Skip to content
2000
image of Emerging Trends in Hydrogel for the Treatment of Vaginal Candidiasis: A Comprehensive Review

Abstract

This review discusses the use of hydrogel systems for intravaginal drug delivery, specifically antibacterial, anti-trichomonas, and anti-fungal regimens for managing and treating gynecological infections, particularly vaginal candidiasis. Nearly 80% of females worldwide have encountered , the root cause of vaginal candidiasis (VC). This infection is manifested by inflammation, itching, erythema, dyspareunia, and pain in the infected vaginal mucosal area. Long-term use of antibiotics, immunosuppressants, contraceptive pills, use of intra-uterine devices, vaginal douching, unprotected sexual intercourse, pregnancy, and hyperglycemic condition are the major factors that affect vaginal flora and may cause VC. Conventional dosage forms, such as creams, ointment, powder, pessaries, ., are used in VC treatment; however, they have some serious limitations, such as short mucosal contact, rapid vaginal flush or discharge, or poor mucosal absorption. Researchers have developed several novel hydrogel preparations, such as mucoadhesive, pH or temperature-sensitive, or other polymeric hydrogels, to overcome these limitations. Thus, the objective of this study is to provide information on the pathophysiology and diagnosis of VC, and recently developed hydrogels for its treatment, which utilize a sol-gel system where gel formation takes place in vaginal conditions. Drug-exempted systems exhibiting antifungal problems are overcome by hydrogel, which also facilitates their wardship and proper distribution in the vaginal mucosa.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344348928250220063431
2025-02-27
2025-09-02
Loading full text...

Full text loading...

References

  1. Vaginal candidiasis (Yeast Infection). J. Midwifery Womens Health 2021 66 6 825 826 10.1111/jmwh.13326 34883540
    [Google Scholar]
  2. Lírio J. Giraldo P.C. Amaral R.L. Sarmento A.C.A. Costa A.P.F. Gonçalves A.K. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: A systematic review protocol. BMJ Open 2019 9 5 e027489 10.1136/bmjopen‑2018‑027489 31122991
    [Google Scholar]
  3. Borges S. Silva J. Teixeira P. The role of lactobacilli and probiotics in maintaining vaginal health. Arch. Gynecol. Obstet. 2014 289 3 479 489 10.1007/s00404‑013‑3064‑9 24170161
    [Google Scholar]
  4. Han Y. Ren Q. Does probiotics work for bacterial vaginosis and vulvovaginal candidiasis. Curr. Opin. Pharmacol. 2021 61 83 90 10.1016/j.coph.2021.09.004 34649216
    [Google Scholar]
  5. Wei G. Liu Q. Wang X. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Sci. Adv. 2023 9 20 eadg0949 10.1126/sciadv.adg0949 37196095
    [Google Scholar]
  6. Bradford L.L. Ravel J. The vaginal mycobiome: A contemporary perspective on fungi in women’s health and diseases. Virulence 2017 8 3 342 351 10.1080/21505594.2016.1237332
    [Google Scholar]
  7. Cooke G Watson C Deckx L Pirotta M Smith J van Driel ML Treatment for recurrent vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev 2022 1 CD009151 10.1002/14651858
  8. Denning D.W. Kneale M. Sobel J.D. Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018 18 11 e339 e347 10.1016/S1473‑3099(18)30103‑8 30078662
    [Google Scholar]
  9. Bristow C.C. Desgrottes T. Cutler L. The aetiology of vaginal symptoms in rural Haiti. Int. J. STD AIDS 2014 25 9 669 675 10.1177/0956462413516300 24352116
    [Google Scholar]
  10. Sun Z. Ge X. Qiu B. Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy. Front. Cell. Infect. Microbiol. 2023 13 1123026 10.3389/fcimb.2023.1123026 36816582
