Skip to content
2000
image of Antiviral Bioactive Compounds: Their Activities and Underlying Mechanisms Against Human Viral Infections

Abstract

Background

Viral infections continue to be a major global health issue, causing over five million fatalities and millions of hospitalizations every year. Existing vaccines and commonly used antiviral drugs often exhibit significant side effects and limited efficacy. In contrast, recent studies have shown that plant extracts and their bioactive compounds possess considerable antiviral activity, along with a favourable safety profile for long-term use. These findings have spurred increased interest in the discovery and development of novel plant-derived antiviral agents.

Aim

This review emphasizes the significance of plant-derived antiviral compounds and their corresponding therapeutic targets. It provides a comprehensive overview of recent research on phytochemicals with potential antiviral activity against a wide range of viruses. By consolidating current findings, this review serves as a unified and up-to-date resource on contemporary plant-based antiviral bioactive compounds used in the treatment of human viral infections.

Methodology

The antiviral efficacy of selected phytoactive compounds was analysed through detailed molecular mechanism studies, supported by and/or experimental models. Key herbs were reviewed for their active compounds and antiviral activities against specific viruses like influenza, HIV, HBV, HCV, HSV SARS-CoV-2, and measles. The study also analyzed the results, comparing their mechanisms of action, such as immune modulation, inhibition of viral entry, or interference with replication, while also discussing limitations and gaps in current research.

Result

Evidence from the literature suggests that the notable selectivity of herbal bioactive compounds toward viral target proteins may underlie their antiviral activity. Additionally, findings from , and studies indicate that these compounds exert their effects by binding to specific host cell components, thereby protecting the host from viral infection. This review identifies and summarizes over 150 plant-derived antiviral bioactive compounds, along with their respective mechanisms of action, that have demonstrated efficacy against various selected viruses.

Conclusion

Plant-derived compounds, such as alkaloids, flavonoids, phenolics, terpenoids, and coumarins, exhibit significant antiviral potential. Given the limited number of approved antiviral drugs, cellular and molecular evidence supports herbal bioactives as promising alternatives for developing effective antiviral therapies, offering a natural and safer approach to combating viral infections.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344376918250328054623
2025-04-22
2025-10-05
Loading full text...

Full text loading...

References

  1. Wang S. Wang Y. Lu Y. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J. Integr. Med. 2020 18 4 275 283 10.1016/j.joim.2020.04.001 32446813
    [Google Scholar]
  2. Rai K.R. Shrestha P. Yang B. Acute infection of viral pathogens and their innate immune escape. Front. Microbiol. 2021 12 672026 10.3389/fmicb.2021.672026 34239508
    [Google Scholar]
  3. Mohan S. Elhassan Taha M.M. Makeen H.A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules 2020 25 21 4878 10.3390/molecules25214878 33105694
    [Google Scholar]
  4. Bhutta Z.A. Sommerfeld J. Lassi Z.S. Salam R.A. Das J.K. Global burden, distribution, and interventions for infectious diseases of poverty. Infect. Dis. Poverty 2014 3 1 21 10.1186/2049‑9957‑3‑21 25110585
    [Google Scholar]
  5. Gasparini R. Amicizia D. Lai P.L. Panatto D. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum. Vaccin. Immunother. 2012 8 1 21 28 10.4161/hv.8.1.17622 22252007
    [Google Scholar]
  6. Nováková L. Pavlík J. Chrenková L. Martinec O. Červený L. Current antiviral drugs and their analysis in biological materials – Part II: Antivirals against hepatitis and HIV viruses. J. Pharm. Biomed. Anal. 2018 147 378 399 10.1016/j.jpba.2017.07.003 29031512
    [Google Scholar]
  7. Trovato M. Sartorius R. D’Apice L. Manco R. De Berardinis P. Viral emerging diseases: Challenges in developing vaccination strategies. Front. Immunol. 2020 11 2130 10.3389/fimmu.2020.02130 33013898
    [Google Scholar]
  8. Martinez J.P. Sasse F. Brönstrup M. Diez J. Meyerhans A. Antiviral drug discovery: Broad-spectrum drugs from nature. Nat. Prod. Rep. 2015 32 1 29 48 10.1039/C4NP00085D 25315648
    [Google Scholar]
  9. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  10. Andrighetti-Fröhner C.R. Sincero T.C.M. da Silva A.C. Antiviral evaluation of plants from Brazilian atlantic tropical forest. Fitoterapia 2005 76 3-4 374 378 10.1016/j.fitote.2005.03.010 15890472
    [Google Scholar]
  11. Pal D. Lal P. Plants showing anti-viral activity with emphasis on secondary metabolites and biological screening. Anti-Viral Metabolites from Medicinal Plants. Cham Springer International Publishing 2024 29 95 10.1007/978‑3‑031‑12199‑9_2
    [Google Scholar]
  12. Pal D. Saha S. Samanta A. Medicinal plants as a source of anti-viral metabolite(s): An introduction. Anti-Viral Metabolites from Medicinal Plants. Cham Springer International Publishing 2023 1 27 10.1007/978‑3‑030‑83350‑3_1‑1
    [Google Scholar]
  13. Watkins T. Resch W. Irlbeck D. Swanstrom R. Selection of high-level resistance to human immunodeficiency virus type 1 protease inhibitors. Antimicrob. Agents Chemother. 2003 47 2 759 769 10.1128/AAC.47.2.759‑769.2003 12543689
    [Google Scholar]
  14. Merry T. Astrautsova S. Alternative approaches to antiviral treatments: Focusing on glycosylation as a target for antiviral therapy. Biotechnol. Appl. Biochem. 2010 56 3 103 109 10.1042/BA20100010 20649513
    [Google Scholar]
  15. Belayneh Y.M. Yoseph T. Ahmed S. A cross-sectional study of herbal medicine use and contributing factors among pregnant women on antenatal care follow-up at Dessie Referral Hospital, Northeast Ethiopia. BMC Complement. Med. Ther. 2022 22 1 146 10.1186/s12906‑022‑03628‑8 35610698
