RatebM.E. AboulMagd AM, Hassan HM, Hetta MH. Garcinia cambogia phenolics as potent anti-COVID-19 agents: Phytochemical profiling, biological activities, and molecular docking.Plants20221119252110.3390/plants11192521 36235385
    [Google Scholar]
  178. ThomasJ.A. PaulI.K. JubilateA. Interventions and recommendations to Mitigate measles outbreak in Tanzania.Ann. Med. Surg.20228410496410.1016/j.amsu.2022.104964 36439889
    [Google Scholar]
  179. BesterJ.C. Measles and measles vaccination.JAMA Pediatr.2016170121209121510.1001/jamapediatrics.2016.1787 27695849
    [Google Scholar]
  180. GoodsonJ.L. SewardJ.F. Measles 50 years after use of measles vaccine.Infect. Dis. Clin. North Am.201529472574310.1016/j.idc.2015.08.001 26610423
    [Google Scholar]
  181. CoughlinM. BeckA. BankampB. RotaP. Perspective on global measles epidemiology and control and the role of novel vaccination strategies.Viruses2017911110.3390/v9010011 28106841
    [Google Scholar]
  182. SantibanezS. HübschenJ.M. Ben MamouM.C. Molecular surveillance of measles and rubella in the WHO European Region: New challenges in the elimination phase.Clin. Microbiol. Infect.201723851652310.1016/j.cmi.2017.06.030 28712666
    [Google Scholar]
  183. LaksonoB. De VriesR. McQuaidS. DuprexW. De SwartR. Measles virus host invasion and pathogenesis.Viruses20168821010.3390/v8080210 27483301
    [Google Scholar]
  184. GriffinD.E. Measles virus‐induced suppression of immune responses.Immunol. Rev.2010236117618910.1111/j.1600‑065X.2010.00925.x 20636817
    [Google Scholar]
  185. NaimH.Y. Measles virus.Hum. Vaccin. Immunother.2015111212610.4161/hv.34298 25483511
    [Google Scholar]
  186. HasanT. Phytochemical investigation of Corchorus olitorius L. Leaves cultivated in iraq and it’s in vitro antiviral activity.Iraqi J. Pharm Sci.201827211512210.31351/vol27iss2pp115‑122
    [Google Scholar]
  187. NwodoU.U. NgeneA.A. IroegbuC.U. OnyedikachiO.A.L. ChigorV.N. OkohA.I. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus.Arch. Virol.201115691551155710.1007/s00705‑011‑1032‑x 21614435
    [Google Scholar]
  188. SundayO.A. Antiviral effect of Hibiscus sabdariffa and Celosia argentea on measles virus.Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20113227924 2011
  189. OluremiB.B. OsamudiamenP.M. AdenijiJ.A. AiyelaagbeO.O. Anti-measles virus activity of 4-hydroxy-3-methoxy benzaldehyde (Vanillin) isolated from Xylopia aethiopica (Dunal) A. rich.Sci. Afr.202319e0150610.1016/j.sciaf.2022.e01506
    [Google Scholar]
  190. WinerH. OzerJ. ShemerY. Nuphar lutea extracts exhibit anti-viral activity against the measles virus.Molecules2020257165710.3390/molecules25071657 32260270
    [Google Scholar]
  191. OlilaD. Olwa-Odyek Opuda-AsiboJ. Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro.Afr. Health Sci.200221210 12789108
    [Google Scholar]
  192. SivarajanR. OberwinklerH. RollV. KönigE.M. SteinkeM. BodemJ. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses.BMC Complement. Med. Ther.202222118110.1186/s12906‑022‑03661‑7 35804339
    [Google Scholar]
  193. Morán-SantibañezK. Peña-HernándezM.A. Cruz-SuárezL.E. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus.Viruses201810946510.3390/v10090465 30200234
    [Google Scholar]
  194. OjoO.O. OluyegeJ.O. FamurewaO. Antiviral properties of two nigerian plants.Afr. J. Plant Sci.200937157159
    [Google Scholar]
  195. BuochuamaA. AmioforiF.I. The utilization of plant species in the treatment of some identifiable viral diseases in Southwestern Nigeria.World Sci. News201895111123