    [Google Scholar]
  11. Farr A. Effendy I. Frey Tirri B. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021 64 6 583 602 10.1111/myc.13248 33529414
    [Google Scholar]
  12. Castelo-Branco C. Cancelo M.J. Villero J. Nohales F. Juliá M.D. Management of post-menopausal vaginal atrophy and atrophic vaginitis. Maturitas 2005 52 Suppl. 1 46 52 10.1016/j.maturitas.2005.06.014 16139449
    [Google Scholar]
  13. Negi P. Singh A. Pundir S. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis. Ther. Deliv. 2023 14 3 207 225 10.4155/tde‑2022‑0058 37191049
    [Google Scholar]
  14. Zhao C. Li Y. Chen B. Mycobiome study reveals different pathogens of vulvovaginal candidiasis shape characteristic vaginal bacteriome. Microbiol. Spectr. 2023 11 3 e03152 e22 10.1128/spectrum.03152‑22 36995230
    [Google Scholar]
  15. Pedro N.A. Mira N.P. A molecular view on the interference established between vaginal Lactobacilli and pathogenic Candida species: Challenges and opportunities for the development of new therapies. Microbiol. Res. 2024 281 127628 10.1016/j.micres.2024.127628 38246122
    [Google Scholar]
  16. Hellier S.D. Wrynn A.F. Beyond fluconazole. Nurse Pract. 2023 48 9 33 39 10.1097/01.NPR.0000000000000095 37643144
    [Google Scholar]
  17. Das P. Swain T. Mohanty J.R. Higher vaginal pH in Trichomonas vaginalis infection with intermediate Nugent score in reproductive-age women—a hospital-based cross-sectional study in Odisha, India. Parasitol. Res. 2018 117 9 2735 2742 10.1007/s00436‑018‑5962‑z 29936622
    [Google Scholar]
  18. Li D. Wu M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021 6 1 291 10.1038/s41392‑021‑00687‑0 34344870
    [Google Scholar]
  19. Ngou B.P.M. Ding P. Jones J.D.G. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 2022 34 5 1447 1478 10.1093/plcell/koac041 35167697
    [Google Scholar]
  20. Talapko J. Juzbašić M. Matijević T. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 2021 7 2 79 10.3390/jof7020079 33499276
    [Google Scholar]
  21. Ferrer J. Vaginal candidosis: Epidemiological and etiological factors. Int. J. Gynaecol. Obstet. 2000 71 1 S21 10.1016/S0020‑7292(00)00350‑7
    [Google Scholar]
  22. Fidel P.L. Jr Vaginal candidiasis: Review and role of local mucosal immunity. AIDS Patient Care STDS 1998 12 5 359 366 10.1089/apc.1998.12.359 11361971
    [Google Scholar]
  23. Hainer B.L. Gibson M.V. Vaginitis. Am. Fam. Physician 2011 83 7 807 815 21524046
    [Google Scholar]
  24. Niu X.X. Li T. Zhang X. Wang S.X. Liu Z.H. Lactobacillus crispatus modulates vaginal epithelial cell innate response to Candida albicans. Chin. Med. J. (Engl.) 2017 130 3 273 279 10.4103/0366‑6999.198927 28139509
    [Google Scholar]
  25. Zhang X. Li T. Chen X. Wang S. Liu Z. Nystatin enhances the immune response against Candida albicans and protects the ultrastructure of the vaginal epithelium in a rat model of vulvovaginal candidiasis. BMC Microbiol. 2018 18 1 166 10.1186/s12866‑018‑1316‑3 30359236
    [Google Scholar]
  26. Huang Y. Merkatz R.B. Hillier S.L. Effects of a one year reusable contraceptive vaginal ring on vaginal Microflora and the risk of vaginal infection: An open-label prospective evaluation. PLoS One 2015 10 8 e0134460 10.1371/journal.pone.0134460 26267119
    [Google Scholar]
  27. Kaur S. Kaur S. Recent advances in vaginal delivery for the treatment of vulvovaginal candidiasis. Curr. Mol. Pharmacol. 2021 14 3 281 291 10.2174/1573405616666200621200047 32564767
    [Google Scholar]