    [Google Scholar]
  16. Siow Y.L. Gong Y. Au-Yeung K.K.W. Woo C.W.H. Choy P.C. Emerging issues in traditional chinese medicine. Nat Health Prod Therap 2015 01 01 321 334
    [Google Scholar]
  17. Ghosh S. Bishal A. Ghosh S.K. Herbal medicines: A potent approach to human diseases, their chief compounds, formulations, present status, and future aspects. IJMST 2023 10 1 442 464 10.15379/ijmst.v10i1.2608
    [Google Scholar]
  18. Hardy K. Paleomedicine and the evolutionary context of medicinal plant use. Rev. Bras. Farmacogn. 2021 31 1 1 15 10.1007/s43450‑020‑00107‑4 33071384
    [Google Scholar]
  19. Shrestha S. Foxman B. Berus J. The role of influenza in the epidemiology of pneumonia. Sci. Rep. 2015 5 1 15314 10.1038/srep15314 26486591
    [Google Scholar]
  20. Lina B. History of influenza pandemics. In: Raoult D, Drancourt M, Eds. Berlin, Heidelberg Springer Berlin Heidelberg 2008 199 211 10.1007/978‑3‑540‑75855‑6_12
    [Google Scholar]
  21. Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006 12 1 9 14 10.3201/eid1201.051254 16494710
    [Google Scholar]
  22. Chow A. Ma S. Ling A.E. Chew S.K. Influenza-associated deaths in tropical Singapore. Emerg. Infect. Dis. 2006 12 1 114 121 10.3201/eid1201.050826 16494727
    [Google Scholar]
  23. Taubenberger J.K. Kash J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010 7 6 440 451 10.1016/j.chom.2010.05.009 20542248
    [Google Scholar]
  24. Su S. Gu M. Liu D. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017 25 9 713 728 10.1016/j.tim.2017.06.008 28734617
    [Google Scholar]
  25. Zhirnov O.P. Lvov D.K. Avian flu: «For whom the bell tolls»? Probl. Virol. 2024 69 2 101 118 10.36233/10.36233/0507‑4088‑213 38843017
    [Google Scholar]
  26. Zhang T. Yin C. Boyd D.F. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 2020 180 6 1115 1129.e13 10.1016/j.cell.2020.02.050 32200799
    [Google Scholar]
  27. Muthuri S.G. Venkatesan S. Myles P.R. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data. Lancet Respir. Med. 2014 2 5 395 404 10.1016/S2213‑2600(14)70041‑4 24815805
    [Google Scholar]
  28. Gasparini R. Amicizia D. Lai P.L. Bragazzi N.L. Panatto D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs. J. Prev. Med. Hyg. 2014 55 3 69 85 25902573
    [Google Scholar]
  29. Muthuri S.G. Venkatesan S. Myles P.R. Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09‐related pneumonia: An individual participant data meta‐analysis. Influenza Other Respir. Viruses 2016 10 3 192 204 10.1111/irv.12363 26602067
    [Google Scholar]
  30. Wang X. Jia W. Zhao A. Wang X. Anti‐influenza agents from plants and traditional Chinese medicine. Phytother. Res. 2006 20 5 335 341 10.1002/ptr.1892 16619359
    [Google Scholar]
  31. Asl Najjari A.H. Rajabi Z. Vasfi Marandi M. Dehghan G. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2. Vet. Res. Forum 2015 6 3 227 231 26893813
    [Google Scholar]
  32. Song X. Chen J. Sakwiwatkul K. Li R. Hu S. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. Int. Immunopharmacol. 2010 10 3 351 356 10.1016/j.intimp.2009.12.009 20034596
    [Google Scholar]
  33. Derksen A. Kühn J. Hafezi W. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. J. Ethnopharmacol. 2016 188 144 152 10.1016/j.jep.2016.05.016 27178637
    [Google Scholar]
  34. Droebner K. Ehrhardt C. Poetter A. Ludwig S. Planz O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Res. 2007 76 1 1 10 10.1016/j.antiviral.2007.04.001 17573133
    [Google Scholar]
  35. Tran T.T. Kim M. Jang Y. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complement. Altern. Med. 2017 17 1 162 10.1186/s12906‑017‑1675‑6 28327126
    [Google Scholar]
  36. Lee M.M. Cho W.K. Cha M.H. Yim N.H. Yang H.J. Ma J.Y. The antiviral activity of Thuja orientalis folium against influenza A virus. Virus Res. 2023 335 199199 10.1016/j.virusres.2023.199199 37582473
    [Google Scholar]
  37. Shi Y. Zhang B. Lu Y. Antiviral activity of phenanthrenes from the medicinal plant Bletilla striata against influenza A virus. BMC Complement. Altern. Med. 2017 17 1 273 10.1186/s12906‑017‑1780‑6 28532402
    [Google Scholar]
  38. Cheng J.C. Liaw C.C. Lin M.K. Anti-influenza virus activity and chemical components from the parasitic plant Cuscuta japonica choisy on Dimocarpus longans Lour. Molecules 2020 25 19 4427 10.3390/molecules25194427 32993192
    [Google Scholar]
  39. GabAllah BM. Antiviral activity of water extracts of some medicinal and nutritive plants from the apiaceae family. Novel Res Microbiol J 2020 4 2 725 735 10.21608/nrmj.2020.84021
    [Google Scholar]
  40. Glatthaar-Saalmüller B. Fal A.M. Schönknecht K. Conrad F. Sievers H. Saalmüller A. Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine 2015 22 10 911 920 10.1016/j.phymed.2015.06.006 26321740
    [Google Scholar]
  41. Moradi M-T. Karimi A. Shahrani M. Hashemi L. Ghaffari-Goosheh M-S. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna J. Med. Biotechnol. 2019 11 4 285 291 31908736
    [Google Scholar]
  42. Shoji M. Woo S.Y. Masuda A. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar. BMC Complement. Altern. Med. 2017 17 1 96 10.1186/s12906‑017‑1612‑8 28173854
    [Google Scholar]
  43. Zheng X. Chen Z. Shi S. Forsythiaside A improves influenza A virus infection through TLR7 signaling pathway in the lungs of mice. BMC Complement. Med. Ther. 2022 22 1 164 10.1186/s12906‑022‑03644‑8 35733131
    [Google Scholar]
  44. Zhang L. Chen J. Ke C. Ethanol extract of Caesalpinia decapetala inhibits influenza virus infection in vitro and in vivo. Viruses 2020 12 5 557 10.3390/v12050557 32443510
    [Google Scholar]
  45. Mohamed M S Idriss M T Alruwaili N K Alotaibi N H Elsaman T Mohamed M A Investigation of the potential anti-influenza activity of five plants grown in sudan and used folklorically for respiratory infections. J App Pharm Sci 2020 10 6 054 61 10.7324/JAPS.2020.10608
  46. Zhang T. Lo C.Y. Xiao M. Cheng L. Pun Mok C.K. Shaw P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol. 2020 253 112671 10.1016/j.jep.2020.112671 32081739
    [Google Scholar]