    [Google Scholar]
  196. Kelechi ObR. Adamma SheJ. In vitro antiviral activities of Bryophyllum pinnatum (Odaa opuo) and Viscum album (Awuruse).Res J Microbiol201813313814610.3923/jm.2018.138.146
    [Google Scholar]
  197. SarmaR. AdhikariK. MahantaS. KhanikorB. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae).Toxicol. Rep.201961091109610.1016/j.toxrep.2019.10.009 31687359
    [Google Scholar]
  198. PopoolaT.D. SegunP.A. EkuadziE. West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19.Daru202230119121010.1007/s40199‑022‑00437‑9 35476297
    [Google Scholar]
  199. BrennanJ.W. SunY. Defective viral genomes: Advances in understanding their generation, function, and impact on infection outcomes.MBio2024155e00692e2410.1128/mbio.00692‑24 38567955
    [Google Scholar]
  200. AliK. Clinical Dental Pharmacology.1st editorHoboken (NJ)Wiley;202410.1002/9781119984962
    [Google Scholar]
  201. MegantaraS. RusdinA. BudimanA. ShamsuddinS. MohtarN. MuchtaridiM. Revolutionizing antiviral therapeutics: Unveiling innovative approaches for enhanced drug efficacy.Int. J. Nanomedicine2024192889291510.2147/IJN.S447721 38525012
    [Google Scholar]
  202. ZhangY. ZhangH. XuT. Interactions among microorganisms open up a new world for anti‐infectious therapy.FEBS J.202429181615163110.1111/febs.16705 36527169
    [Google Scholar]
  203. PradhanP. JanaK. GhoshS. Recent advances in bioactive flavonoids-based nanotherapeutics as promising neuroprotectants in epilepsy.Curr. Aging Sci.20251813410.2174/0118746098369369250119112935
    [Google Scholar]
  204. KatochP. RainaK. SharmaR. SharmaR. ChaudharyA. Ayush kwath: A major contribution of ayurveda in preventing COVID-19 infection.Curr. Drug Ther.2024191608010.2174/1574885518666230601150338
    [Google Scholar]
  205. SachanS. DhamaK. LatheefS.K. Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 agonist) against the very virulent, infectious bursal disease virus in SPF chicks.Vaccines20197310610.3390/vaccines7030106 31487960
    [Google Scholar]
  206. KanthariaC. KumarM. JainM.K. SharmaL. JainL. DesaiA. Hepatoprotective effects of Liv.52 in chronic liver disease preclinical, clinical, and safety evidence: A review.Gastroenterol. Insights202314329330810.3390/gastroent14030021
    [Google Scholar]
  207. UllahM.O. HamidK. RahmanK.A. ChoudhuriM. Effect of Rohitakarista (RHT), an ayurvedic formulation, on the lipid profile of rat plasma after chronic administration.Biol. Med.2010222631
    [Google Scholar]
  208. KotadiyaR. A theoretical review on Arogyavardhini vati.Ayurvedapub2022VII120192025
    [Google Scholar]
  209. GundetiM.S. BhurkeL.W. MundadaP.S. AYUSH 64, a polyherbal Ayurvedic formulation in influenza-like illness - Results of a pilot study.J. Ayurveda Integr. Med.202213110032510.1016/j.jaim.2020.05.010 33446377
    [Google Scholar]
  210. SharmaS. KumariK. SethuramanG. AbdelwahabM.M. Sivaperumal YadavS. NandiniV. An ayurvedic medication (Chyawanprash) as a prophylaxis for non-communicable disease and communicable disease: A protocol for systematic review and meta-analysis.Cureus20231510e4755510.7759/cureus.47555 38021581
    [Google Scholar]
  211. HuangC.H. WuV.C.C. WangC.L. WuC.L. HuangY.T. ChangS.H. Silymarin synergizes with antiviral therapy in hepatitis B virus-related liver cirrhosis: A propensity score matching multi-institutional study.Int. J. Mol. Sci.2024256308810.3390/ijms25063088 38542062