  28. Coudray M.S. Madhivanan P. Bacterial vaginosis: A brief synopsis of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020 245 143 148 10.1016/j.ejogrb.2019.12.035 31901667
    [Google Scholar]
  29. Sheary B. Dayan L. Recurrent vulvovaginal candidiasis. Aust. Fam. Physician 2005 34 3 147 150 15799663
    [Google Scholar]
  30. Abou Chacra L. Fenollar F. Diop K. Bacterial vaginosis: What do we currently know? Front. Cell. Infect. Microbiol. 2022 11 672429 10.3389/fcimb.2021.672429 35118003
    [Google Scholar]
  31. Calderon L. Williams R. Martinez M. Clemons K.V. Stevens D.A. Genetic susceptibility to vaginal candidiasis. Med. Mycol. 2003 41 2 143 147 10.1080/mmy.41.2.143.147 12964847
    [Google Scholar]
  32. Faught B.M. Reyes S. Characterization and treatment of recurrent bacterial vaginosis. J. Womens Health (Larchmt.) 2019 28 9 1218 1226 10.1089/jwh.2018.7383 31403349
    [Google Scholar]
  33. Norouzi M. Nazari B. Miller D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 2016 21 11 1835 1849 10.1016/j.drudis.2016.07.006
    [Google Scholar]
  34. Watson C. Calabretto H. Comprehensive review of conventional and non‐conventional methods of management of recurrent vulvovaginal candidiasis. Aust. N. Z. J. Obstet. Gynaecol. 2007 47 4 262 272 10.1111/j.1479‑828X.2007.00736.x 17627679
    [Google Scholar]
  35. Johal H.S. Garg T. Rath G. Goyal A.K. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv. 2016 23 2 550 563 10.3109/10717544.2014.928760 24959937
    [Google Scholar]
  36. Rotem R. Fishman B. Daniel S. Koren G. Lunenfeld E. Levy A. Risk of major congenital malformations following first‐trimester exposure to vaginal azoles used for treating vulvovaginal candidiasis: A population‐based retrospective cohort study. BJOG 2018 125 12 1550 1556 10.1111/1471‑0528.15293 29790255
    [Google Scholar]
  37. Benitez L.L. Carver P.L. Adverse effects associated with long-term administration of azole antifungal agents. Drugs 2019 79 8 833 853 10.1007/s40265‑019‑01127‑8 31093949
    [Google Scholar]
  38. B F R S, M B, P N. Fluconazole resistant Candida albicans. vaginal infections at a referral center and results with boric acid as a treatment regimen. Am. J. Obstet. Gynecol. 2023 228 2 S783 10.1016/j.ajog.2022.11.136
    [Google Scholar]
  39. Beck K.R. Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol. Cell. Endocrinol. 2021 524 111168 10.1016/j.mce.2021.111168 33484741
    [Google Scholar]
  40. Seeniammal S. Selvakumar M. Nirmaladevi P. Clinicomycological study of vulvovaginal candidiasis. Indian J. Sex. Transm. Dis. AIDS 2021 42 1 57 61 10.4103/ijstd.IJSTD_49_18 34765939
    [Google Scholar]
  41. Azie N. Angulo D. Dehn B. Sobel J.D. Oral Ibrexafungerp: An investigational agent for the treatment of vulvovaginal candidiasis. Expert Opin. Investig. Drugs 2020 29 9 893 900 10.1080/13543784.2020.1791820 32746636
    [Google Scholar]
  42. Hacioglu M. Guzel C.B. Savage P.B. Tan A.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med. Mycol. 2019 57 3 291 299 10.1093/mmy/myy023 29846682
    [Google Scholar]
  43. Qin F. Wang Q. Zhang C. Efficacy of antifungal drugs in the treatment of vulvovaginal candidiasis: A Bayesian network meta-analysis. Infect. Drug Resist. 2018 11 1893 1901 10.2147/IDR.S175588 30425538
    [Google Scholar]
  44. Alkhanjaf A.A.M. Athar M.T. Ullah Z. Umar A. Shaikh I.A. In vitro and in vivo evaluation of a nano-tool appended oilmix (Clove and Tea Tree Oil) thermosensitive gel for vaginal candidiasis. J. Funct. Biomater. 2022 13 4 203 10.3390/jfb13040203 36412844
    [Google Scholar]