  47. Chavan R. Shinde P. Girkar K. Madage R. Chowdhary A. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Pharmacognosy Res. 2016 8 2 105 111 10.4103/0974‑8490.172562 27034600
    [Google Scholar]
  48. Choi J.G. Kim Y.S. Kim J.H. Chung H.S. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition. Sci. Rep. 2019 9 1 12132 10.1038/s41598‑019‑48430‑8 31431635
    [Google Scholar]
  49. Koushik J Ghosh S Ghosh A Silver nanoparticles loaded with bark extract of Sterculia foetida: Their green synthesis, characterization, and antibacterial activity evaluation. BJ 2024 1 3 1 19 10.70099/BJ/2024.01.03.17
  50. Pandey A. Galvani A.P. The global burden of HIV and prospects for control. Lancet HIV 2019 6 12 e809 e811 10.1016/S2352‑3018(19)30230‑9 31439533
    [Google Scholar]
  51. Suleman M. Khan S.U. Hussain T. Cardiovascular challenges in the era of antiretroviral therapy for AIDS/HIV: A comprehensive review of research advancements, pathophysiological insights, and future directions. Curr. Probl. Cardiol. 2024 49 3 102353 10.1016/j.cpcardiol.2023.102353 38128638
    [Google Scholar]
  52. Vidya Vijayan K.K. Karthigeyan K.P. Tripathi S.P. Hanna L.E. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front. Immunol. 2017 8 580 10.3389/fimmu.2017.00580 28588579
    [Google Scholar]
  53. Wilen C.B. Tilton J.C. Doms R.W. HIV: Cell binding and entry. Cold Spring Harb. Perspect. Med. 2012 2 8 a006866 a6 10.1101/cshperspect.a006866 22908191
    [Google Scholar]
  54. Poltronieri P. Sun B. Mallardo M. RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Curr. Genomics 2015 16 5 327 335 10.2174/1389202916666150707160613 27047253
    [Google Scholar]
  55. Kuznetsov Y.G. McPherson A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol. Mol. Biol. Rev. 2011 75 2 268 285 10.1128/MMBR.00041‑10 21646429
    [Google Scholar]
  56. Lazarus J.V. Safreed-Harmon K. Barton S.E. Beyond viral suppression of HIV – The new quality of life frontier. BMC Med. 2016 14 1 94 10.1186/s12916‑016‑0640‑4
    [Google Scholar]
  57. Tanser F. Bärnighausen T. Grapsa E. Zaidi J. Newell M.L. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 2013 339 6122 966 971 10.1126/science.1228160 23430656
    [Google Scholar]
  58. Bangsberg D.R. Kroetz D.L. Deeks S.G. Adherence-resistance relationships to combination HIV antiretroviral therapy. Curr. HIV/AIDS Rep. 2007 4 2 65 72 10.1007/s11904‑007‑0010‑0 17547827
    [Google Scholar]
  59. Bock C. Lengauer T. Managing drug resistance in cancer: Lessons from HIV therapy. Nat. Rev. Cancer 2012 12 7 494 501 10.1038/nrc3297 22673150
    [Google Scholar]
  60. Cragg G.M. Newman D.J. Plants as a source of anti‐cancer and anti‐HIV agents. Ann. Appl. Biol. 2003 143 2 127 133 10.1111/j.1744‑7348.2003.tb00278.x
    [Google Scholar]
  61. Barreca M.L. Ferro S. Rao A. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J. Med. Chem. 2005 48 22 7084 7088 10.1021/jm050549e 16250669
    [Google Scholar]
  62. Holec A.D. Mandal S. Prathipati P.K. Destache C.J. Nucleotide reverse transcriptase inhibitors: A thorough review, present status and future perspective as HIV therapeutics. Curr. HIV Res. 2018 15 6 411 421 10.2174/1570162X15666171120110145 29165087
    [Google Scholar]
  63. Nair V. Chi G. HIV integrase inhibitors as therapeutic agents in AIDS. Rev. Med. Virol. 2007 17 4 277 295 10.1002/rmv.539 17503547
    [Google Scholar]
  64. Kaur R. Sharma P. Gupta G.K. Ntie-Kang F. Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 2020 25 9 2070 10.3390/molecules25092070 32365518
    [Google Scholar]
  65. Palshetkar A. Pathare N. Jadhav N. In vitro anti-HIV activity of some Indian medicinal plant extracts. BMC Complement. Med. Ther. 2020 20 1 69 10.1186/s12906‑020‑2816‑x 32143607
    [Google Scholar]
  66. Siwe-Noundou X. Ndinteh D.T. Olivier D.K. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. S. Afr. J. Bot. 2019 122 498 503 10.1016/j.sajb.2018.08.010
    [Google Scholar]
  67. Callies O. Bedoya L.M. Beltrán M. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. J. Nat. Prod. 2015 78 5 1045 1055 10.1021/np501025r 25927586
    [Google Scholar]
  68. Vidal V. Potterat O. Louvel S. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium. J. Nat. Prod. 2012 75 3 414 419 10.1021/np200855d 22148316
    [Google Scholar]
  69. Szlávik L. Gyuris Á. Minárovits J. Forgo P. Molnár J. Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med. 2004 70 9 871 873 10.1055/s‑2004‑827239 15386196
    [Google Scholar]
  70. Jodh R. Tawar M. Behere S. Randhave N. Jirapure P. Ingle S. A review on Calendula officinalis. Res J Pharmacogn Phytochem 2023 15 1 5 10 10.52711/0975‑4385.2023.00002
    [Google Scholar]
  71. Gong H. Li S. He L. Kasimu R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement. Altern. Med. 2017 17 1 95 10.1186/s12906‑017‑1605‑7 28173792
    [Google Scholar]
  72. Mocanu M.L. Amariei S. Elderberries—A source of bioactive compounds with antiviral action. Plants 2022 11 6 740 10.3390/plants11060740 35336621
    [Google Scholar]
  73. Bunluepuech K. Tewtrakul S. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Songklanakarin J. Sci. Technol. 2011 33 6 693 697
    [Google Scholar]
  74. Corona A. Seibt S. Schaller D. Garcinol from Garcinia indica inhibits HIV‐1 reverse transcriptase‐associated ribonuclease H. Arch Pharm 2021 354 9 2100123 10.1002/ardp.202100123 34008218
    [Google Scholar]
  75. Harnett S.M. Oosthuizen V. van de Venter M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J. Ethnopharmacol. 2005 96 1-2 113 119 10.1016/j.jep.2004.08.038 15588658
    [Google Scholar]
  76. Salehi B. Kumar N. Şener B. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci. 2018 19 5 1459 10.3390/ijms19051459 29757986
    [Google Scholar]
  77. Widodo A. Widiyanti P. Prajogo B. Antiviral activity of Justicia gendarussa Burm.f. leaves against hiv-infected MT-4 cells. Afr. J. Infect. Dis. 2018 12 1S 36 43
    [Google Scholar]
  78. Park G. Kim E. Son Y.J. Anti-inflammatory effect of Torilidis fructus ethanol extract through inhibition of Src. Pharm. Biol. 2017 55 1 2074 2082 10.1080/13880209.2017.1362011 28832235
    [Google Scholar]