    [Google Scholar]
  212. EswaramoorthyR. JaiganeshR. EswaramoorthyR. Formulation and evaluation of Ocimum sanctum Linn containing carboxymethylcellulose and sorbitol based hydrogel.Bioinformation202319554655110.6026/97320630019546 37886155
    [Google Scholar]
  213. SruthiD. JishnaJ.P. DhanalakshmiM. DeepanrajS.P. JayabaskaranC. Medicinal plant extracts and herbal formulations: Plant solutions for the prevention and treatment of COVID-19 infection.Future Integr. Med.20232421622610.14218/FIM.2023.00079
    [Google Scholar]
  214. AlamM.A. QuamriM.A. SofiG. AymanU. AnsariS. AhadM. Understanding COVID-19 in the light of epidemic disease described in Unani medicine.Drug Metabol. Drug Interact.20203542020013610.1515/dmpt‑2020‑0136 34704695
    [Google Scholar]
  215. WangX. MiaoY.H. ZhaoX.M. LiuX. HuY.W. DengD.W. Perspectives on organ-on-a-chip technology for natural products evaluation.Front Med Horiz202412942001310.26599/FMH.2024.9420013
    [Google Scholar]
  216. GaoQ. WuH. ChenM. Active metabolites combination therapies: Towards the next paradigm for more efficient and more scientific Chinese medicine.Front. Pharmacol.202415139219610.3389/fphar.2024.1392196 38698817
    [Google Scholar]
  217. BacharS.C. MazumderK. BacharR. AktarA. Al MahtabM. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV.Front. Pharmacol.20211273289110.3389/fphar.2021.732891 34819855
    [Google Scholar]
  218. PhuH.T. ThuanD.T.B. NguyenT.H.D. PosadinoA.M. EidA.H. PintusG. Herbal medicine for slowing aging and aging-associated conditions: Efficacy, mechanisms and safety.Curr. Vasc. Pharmacol.202018436939310.2174/1570161117666190715121939 31418664
    [Google Scholar]
  219. SainiR. AliM.I. PantM. WarghaneA. Current status of potential antiviral drugs derived from plant, marine, and microbial sources.Antiinfect. Agents2024222e09012422541410.2174/0122113525272349231210055403
    [Google Scholar]
  220. MehrajI. HamidA. GaniU. IraluN. ManzoorT. Saleem BhatS. Combating antimicrobial resistance by employing antimicrobial peptides: Immunomodulators and therapeutic agents against infectious diseases.ACS Appl. Bio Mater.2024742023203510.1021/acsabm.3c01104 38533844
    [Google Scholar]
  221. WangX. WeiM. MiaoR. Adeno‐associated virus vectors for gene therapy—focusing on melanoma.Interdisciplinary Medicine202424e2024003110.1002/INMD.20240031
    [Google Scholar]
  222. DhamaK. ChandranD. ChopraH. SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic.J. Exp. Biol. Agric. Sci.20221061215122110.18006/2022.10(6).1215.1221
    [Google Scholar]
  223. MukhtarM. ArshadM. AhmadM. PomerantzR.J. WigdahlB. ParveenZ. Antiviral potentials of medicinal plants.Virus Res.2008131211112010.1016/j.virusres.2007.09.008 17981353
    [Google Scholar]
  224. BalkrishnaA. SharmaN. SrivastavaD. KukretiA. SrivastavaS. AryaV. Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare.Future Integr. Med.202431354910.14218/FIM.2023.00086
    [Google Scholar]
  225. ChaachouayN. ZidaneL. Plant-derived natural products: A source for drug discovery and development.Drugs and Drug Candidates20243118420710.3390/ddc3010011
    [Google Scholar]
  226. PatilA.D. SinghS. VermaD. GoupaleC. Exploring medical pluralism as a multifaceted approach to healthcare.Indian J Integr Med2024424959
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344376918250328054623
Loading
/content/journals/raaidd/10.2174/0127724344376918250328054623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test