  45. Shenoy A. Gottlieb A. Probiotics for oral and vulvovaginal candidiasis: A review. Dermatol. Ther. (Heidelb.) 2019 32 4 e12970 10.1111/dth.12970 31112355
    [Google Scholar]
  46. López-Moreno A. Aguilera M. Vaginal probiotics for reproductive health and related dysbiosis: Systematic review and meta-analysis. J. Clin. Med. 2021 10 7 1461 10.3390/jcm10071461 33918150
    [Google Scholar]
  47. Zhao C. Zhou L. Chiao M. Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv. Colloid Interface Sci. 2020 285 102280 10.1016/j.cis.2020.102280 33010575
    [Google Scholar]
  48. Qi L. Zhang C. Wang B. Yin J. Yan S. Progress in hydrogels for skin wound repair. Macromol. Biosci. 2022 22 7 2100475 10.1002/mabi.202100475 35388605
    [Google Scholar]
  49. Hsin Y.K. Thangarajoo T. Choudhury H. Pandey M. Meng L.W. Gorain B. Stimuli-responsive in situ spray gel of miconazole nitrate for vaginal candidiasis. J. Pharm. Sci. 2023 112 2 562 572 10.1016/j.xphs.2022.09.002 36096286
    [Google Scholar]
  50. Huang H. Qi X. Chen Y. Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm. J. 2019 27 7 990 999 10.1016/j.jsps.2019.08.001 31997906
    [Google Scholar]
  51. Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015 6 2 105 121 10.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  52. Rose F. Wern J.E. Gavins F. Andersen P. Follmann F. Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J. Control. Release 2018 271 88 97 10.1016/j.jconrel.2017.12.003 29217176
    [Google Scholar]
  53. Li L. Meng J. Zhang M. Liu T. Zhang C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem. Commun. (Camb.) 2021 58 2 185 207 10.1039/D1CC05526G 34881748
    [Google Scholar]
  54. Alzainy A. Boateng J. Novel mucoadhesive wafers for treating local vaginal infections. Biomedicines 2022 10 12 3036 10.3390/biomedicines10123036 36551789
    [Google Scholar]
  55. Abdellatif M.M. Khalil I.A. Elakkad Y.E. Eliwa H.A. Samir T. Al-Mokaddem A.K. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis. Int. J. Nanomedicine 2020 15 4079 4090 10.2147/IJN.S250960 32606665
    [Google Scholar]
  56. Jiang Y. Wang Y. Li Q. Yu C. Chu W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem. 2020 27 16 2631 2657 10.2174/0929867326666191122144916 31755377
    [Google Scholar]
  57. Falavigna M. Pattacini M. Wibel R. Sonvico F. Škalko-Basnet N. Flaten G.E. The vaginal-PVPA: A vaginal mucosa-mimicking in vitro permeation tool for evaluation of mucoadhesive formulations. Pharmaceutics 2020 12 6 568 10.3390/pharmaceutics12060568 32575388
    [Google Scholar]
  58. Campaña-Seoane M. Pérez-Gago A. Vázquez G. Vaginal residence and pharmacokinetic preclinical study of topical vaginal mucoadhesive W/S emulsions containing ciprofloxacin. Int. J. Pharm. 2019 554 276 283 10.1016/j.ijpharm.2018.11.022 30423417
    [Google Scholar]
  59. Li Q. Gong S. Yao W. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. Artif. Cells Nanomed. Biotechnol. 2021 49 1 345 353 10.1080/21691401.2021.1879104 33784224
    [Google Scholar]
  60. Kalia N. Singh J. Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann. Clin. Microbiol. Antimicrob. 2020 19 1 5 10.1186/s12941‑020‑0347‑4 31992328
    [Google Scholar]
  61. Yeruva T. Lee C.H. Enzyme responsive delivery of anti-retroviral peptide via smart hydrogel. AAPS PharmSciTech 2022 23 7 234 10.1208/s12249‑022‑02391‑w 36002705
    [Google Scholar]
  62. Bordbar-Khiabani A. Gasik M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022 23 7 3665 10.3390/ijms23073665 35409025
    [Google Scholar]
  63. Gupta K.M. Barnes S.R. Tangaro R.A. Temperature and pH sensitive hydrogels: An approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 2007 96 3 670 681 10.1002/jps.20752 17154368