  79. Harneti D. Supratman U. Phytochemistry and biological activities of Aglaia species. Phytochemistry 2021 181 112540 10.1016/j.phytochem.2020.112540 33130371
    [Google Scholar]
  80. Kapewangolo P. Tawha T. Nawinda T. Knott M. Hans R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. S. Afr. J. Bot. 2016 106 140 143 10.1016/j.sajb.2016.06.009
    [Google Scholar]
  81. Ishizuka K. Tsutsumi Y. Baba M. Inhibition of HIV-1 reverse transcriptase activity by the extracts of indian plants. J Biol Macromol 2020 20 1 17 22 10.14533/jbm.20.17
    [Google Scholar]
  82. Musarra-Pizzo M. Pennisi R. Ben-Amor I. Mandalari G. Sciortino M.T. Antiviral activity exerted by natural products against human viruses. Viruses 2021 13 5 828 10.3390/v13050828 34064347
    [Google Scholar]
  83. Popović-Djordjević J. Quispe C. Giordo R. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur. J. Med. Chem. 2022 233 114217 10.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  84. Gujjeti R P Mamidala E Anti-HIV activity of phytosterol isolated from Aerva lanata roots. PJ 2016 9 1 112 6 10.5530/pj.2017.1.19
  85. Chinsembu K.C. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Rev. Bras. Farmacogn. 2019 29 4 504 528 10.1016/j.bjp.2018.10.006
    [Google Scholar]
  86. Beasley R.P. Hwang L.Y. Lin C.C. Incidence of hepatitis B virus infections in preschool children in Taiwan. J. Infect. Dis. 1982 146 2 198 204 10.1093/infdis/146.2.198 7108271
    [Google Scholar]
  87. Inoue T. Tanaka Y. Hepatitis B. Hepatitis B virus and its sexually transmitted infection – An update. Microb. Cell 2016 3 9 419 436 10.15698/mic2016.09.527 28357379
    [Google Scholar]
  88. Nebbia G. Peppa D. Maini M.K. Hepatitis B. Hepatitis B infection: Current concepts and future challenges. QJM 2012 105 2 109 113 10.1093/qjmed/hcr270 22252919
    [Google Scholar]
  89. Tsukuda S. Watashi K. Hepatitis B. Hepatitis B virus biology and life cycle. Antiviral Res. 2020 182 104925 10.1016/j.antiviral.2020.104925 32866519
    [Google Scholar]
  90. Wei J. Lin L. Su X. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells. Biomed. Rep. 2014 2 1 147 151 10.3892/br.2013.205 24649087
    [Google Scholar]
  91. Wei Z.Q. Zhang Y.H. Ke C.Z. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J. Gastroenterol. 2017 23 34 6252 6260 10.3748/wjg.v23.i34.6252 28974891
    [Google Scholar]
  92. Wu Y.H. Naturally derived anti-hepatitis B virus agents and their mechanism of action. World J. Gastroenterol. 2016 22 1 188 204 10.3748/wjg.v22.i1.188 26755870
    [Google Scholar]
  93. He K. Ma Y.B. Cao T.W. Seven new secoiridoids with anti-hepatitis B virus activity from Swertia angustifolia. Planta Med. 2012 78 8 814 820 10.1055/s‑0031‑1298381 22441835
    [Google Scholar]
  94. Wei P.H. Wu S.Z. Mu X.M. Effect of alcohol extract of Acanthus ilicifolius L. on anti-duck hepatitis B virus and protection of liver. J. Ethnopharmacol. 2015 160 1 5 10.1016/j.jep.2014.10.050 25446633
    [Google Scholar]
  95. Thanigaivel S. Durgadevi H. Balasubramaniam J. Mythily V. Elanchezhiyan M. Comparative evaluation of the anti-hepatitis B virus activity of Centella Asiatica and Camellia Sinensis (Green Tea). BMC Infect. Dis. 2014 14 S3 21 10.1186/1471‑2334‑14‑S3‑P21
    [Google Scholar]
  96. Xu H.B. Ma Y.B. Huang X.Y. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus. J. Ethnopharmacol. 2015 171 131 140 10.1016/j.jep.2015.05.040 26051832
    [Google Scholar]
  97. Lv J.J. Wang Y.F. Zhang J.M. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica. Org. Biomol. Chem. 2014 12 43 8764 8774 10.1039/C4OB01196A 25268491
    [Google Scholar]
  98. Dai J.J. Tao H.M. Min Q.X. Zhu Q.H. Anti-hepatitis B virus activities of friedelolactones from Viola diffusa Ging. Phytomedicine 2015 22 7-8 724 729 10.1016/j.phymed.2015.05.001 26141758
    [Google Scholar]
  99. Li Y.Q. Wang S.F. Anti-Hepatitis B. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol. Lett. 2006 28 11 837 841 10.1007/s10529‑006‑9007‑9 16786250
    [Google Scholar]
  100. Sadiea R.Z. Sultana S. Chaki B.M. Phytomedicines to target hepatitis B virus DNA replication: Current limitations and future approaches. Int. J. Mol. Sci. 2022 23 3 1617 10.3390/ijms23031617 35163539
    [Google Scholar]
  101. Soriano V. Vispo E. Poveda E. Directly acting antivirals against hepatitis C virus. J. Antimicrob. Chemother. 2011 66 8 1673 1686 10.1093/jac/dkr215 21652618
    [Google Scholar]
  102. Smyth B.P. O’Connor J.J. Barry J. Keenan E. Retrospective cohort study examining incidence of HIV and hepatitis C infection among injecting drug users in Dublin. J. Epidemiol. Community Health 2003 57 4 310 311 10.1136/jech.57.4.310 12646549
    [Google Scholar]
  103. Modrow S. Falke D. Truyen U. Schätzl H. Viruses with single-stranded, positive-sense RNA genomes. Molecular Virology. Berlin, Heidelberg Springer Berlin Heidelberg 2013 185 349 10.1007/978‑3‑642‑20718‑1_14
    [Google Scholar]
  104. Irshad M. Mankotia D.S. Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J. Gastroenterol. 2013 19 44 7896 7909 10.3748/wjg.v19.i44.7896 24307784
    [Google Scholar]
  105. Denaro M. Smeriglio A. Barreca D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020 34 4 742 768 10.1002/ptr.6575 31858645
    [Google Scholar]
  106. Kurniawan J. Pangenotypic direct acting antivirals treatment for chronic hepatitis C infection. Indones J Gastroenterol Hepatol Dig Endosc 2020 21 1 1 2 10.24871/21120201‑2
    [Google Scholar]
  107. Javed T. Ashfaq U.A. Riaz S. Rehman S. Riazuddin S. In-vitro antiviral activity of Solanum nigrum against Hepatitis C virus. Virol. J. 2011 8 1 26 10.1186/1743‑422X‑8‑26 21247464
    [Google Scholar]
  108. Rehman S. Ijaz B. Fatima N. Muhammad S.A. Riazuddin S. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study. Biomed. Pharmacother. 2016 83 881 891 10.1016/j.biopha.2016.08.002 27513212
    [Google Scholar]
  109. Yousaf T. Rafique S. Wahid F. Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus. Microb. Pathog. 2018 118 154 158 10.1016/j.micpath.2018.03.030 29571723
    [Google Scholar]