    [Google Scholar]
  64. Kasiński A. Zielińska-Pisklak M. Oledzka E. Sobczak M. Smart hydrogels: Synthetic stimuli-responsive antitumor drug release systems. Int. J. Nanomedicine 2020 15 4541 4572 10.2147/IJN.S248987 32617004
    [Google Scholar]
  65. Ali A. Saroj S. Saha S. Gupta S.K. Rakshit T. Pal S. Glucose-Responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces 2023 15 27 32240 32250 10.1021/acsami.3c05031 37368956
    [Google Scholar]
  66. Thambi T. Jung J.M. Lee D.S. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater. Sci. 2023 11 6 1948 1961 10.1039/D2BM01519F 36723174
    [Google Scholar]
  67. Ravani L. Esposito E. Bories C. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm. 2013 454 2 695 702 10.1016/j.ijpharm.2013.06.015 23792467
    [Google Scholar]
  68. Abbasi M. Sohail M. Minhas M.U. Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to manage ulcerative colitis. Int. J. Biol. Macromol. 2019 136 83 96 10.1016/j.ijbiomac.2019.06.046 31195039
    [Google Scholar]
  69. Sassi A.B. Isaacs C.E. Moncla B.J. Gupta P. Hillier S.L. Rohan L.C. Effects of physiological fluids on physical-chemical characteristics and activity of topical vaginal microbicide products. J. Pharm. Sci. 2008 97 8 3123 3139 10.1002/jps.21192 17922539
    [Google Scholar]
  70. Vegad U. Patel M. Khunt D. Zupančič O. Chauhan S. Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front. Bioeng. Biotechnol. 2023 11 1270364 10.3389/fbioe.2023.1270364 37781530
    [Google Scholar]
  71. Cao H. Duan L. Zhang Y. Cao J. Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021 6 1 426 10.1038/s41392‑021‑00830‑x 34916490
    [Google Scholar]
  72. Dorishetty P. Dutta N.K. Choudhury N.R. Bioprintable tough hydrogels for tissue engineering applications. Adv. Colloid Interface Sci. 2020 281 102163 10.1016/j.cis.2020.102163 32388202
    [Google Scholar]
  73. Ishihara K. Oda H. Konno T. Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020 230 119628 10.1016/j.biomaterials.2019.119628 31767444
    [Google Scholar]
  74. Abd El-Hady M.M. Saeed S.E.S. Antibacterial properties and ph sensitive swelling of in situ formed silver-curcumin nanocomposite based chitosan hydrogel. Polymers 2020 12 11 2451 10.3390/polym12112451 33114003
    [Google Scholar]
  75. Guan S. Zhang K. Cui L. Liang J. Li J. Guan F. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration. Biomater Adv 2022 133 112604 10.1016/j.msec.2021.112604 35527157
    [Google Scholar]
  76. Huang H. Wang X. Wang W. Injectable hydrogel for postoperative synergistic photothermal-chemodynamic tumor and anti-infection therapy. Biomaterials 2022 280 121289 10.1016/j.biomaterials.2021.121289 34861512
    [Google Scholar]
  77. Lu L. Yuan S. Wang J. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 2018 13 7 490 496 10.2174/1574888X12666170612102706 28606044
    [Google Scholar]
  78. Li Z. Lu F. Liu Y. A review of the mechanism, properties, and applications of hydrogels prepared by enzymatic cross-linking. J. Agric. Food Chem. 2023 71 27 10238 10249 10.1021/acs.jafc.3c01162 37390351
    [Google Scholar]
  79. Li X. Li X. Yang J. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small 2023 19 17 2207211 10.1002/smll.202207211 36651038
    [Google Scholar]
  80. Zhu J. Tang X. Jia Y. Ho C.T. Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery: A review. Int. J. Pharm. 2020 578 119127 10.1016/j.ijpharm.2020.119127 32036009
    [Google Scholar]
  81. Zheng D. Wang K. Bai B. Hu N. Wang H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydr. Polym. 2022 282 119113 10.1016/j.carbpol.2022.119113 35123748
    [Google Scholar]
  82. Ghasemzadeh M. Gozalzadeh S. Sirousazar M. Kheiri F. Amoxicillin-loaded bionanocomposite hydrogels: Swelling, dehydration, and in vitro drug release kinetics and mechanism. J. Biomater. Sci. Polym. Ed. 2024 35 4 463 481 10.1080/09205063.2023.2295058 38127680
    [Google Scholar]
  83. Ianchis R. Ninciuleanu C.M. Gifu I.C. Hydrogel-clay nanocomposites as carriers for controlled release. Curr. Med. Chem. 2020 27 6 919 954 10.2174/0929867325666180831151055 30182847
    [Google Scholar]
  84. Li Y. Fu R. Duan Z. Zhu C. Fan D. Artificial nonenzymatic antioxidant mxene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 2022 16 5 7486 7502 10.1021/acsnano.1c10575 35533294
    [Google Scholar]
  85. Mohammadzadeh Pakdel P. Peighambardoust S.J. A review on acrylic based hydrogels and their applications in wastewater treatment. J. Environ. Manage. 2018 217 123 143 10.1016/j.jenvman.2018.03.076 29602074
    [Google Scholar]
  86. Pulat M. Eksi H. Abbasoglu U. Fluconazole release from hydrogels including acrylamide-acrylic acid-itaconic acid, and their microbiological interactions. J. Biomater. Sci. Polym. Ed. 2008 19 2 193 205 10.1163/156856208783432480 18237492
    [Google Scholar]
  87. Shi L. Xu S. Zhu Q. Wei Y. Chitosan-coated miconazole as an effective anti-inflammatory agent for the treatment of postoperative infections in obstetrics and vaginal yeast infection control on in vitro evaluations. Microb. Pathog. 2023 184 106312 10.1016/j.micpath.2023.106312 37652266
    [Google Scholar]
  88. Hamedi H. Moradi S. Hudson S.M. Tonelli A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018 199 445 460 10.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  89. Dethe M.R. A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J. Control. Release 2022 343 217 236 10.1016/j.jconrel.2022.01.035 35090961
    [Google Scholar]
  90. Sha X. Chan L. Fan X. Thermosensitive tri-block polymer nanoparticle-hydrogel composites as payloads of natamycin for antifungal therapy against Fusarium Solani. Int. J. Nanomedicine 2022 17 1463 1478 10.2147/IJN.S332127 35378880
    [Google Scholar]
  91. Tomić SLj Babić Radić MM, Vuković JS, et al. Alginate-based hydrogels and scaffolds for biomedical applications. Mar. Drugs 2023 21 3 177 36976226
    [Google Scholar]
  92. Mohammadi M. Karimi M. Malaekeh-Nikouei B. Torkashvand M. Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int. J. Pharm. 2022 616 121534 10.1016/j.ijpharm.2022.121534 35124117
    [Google Scholar]
  93. Wang F. Zhao L. Song F. Wu J. Zhou Q. Xie L. Hybrid natural hydrogels integrated with voriconazole-loaded microspheres for ocular antifungal applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 15 3377 3388 10.1039/D1TB00263E 33881428
    [Google Scholar]
  94. Arpa M.D. Yoltaş A. Onay Tarlan E. New therapeutic system based on hydrogels for vaginal candidiasis management: Formulation–characterization and in vitro evaluation based on vaginal irritation and direct contact test. Pharm. Dev. Technol. 2020 25 10 1238 1248 10.1080/10837450.2020.1809457 32787718
    [Google Scholar]
  95. Ci T. Yuan L. Bao X. Development and anti- Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel. J. Drug Target. 2018 26 9 829 839 10.1080/1061186X.2018.1434660 29378463
    [Google Scholar]
  96. Del Pup L. Treatment of atrophic and irritative vulvovaginal symptoms with an anhydrous lipogel and its complementary effect with vaginal estrogenic therapy: New evidences. Minerva Ginecol. 2010 62 4 287 291 20827246