  110. Wahyuni T.S. Tumewu L. Permanasari A.A. Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus. Virol. J. 2013 10 1 259 10.1186/1743‑422X‑10‑259 24089993
    [Google Scholar]
  111. Jamshidi Z. Hashemi M. Yazdian-Robati R. Etemad L. Salmasi Z. Kesharwani P. Effects of Boswellia species on viral infections with particular attention to SARS-CoV-2. Inflammopharmacology 2022 30 5 1541 1553 10.1007/s10787‑022‑01037‑4 35882701
    [Google Scholar]
  112. Ravikumar Y.S. Ray U. Nandhitha M. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res. 2011 158 1-2 89 97 10.1016/j.virusres.2011.03.014 21440018
    [Google Scholar]
  113. Ratnoglik S.L. Aoki C. Sudarmono P. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiol. Immunol. 2014 58 3 188 194 10.1111/1348‑0421.12133 24438164
    [Google Scholar]
  114. Jardim A.C.G. Shimizu J.F. Rahal P. Harris M. Plant-derived antivirals against hepatitis C virus infection. Virol. J. 2018 15 1 34 10.1186/s12985‑018‑0945‑3 29439720
    [Google Scholar]
  115. Lin C.W. Lo C.W. Tsai C.N. Pan T.C. Chen P.Y. Yu M.J. Aeginetia indica decoction inhibits hepatitis C virus life cycle. Int. J. Mol. Sci. 2018 19 1 208 10.3390/ijms19010208 29315273
    [Google Scholar]
  116. Hung T.C. Jassey A. Lin C.J. Methanolic extract of Rhizoma coptidis inhibits the early viral entry steps of hepatitis C virus infection. Viruses 2018 10 12 669 10.3390/v10120669 30486350
    [Google Scholar]
  117. Bachmetov L. Gal-Tanamy M. Shapira A. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat. 2012 19 2 e81 e88 10.1111/j.1365‑2893.2011.01507.x 22239530
    [Google Scholar]
  118. Zuo G. Li Z. Chen L. Xu X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res. 2007 76 1 86 92 10.1016/j.antiviral.2007.06.001 17624450
    [Google Scholar]
  119. Qian X.J. Zhang X.L. Zhao P. A schisandra-derived compound schizandronic acid inhibits entry of Pan-HCV genotypes into human hepatocytes. Sci. Rep. 2016 6 1 27268 10.1038/srep27268 27252043
    [Google Scholar]
  120. Lee S. Yoon K.D. Lee M. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br. J. Pharmacol. 2016 173 1 191 211 10.1111/bph.13358 26445091
    [Google Scholar]
  121. Li S. Kodama E.N. Inoue Y. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication. Antivir. Chem. Chemother. 2010 20 6 239 248 10.3851/IMP1597 20710064
    [Google Scholar]
  122. Wagoner J. Negash A. Kane O.J. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 2010 51 6 1912 1921 10.1002/hep.23587 20512985
    [Google Scholar]
  123. Looker K.J. Welton N.J. Sabin K.M. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: A population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis. 2020 20 2 240 249 10.1016/S1473‑3099(19)30470‑0 31753763
    [Google Scholar]
  124. Zhu S. Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021 12 1 2670 2702 10.1080/21505594.2021.1982373 34676800
    [Google Scholar]
  125. Forni D. Pontremoli C. Clerici M. Pozzoli U. Cagliani R. Sironi M. Recent out-of-africa migration of human herpes simplex viruses. Mol. Biol. Evol. 2020 37 5 1259 1271 10.1093/molbev/msaa001 31917410
    [Google Scholar]
  126. Dropulic L.K. Cohen J.I. Update on new antivirals under development for the treatment of double-stranded DNA virus infections. Clin. Pharmacol. Ther. 2010 88 5 610 619 10.1038/clpt.2010.178 20881959
    [Google Scholar]
  127. Chuanasa T. Phromjai J. Lipipun V. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res. 2008 80 1 62 70 10.1016/j.antiviral.2008.05.002 18565600
    [Google Scholar]
  128. Copeland A.M. Newcomb W.W. Brown J.C. Herpes simplex virus replication: Roles of viral proteins and nucleoporins in capsid-nucleus attachment. J. Virol. 2009 83 4 1660 1668 10.1128/JVI.01139‑08 19073727
    [Google Scholar]
  129. Chang J.Y. Balch C. Puccio J. Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses 2023 15 6 1314 10.3390/v15061314 37376614
    [Google Scholar]
  130. Benzekri R. Limam F. Bouslama L. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action. Adv Trad Med 2020 20 2 223 231 10.1007/s13596‑020‑00430‑0
    [Google Scholar]
  131. Musarra-Pizzo M. Pennisi R. Ben-Amor I. Smeriglio A. Mandalari G. Sciortino M.T. In vitro Anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from Pistachios Kernels (Pistacia vera L.). Plants 2020 9 2 267 10.3390/plants9020267 32085514
    [Google Scholar]
  132. Geethangili M. Ding S.T. A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Front. Pharmacol. 2018 9 1109 10.3389/fphar.2018.01109 30327602
    [Google Scholar]
  133. Kesharwani A. Polachira S.K. Nair R. Agarwal A. Mishra N.N. Gupta S.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement. Altern. Med. 2017 17 1 110 10.1186/s12906‑017‑1620‑8 28196487
    [Google Scholar]
  134. Gescher K. Kühn J. Hafezi W. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1. Fitoterapia 2011 82 3 408 413 10.1016/j.fitote.2010.11.022 21129454
    [Google Scholar]
  135. Bertol J.W. Rigotto C. de Pádua R.M. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res. 2011 92 1 73 80 10.1016/j.antiviral.2011.06.015 21763352
    [Google Scholar]
  136. Gavanji S. Sayedipour S.S. Larki B. Bakhtari A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. J. Acute Med. 2015 5 3 62 68 10.1016/j.jacme.2015.07.001
    [Google Scholar]
  137. Perera W.P.R.T. Liyanage J.A. Dissanayake K.G.C. Antiviral potential of selected medicinal herbs and their isolated natural products. BioMed Res. Int. 2021 2021 1 7872406 10.1155/2021/7872406 34926691
    [Google Scholar]
  138. Rouf R. Uddin S.J. Sarker D.K. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020 104 219 234 10.1016/j.tifs.2020.08.006 32836826
    [Google Scholar]
  139. Adiguna S.P. Panggabean J.A. Atikana A. Antiviral activities of andrographolide and its derivatives: Mechanism of action and delivery system. Pharmaceuticals 2021 14 11 1102 10.3390/ph14111102 34832884
    [Google Scholar]
  140. Xiang Y. Pei Y. Qu C. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-D-glucose from Phyllanthus emblica L. (Euphorbiaceae). Phytother. Res. 2011 25 7 975 982 10.1002/ptr.3368 21213355
    [Google Scholar]