    [Google Scholar]
  97. Sato M.R. Oshiro-Junior J.A. Rodero C.F. Enhancing antifungal treatment of Candida albicans with hypericin-loaded nanostructured lipid carriers in hydrogels: Characterization, in vitro, and in vivo photodynamic evaluation. Pharmaceuticals 2023 16 8 1094 10.3390/ph16081094 37631009
    [Google Scholar]
  98. Jaiswal M. Deshmukh R. Patel A. Parkinson’s disease: Neurodegeneration and the potential role of medicinal plants. Int. Neurourol. J. 2023 27 4 567 586
    [Google Scholar]
  99. Spaggiari L. Squartini Ramos G.B. Squartini Ramos C.A. Anti-Candida and anti-inflammatory properties of a vaginal gel formulation: Novel data concerning vaginal infection and dysbiosis. Microorganisms 2023 11 6 1551 10.3390/microorganisms11061551 37375053
    [Google Scholar]
  100. Angulo D.A. Alexander B. Rautemaa-Richardson R. Ibrexafungerp, a novel triterpenoid antifungal in development for the treatment of mold infections. J. Fungi 2022 8 11 1121 10.3390/jof8111121 36354888
    [Google Scholar]
  101. Gaspar C. Rolo J. Cerca N. Palmeira-de-Oliveira R. Martinez-de-Oliveira J. Palmeira-de-Oliveira A. Dequalinium chloride effectively disrupts bacterial vaginosis (BV) Gardnerella spp. biofilms. Pathogens 2021 10 3 261 10.3390/pathogens10030261 33668706
    [Google Scholar]
  102. Chindamo G. Sapino S. Peira E. Chirio D. Gallarate M. Recent advances in nanosystems and strategies for vaginal delivery of antimicrobials. Nanomaterials 2021 11 2 311 10.3390/nano11020311 33530510
    [Google Scholar]
  103. Swidsinski S. Moll W.M. Swidsinski A. Bacterial vaginosis—vaginal polymicrobial biofilms and dysbiosis. Dtsch. Arztebl. Int. 2023 120 20 347 354 37097068
    [Google Scholar]
  104. Rodríguez-Gascón A. del Pozo-Rodríguez A. Isla A. Solinís M.A. Vaginal gene therapy. Adv. Drug Deliv. Rev. 2015 92 71 83 10.1016/j.addr.2015.07.002 26189799
    [Google Scholar]
  105. Baxi K. Sawarkar S. Momin M. Patel V. Fernandes T. Vaginal siRNA delivery: Overview on novel delivery approaches. Drug Deliv. Transl. Res. 2020 10 4 962 974 10.1007/s13346‑020‑00741‑4 32170657
    [Google Scholar]
  106. Li T. Niu X. Zhang X. Wang S. Liu Z. Recombinant human IFNα-2b response promotes vaginal epithelial cells defense against Candida albicans. Front. Microbiol. 2017 8 697 10.3389/fmicb.2017.00697
    [Google Scholar]
  107. Scarsini M. Tomasinsig L. Arzese A. D’Este F. Oro D. Skerlavaj B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 2015 71 211 221 10.1016/j.peptides.2015.07.023 26238597
    [Google Scholar]
  108. Martín R Escobedo S Suárez JE Induction, structural characterization, and genome sequence of Lv1, a prophage from a human vaginal Lactobacillus jensenii strain. Int Microbiol 2021 13 3 113 10.1016/s0020‑7292(00)00350‑7
    [Google Scholar]
  109. Cheng F.M. Chen H.X. Li H.D. Recent progress on hydrogel actuators. J. Mater. Chem. B 2021 9 1762 1780 10.1039/d0tb02524k
    [Google Scholar]
  110. Li J. Wu Q. Wu J. Synthesis of nanoparticles via solvothermal and hydrothermal methods. Handbook of Nanoparticles. Springer International Publishing 2015 295 328 10.1007/978‑3‑319‑13188‑7_17‑1
    [Google Scholar]
  111. Liu J. Qu S. Suo Z. Yang W. Functional hydrogel coatings. Natl. Sci. Rev. 2020 8 2 nwaa254 10.1093/nsr/nwaa254
    [Google Scholar]
  112. Yuk H. Lu B. Zhao X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019 48 1642 1667 10.1039/C8CS00595H
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344348928250220063431
Loading
/content/journals/raaidd/10.2174/0127724344348928250220063431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test