  141. Cheng H.Y. Lin C.C. Lin T.C. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antiviral Res. 2002 55 3 447 455 10.1016/S0166‑3542(02)00077‑3 12206882
    [Google Scholar]
  142. Huang W. Chen X. Li Q. Inhibition of intercellular adhesion in herpex simplex virus infection by glycyrrhizin. Cell Biochem. Biophys. 2012 62 1 137 140 10.1007/s12013‑011‑9271‑8 21874590
    [Google Scholar]
  143. Ghosh M. Civra A. Rittà M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch. Virol. 2016 161 12 3509 3514 10.1007/s00705‑016‑3032‑3 27581805
    [Google Scholar]
  144. Boff L. Silva I.T. Argenta D.F. Strychnos pseudoquina A. St. Hil.: A Brazilian medicinal plant with promising in vitro antiherpes activity. J. Appl. Microbiol. 2016 121 6 1519 1529 10.1111/jam.13279 27566664
    [Google Scholar]
  145. Yucharoen R. Anuchapreeda S. Tragoolpua Y. Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum Sanctum L., Ocimum Basilicum L. and Ocimum Americanum L. Afr. J. Biotechnol. 2011 10 5 860 866
    [Google Scholar]
  146. Yarmolinsky L. Zaccai M. Ben-Shabat S. Mills D. Huleihel M. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidumin vitro. N. Biotechnol. 2009 26 6 307 313 10.1016/j.nbt.2009.08.005 19703599
    [Google Scholar]
  147. Konigheim BS In vitro antiviral activity of heterophyllaea pustulata extracts. Nat Prod Commun 2012 7 8 1934578X1200700 10.1177/1934578X1200700816
    [Google Scholar]
  148. Bisignano C. Mandalari G. Smeriglio A. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses 2017 9 7 178 10.3390/v9070178 28698509
    [Google Scholar]
  149. Churqui M.P. Lind L. Thörn K. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J. Ethnopharmacol. 2018 210 192 197 10.1016/j.jep.2017.08.010 28807852
    [Google Scholar]
  150. Yelin D. Wirtheim E. Vetter P. Long-term consequences of COVID-19: Research needs. Lancet Infect. Dis. 2020 20 10 1115 1117 10.1016/S1473‑3099(20)30701‑5 32888409
    [Google Scholar]
  151. Guarner J. Three emerging coronaviruses in two decades. Am. J. Clin. Pathol. 2020 153 4 420 421 10.1093/ajcp/aqaa029 32053148
    [Google Scholar]
  152. Liu Z. Xiao X. Wei X. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. J. Med. Virol. 2020 92 6 595 601 10.1002/jmv.25726 32100877
    [Google Scholar]
  153. Schwartz J. Capistrano K.J. Gluck J. Hezarkhani A. Naqvi A.R. SARS‐CoV‐2, periodontal pathogens, and host factors: The trinity of oral post‐acute sequelae of COVID‐19. Rev. Med. Virol. 2024 34 3 e2543 10.1002/rmv.2543 38782605
    [Google Scholar]
  154. Chen Y. Liu Q. Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020 92 4 418 423 10.1002/jmv.25681 31967327
    [Google Scholar]
  155. Jana K. Ghosh S. Debnath B. Recent advancements of hyaluronic acid nanoscaffolds in arthritis management. ChemistrySelect 2024 9 32 e202402035 10.1002/slct.202402035
    [Google Scholar]
  156. Lamers M.M. Haagmans B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022 20 5 270 284 10.1038/s41579‑022‑00713‑0 35354968
    [Google Scholar]
  157. Mondello C. Roccuzzo S. Malfa O. Pathological findings in COVID-19 as a tool to define SARS-CoV-2 pathogenesis. A systematic review. Front. Pharmacol. 2021 12 614586 10.3389/fphar.2021.614586 33867981
    [Google Scholar]
  158. Ghosh R. Chakraborty A. Biswas A. Chowdhuri S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J. Mol. Struct. 2021 1229 129489 10.1016/j.molstruc.2020.129489 33100380
    [Google Scholar]
  159. Chen R.H. Yang L.J. Hamdoun S. 1,2,3,4,6-pentagalloyl glucose, a RBD-ACE2 binding inhibitor to prevent SARS-CoV-2 infection. Front. Pharmacol. 2021 12 634176 10.3389/fphar.2021.634176 33897423
    [Google Scholar]
  160. Xie L. Zhao Y.X. Zheng Y. Li X.F. The pharmacology and mechanisms of platycodin D, an active Triterpenoid saponin from Platycodon grandiflorus. Front. Pharmacol. 2023 14 1148853 10.3389/fphar.2023.1148853 37089949
    [Google Scholar]
  161. Kumar S.B. Krishna S. Pradeep S. Screening of natural compounds from Cyperus rotundus Linn against SARS-CoV-2 main protease (Mpro): An integrated computational approach. Comput. Biol. Med. 2021 134 104524 10.1016/j.compbiomed.2021.104524 34090015
    [Google Scholar]
  162. Nivetha R. Bhuvaragavan S. Muthu Kumar T. Ramanathan K. Janarthanan S. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. J. Biomol. Struct. Dyn. 2022 40 21 11070 11081 10.1080/07391102.2021.1955009 34431451
    [Google Scholar]
  163. Wansri R. Lin A.C.K. Pengon J. Semi-synthesis of N-Aryl amide analogs of piperine from Piper nigrum and evaluation of their antitrypanosomal, antimalarial, and anti-sars-cov-2 main protease activities. Molecules 2022 27 9 2841 10.3390/molecules27092841 35566194
    [Google Scholar]
  164. Meneguzzo F. Ciriminna R. Zabini F. Pagliaro M. Review of evidence available on hesperidin-rich products as potential tools against covid-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes 2020 8 5 549 10.3390/pr8050549
    [Google Scholar]
  165. Ghosh R. Chakraborty A. Biswas A. Chowdhuri S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021 39 17 6747 6760 10.1080/07391102.2020.1802347 32762411
    [Google Scholar]
  166. Jin Y.H. Min J.S. Jeon S. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 2021 86 153440 10.1016/j.phymed.2020.153440 33376043
    [Google Scholar]
  167. Banerjee S. Baidya S.K. Adhikari N. Ghosh B. Jha T. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. J. Mol. Struct. 2023 1275 134642 10.1016/j.molstruc.2022.134642 36467615
    [Google Scholar]
  168. Mukherjee P.K. Efferth T. Das B. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 2022 98 153930 10.1016/j.phymed.2022.153930 35114450
    [Google Scholar]
  169. Gyebi G.A. Ogunro O.B. Adegunloye A.P. Ogunyemi O.M. Afolabi S.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL pro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn. 2020 ••• 1 13 10.1080/07391102.2020.1764868 32367767
    [Google Scholar]
  170. Patel U. Desai K. Dabhi R.C. Maru J.J. Shrivastav P.S. Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): A computational study. J. Mol. Model. 2023 29 5 161 10.1007/s00894‑023‑05569‑6 37115321
    [Google Scholar]
  171. Prasanth D.S.N.B.K. Murahari M. Chandramohan V. In-silico strategies of some selected phytoconstituents from Melissa officinalis as SARS CoV-2 main protease and spike protein (COVID-19) inhibitors. Mol. Simul. 2021 47 6 457 470 10.1080/08927022.2021.1880576
    [Google Scholar]
  172. Nadi A. Shiravi A.A. Mohammadi Z. Aslani A. Zeinalian M. Thymus vulgaris, a natural pharmacy against COVID-19: A molecular review. J. Herb. Med. 2023 38 100635 10.1016/j.hermed.2023.100635 36718131
    [Google Scholar]
  173. Habibzadeh S. Zohalinezhad M.E. Antiviral activity of Matricaria chamomilla in the treatment of COVID-19: molecular docking study. Eur. J. Integr. Med. 2021 48 101975 10.1016/j.eujim.2021.101975
    [Google Scholar]
  174. Cheng P.W. Ng L.T. Chiang L.C. Lin C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006 33 7 612 616 10.1111/j.1440‑1681.2006.04415.x 16789928
    [Google Scholar]
  175. Liu H. Ye F. Sun Q. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem. 2021 36 1 497 503 10.1080/14756366.2021.1873977 33491508
    [Google Scholar]
  176. Flerova E. Ambilil M. Civan J.M. Striking cholestatic giant cell hepatitis resulting in fulminant liver failure after Garcinia cambogia use. Int. J. Surg. Pathol. 2024 32 3 619 624 10.1177/10668969231186926 37461217
    [Google Scholar]
  177. Aati H.Y. Ismail A. Rateb M.E. AboulMagd AM, Hassan HM, Hetta MH. Garcinia cambogia phenolics as potent anti-COVID-19 agents: Phytochemical profiling, biological activities, and molecular docking. Plants 2022 11 19 2521 10.3390/plants11192521 36235385
    [Google Scholar]
  178. Thomas J.A. Paul I.K. Jubilate A. Interventions and recommendations to Mitigate measles outbreak in Tanzania. Ann. Med. Surg. 2022 84 104964 10.1016/j.amsu.2022.104964 36439889
    [Google Scholar]
  179. Bester J.C. Measles and measles vaccination. JAMA Pediatr. 2016 170 12 1209 1215 10.1001/jamapediatrics.2016.1787 27695849
    [Google Scholar]
  180. Goodson J.L. Seward J.F. Measles 50 years after use of measles vaccine. Infect. Dis. Clin. North Am. 2015 29 4 725 743 10.1016/j.idc.2015.08.001 26610423
    [Google Scholar]
  181. Coughlin M. Beck A. Bankamp B. Rota P. Perspective on global measles epidemiology and control and the role of novel vaccination strategies. Viruses 2017 9 1 11 10.3390/v9010011 28106841
    [Google Scholar]
  182. Santibanez S. Hübschen J.M. Ben Mamou M.C. Molecular surveillance of measles and rubella in the WHO European Region: New challenges in the elimination phase. Clin. Microbiol. Infect. 2017 23 8 516 523 10.1016/j.cmi.2017.06.030 28712666
    [Google Scholar]
  183. Laksono B. De Vries R. McQuaid S. Duprex W. De Swart R. Measles virus host invasion and pathogenesis. Viruses 2016 8 8 210 10.3390/v8080210 27483301
    [Google Scholar]
  184. Griffin D.E. Measles virus‐induced suppression of immune responses. Immunol. Rev. 2010 236 1 176 189 10.1111/j.1600‑065X.2010.00925.x 20636817
    [Google Scholar]
  185. Naim H.Y. Measles virus. Hum. Vaccin. Immunother. 2015 11 1 21 26 10.4161/hv.34298 25483511
    [Google Scholar]
  186. Hasan T. Phytochemical investigation of Corchorus olitorius L. Leaves cultivated in iraq and it’s in vitro antiviral activity. Iraqi J. Pharm Sci. 2018 27 2 115 122 10.31351/vol27iss2pp115‑122
    [Google Scholar]
  187. Nwodo U.U. Ngene A.A. Iroegbu C.U. Onyedikachi O.A.L. Chigor V.N. Okoh A.I. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus. Arch. Virol. 2011 156 9 1551 1557 10.1007/s00705‑011‑1032‑x 21614435
    [Google Scholar]
  188. Sunday O.A. Antiviral effect of Hibiscus sabdariffa and Celosia argentea on measles virus. Available from 2011 https://www.cabidigitallibrary.org/doi/full/10.5555/20113227924
    [Google Scholar]
  189. Oluremi B.B. Osamudiamen P.M. Adeniji J.A. Aiyelaagbe O.O. Anti-measles virus activity of 4-hydroxy-3-methoxy benzaldehyde (Vanillin) isolated from Xylopia aethiopica (Dunal) A. rich. Sci. Afr. 2023 19 e01506 10.1016/j.sciaf.2022.e01506
    [Google Scholar]
  190. Winer H. Ozer J. Shemer Y. Nuphar lutea extracts exhibit anti-viral activity against the measles virus. Molecules 2020 25 7 1657 10.3390/molecules25071657 32260270
    [Google Scholar]
  191. Olila D. Olwa-Odyek, Opuda-Asibo J. Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro. Afr. Health Sci. 2002 2 1 2 10 12789108
    [Google Scholar]
  192. Sivarajan R. Oberwinkler H. Roll V. König E.M. Steinke M. Bodem J. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses. BMC Complement. Med. Ther. 2022 22 1 181 10.1186/s12906‑022‑03661‑7 35804339
    [Google Scholar]
  193. Morán-Santibañez K. Peña-Hernández M.A. Cruz-Suárez L.E. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses 2018 10 9 465 10.3390/v10090465 30200234
    [Google Scholar]
  194. Ojo O.O. Oluyege J.O. Famurewa O. Antiviral properties of two nigerian plants. Afr. J. Plant Sci. 2009 3 7 157 159
    [Google Scholar]
  195. Buochuama A. Amiofori F.I. The utilization of plant species in the treatment of some identifiable viral diseases in Southwestern Nigeria. World Sci. News 2018 95 111 123
    [Google Scholar]
  196. Kelechi Ob R. Adamma She J. In vitro antiviral activities of Bryophyllum pinnatum (Odaa opuo) and Viscum album (Awuruse). Res J Microbiol 2018 13 3 138 146 10.3923/jm.2018.138.146
    [Google Scholar]
  197. Sarma R. Adhikari K. Mahanta S. Khanikor B. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae). Toxicol. Rep. 2019 6 1091 1096 10.1016/j.toxrep.2019.10.009 31687359
    [Google Scholar]
  198. Popoola T.D. Segun P.A. Ekuadzi E. West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19. Daru 2022 30 1 191 210 10.1007/s40199‑022‑00437‑9 35476297
    [Google Scholar]
  199. Brennan J.W. Sun Y. Defective viral genomes: Advances in understanding their generation, function, and impact on infection outcomes. MBio 2024 15 5 e00692 e24 10.1128/mbio.00692‑24 38567955
    [Google Scholar]
  200. Ali K. Clinical Dental Pharmacology. 1st ed. Hoboken (NJ): Wiley; 2024. Available from: 10.1002/9781119984962
    [Google Scholar]
  201. Megantara S. Rusdin A. Budiman A. Shamsuddin S. Mohtar N. Muchtaridi M. Revolutionizing antiviral therapeutics: Unveiling innovative approaches for enhanced drug efficacy. Int. J. Nanomedicine 2024 19 2889 2915 10.2147/IJN.S447721 38525012
    [Google Scholar]
  202. Zhang Y. Zhang H. Xu T. Interactions among microorganisms open up a new world for anti‐infectious therapy. FEBS J. 2024 291 8 1615 1631 10.1111/febs.16705 36527169
    [Google Scholar]
  203. Pradhan P. Jana K. Ghosh S. Recent advances in bioactive flavonoids-based nanotherapeutics as promising neuroprotectants in epilepsy. Curr. Aging Sci. 2025 18 1 34 10.2174/0118746098369369250119112935
    [Google Scholar]
  204. Katoch P. Raina K. Sharma R. Sharma R. Chaudhary A. Ayush kwath: A major contribution of ayurveda in preventing COVID-19 infection. Curr. Drug Ther. 2024 19 1 60 80 10.2174/1574885518666230601150338
    [Google Scholar]
  205. Sachan S. Dhama K. Latheef S.K. Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 agonist) against the very virulent, infectious bursal disease virus in SPF chicks. Vaccines 2019 7 3 106 10.3390/vaccines7030106 31487960
    [Google Scholar]
  206. Kantharia C. Kumar M. Jain M.K. Sharma L. Jain L. Desai A. Hepatoprotective effects of Liv.52 in chronic liver disease preclinical, clinical, and safety evidence: A review. Gastroenterol. Insights 2023 14 3 293 308 10.3390/gastroent14030021
    [Google Scholar]
  207. Ullah M.O. Hamid K. Rahman K.A. Choudhuri M. Effect of Rohitakarista (RHT), an ayurvedic formulation, on the lipid profile of rat plasma after chronic administration. Biol. Med. (Aligarh) 2010 2 2 26 31
    [Google Scholar]
  208. Kotadiya R. A theoretical review on Arogyavardhini vati. Ayurvedapub 2022 VII 1 2019 2025
    [Google Scholar]
  209. Gundeti M.S. Bhurke L.W. Mundada P.S. AYUSH 64, a polyherbal Ayurvedic formulation in influenza-like illness - Results of a pilot study. J. Ayurveda Integr. Med. 2022 13 1 100325 10.1016/j.jaim.2020.05.010 33446377
    [Google Scholar]
  210. Sharma S. Kumari K. Sethuraman G. Abdelwahab M.M. Sivaperumal Yadav S. Nandini V. An ayurvedic medication (Chyawanprash) as a prophylaxis for non-communicable disease and communicable disease: A protocol for systematic review and meta-analysis. Cureus 2023 15 10 e47555 10.7759/cureus.47555 38021581
    [Google Scholar]
  211. Huang C.H. Wu V.C.C. Wang C.L. Wu C.L. Huang Y.T. Chang S.H. Silymarin synergizes with antiviral therapy in hepatitis B virus-related liver cirrhosis: A propensity score matching multi-institutional study. Int. J. Mol. Sci. 2024 25 6 3088 10.3390/ijms25063088 38542062
    [Google Scholar]
  212. Eswaramoorthy R. Jaiganesh R. Eswaramoorthy R. Formulation and evaluation of Ocimum sanctum Linn containing carboxymethylcellulose and sorbitol based hydrogel. Bioinformation 2023 19 5 546 551 10.6026/97320630019546 37886155
    [Google Scholar]
  213. Sruthi D. Jishna J.P. Dhanalakshmi M. Deepanraj S.P. Jayabaskaran C. Medicinal plant extracts and herbal formulations: Plant solutions for the prevention and treatment of COVID-19 infection. Future Integr. Med. 2023 2 4 216 226 10.14218/FIM.2023.00079
    [Google Scholar]
  214. Alam M.A. Quamri M.A. Sofi G. Ayman U. Ansari S. Ahad M. Understanding COVID-19 in the light of epidemic disease described in Unani medicine. Drug Metabol. Drug Interact. 2020 35 4 20200136 10.1515/dmpt‑2020‑0136 34704695
    [Google Scholar]
  215. Wang X. Miao Y.H. Zhao X.M. Liu X. Hu Y.W. Deng D.W. Perspectives on organ-on-a-chip technology for natural products evaluation. Front Med Horiz 2024 1 2 9420013 10.26599/FMH.2024.9420013
    [Google Scholar]
  216. Gao Q. Wu H. Chen M. Active metabolites combination therapies: Towards the next paradigm for more efficient and more scientific Chinese medicine. Front. Pharmacol. 2024 15 1392196 10.3389/fphar.2024.1392196 38698817
    [Google Scholar]
  217. Bachar S.C. Mazumder K. Bachar R. Aktar A. Al Mahtab M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol. 2021 12 732891 10.3389/fphar.2021.732891 34819855
    [Google Scholar]
  218. Phu H.T. Thuan D.T.B. Nguyen T.H.D. Posadino A.M. Eid A.H. Pintus G. Herbal medicine for slowing aging and aging-associated conditions: Efficacy, mechanisms and safety. Curr. Vasc. Pharmacol. 2020 18 4 369 393 10.2174/1570161117666190715121939 31418664
    [Google Scholar]
  219. Saini R. Ali M.I. Pant M. Warghane A. Current status of potential antiviral drugs derived from plant, marine, and microbial sources. Antiinfect. Agents 2024 22 2 e090124225414 10.2174/0122113525272349231210055403
    [Google Scholar]
  220. Mehraj I. Hamid A. Gani U. Iralu N. Manzoor T. Saleem Bhat S. Combating antimicrobial resistance by employing antimicrobial peptides: Immunomodulators and therapeutic agents against infectious diseases. ACS Appl. Bio Mater. 2024 7 4 2023 2035 10.1021/acsabm.3c01104 38533844
    [Google Scholar]
  221. Wang X. Wei M. Miao R. Adeno‐associated virus vectors for gene therapy—focusing on melanoma. Interdisciplinary Medicine 2024 2 4 e20240031 10.1002/INMD.20240031
    [Google Scholar]
  222. Dhama K. Chandran D. Chopra H. SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic. J. Exp. Biol. Agric. Sci. 2022 10 6 1215 1221 10.18006/2022.10(6).1215.1221
    [Google Scholar]
  223. Mukhtar M. Arshad M. Ahmad M. Pomerantz R.J. Wigdahl B. Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008 131 2 111 120 10.1016/j.virusres.2007.09.008 17981353
    [Google Scholar]
  224. Balkrishna A. Sharma N. Srivastava D. Kukreti A. Srivastava S. Arya V. Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare. Future Integr. Med. 2024 3 1 35 49 10.14218/FIM.2023.00086
    [Google Scholar]
  225. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  226. Patil A.D. Singh S. Verma D. Goupale C. Exploring medical pluralism as a multifaceted approach to healthcare. Indian J Integr Med 2024 4 2 49 59
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344376918250328054623
Loading
/content/journals/raaidd/10.2174/0127724344376918250328054623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test