Skip to content
2000
Volume 20, Issue 3
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

This review discusses the use of hydrogel systems for intravaginal drug delivery, specifically antibacterial, anti-trichomonas, and anti-fungal regimens for managing and treating gynecological infections, particularly vaginal candidiasis. Nearly 80% of females worldwide have encountered , the root cause of vaginal candidiasis (VC). This infection is manifested by inflammation, itching, erythema, dyspareunia, and pain in the infected vaginal mucosal area. Long-term use of antibiotics, immunosuppressants, contraceptive pills, use of intra-uterine devices, vaginal douching, unprotected sexual intercourse, pregnancy, and hyperglycemic condition are the major factors that affect vaginal flora and may cause VC. Conventional dosage forms, such as creams, ointment, powder, pessaries, ., are used in VC treatment; however, they have some serious limitations, such as short mucosal contact, rapid vaginal flush or discharge, or poor mucosal absorption. Researchers have developed several novel hydrogel preparations, such as mucoadhesive, pH or temperature-sensitive, or other polymeric hydrogels, to overcome these limitations. Thus, the objective of this study is to provide information on the pathophysiology and diagnosis of VC, and recently developed hydrogels for its treatment, which utilize a sol-gel system where gel formation takes place in vaginal conditions. Drug-exempted systems exhibiting antifungal problems are overcome by hydrogel, which also facilitates their wardship and proper distribution in the vaginal mucosa.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344348928250220063431
2025-02-27
2025-12-06
Loading full text...

Full text loading...

References

  1. Vaginal candidiasis (Yeast Infection).J. Midwifery Womens Health202166682582610.1111/jmwh.13326 34883540
    [Google Scholar]
  2. LírioJ. GiraldoP.C. AmaralR.L. SarmentoA.C.A. CostaA.P.F. GonçalvesA.K. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: A systematic review protocol.BMJ Open201995e02748910.1136/bmjopen‑2018‑027489 31122991
    [Google Scholar]
  3. BorgesS. SilvaJ. TeixeiraP. The role of lactobacilli and probiotics in maintaining vaginal health.Arch. Gynecol. Obstet.2014289347948910.1007/s00404‑013‑3064‑9 24170161
    [Google Scholar]
  4. HanY. RenQ. Does probiotics work for bacterial vaginosis and vulvovaginal candidiasis.Curr. Opin. Pharmacol.202161839010.1016/j.coph.2021.09.004 34649216
    [Google Scholar]
  5. WeiG. LiuQ. WangX. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy.Sci. Adv.2023920eadg094910.1126/sciadv.adg0949 37196095
    [Google Scholar]
  6. BradfordL.L. RavelJ. The vaginal mycobiome: A contemporary perspective on fungi in women’s health and diseases.Virulence20178334235110.1080/21505594.2016.1237332
    [Google Scholar]
  7. CookeG WatsonC DeckxL PirottaM SmithJ van DrielML Treatment for recurrent vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev20221CD00915110.1002/14651858
    [Google Scholar]
  8. DenningD.W. KnealeM. SobelJ.D. Rautemaa-RichardsonR. Global burden of recurrent vulvovaginal candidiasis: A systematic review.Lancet Infect. Dis.20181811e339e34710.1016/S1473‑3099(18)30103‑8 30078662
    [Google Scholar]
  9. BristowC.C. DesgrottesT. CutlerL. The aetiology of vaginal symptoms in rural Haiti.Int. J. STD AIDS201425966967510.1177/0956462413516300 24352116
    [Google Scholar]
  10. SunZ. GeX. QiuB. Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy.Front. Cell. Infect. Microbiol.202313112302610.3389/fcimb.2023.1123026 36816582
    [Google Scholar]
  11. FarrA. EffendyI. Frey TirriB. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k).Mycoses202164658360210.1111/myc.13248 33529414
    [Google Scholar]
  12. Castelo-BrancoC. CanceloM.J. VilleroJ. NohalesF. JuliáM.D. Management of post-menopausal vaginal atrophy and atrophic vaginitis.Maturitas200552Suppl. 1465210.1016/j.maturitas.2005.06.014 16139449
    [Google Scholar]
  13. NegiP. SinghA. PundirS. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis.Ther. Deliv.202314320722510.4155/tde‑2022‑0058 37191049
    [Google Scholar]
  14. ZhaoC. LiY. ChenB. Mycobiome study reveals different pathogens of vulvovaginal candidiasis shape characteristic vaginal bacteriome.Microbiol. Spectr.2023113e03152e2210.1128/spectrum.03152‑22 36995230
    [Google Scholar]
  15. PedroN.A. MiraN.P. A molecular view on the interference established between vaginal Lactobacilli and pathogenic Candida species: Challenges and opportunities for the development of new therapies.Microbiol. Res.202428112762810.1016/j.micres.2024.127628 38246122
    [Google Scholar]
  16. HellierS.D. WrynnA.F. Beyond fluconazole.Nurse Pract.2023489333910.1097/01.NPR.0000000000000095 37643144
    [Google Scholar]
  17. DasP. SwainT. MohantyJ.R. Higher vaginal pH in Trichomonas vaginalis infection with intermediate Nugent score in reproductive-age women—a hospital-based cross-sectional study in Odisha, India.Parasitol. Res.201811792735274210.1007/s00436‑018‑5962‑z 29936622
    [Google Scholar]
  18. LiD. WuM. Pattern recognition receptors in health and diseases.Signal Transduct. Target. Ther.20216129110.1038/s41392‑021‑00687‑0 34344870
    [Google Scholar]
  19. NgouB.P.M. DingP. JonesJ.D.G. Thirty years of resistance: Zig-zag through the plant immune system.Plant Cell20223451447147810.1093/plcell/koac041 35167697
    [Google Scholar]
  20. TalapkoJ. JuzbašićM. MatijevićT. Candida albicans—the virulence factors and clinical manifestations of infection.J. Fungi2021727910.3390/jof7020079 33499276
    [Google Scholar]
  21. FerrerJ. Vaginal candidosis: Epidemiological and etiological factors.Int. J. Gynaecol. Obstet.2000711S2110.1016/S0020‑7292(00)00350‑7
    [Google Scholar]
  22. FidelP.L.Jr Vaginal candidiasis: Review and role of local mucosal immunity.AIDS Patient Care STDS199812535936610.1089/apc.1998.12.359 11361971
    [Google Scholar]
  23. HainerB.L. GibsonM.V. Vaginitis.Am. Fam. Physician2011837807815 21524046
    [Google Scholar]
  24. NiuX.X. LiT. ZhangX. WangS.X. LiuZ.H. Lactobacillus crispatus modulates vaginal epithelial cell innate response to Candida albicans.Chin. Med. J. (Engl.)2017130327327910.4103/0366‑6999.198927 28139509
    [Google Scholar]
  25. ZhangX. LiT. ChenX. WangS. LiuZ. Nystatin enhances the immune response against Candida albicans and protects the ultrastructure of the vaginal epithelium in a rat model of vulvovaginal candidiasis.BMC Microbiol.201818116610.1186/s12866‑018‑1316‑3 30359236
    [Google Scholar]
  26. HuangY. MerkatzR.B. HillierS.L. Effects of a one year reusable contraceptive vaginal ring on vaginal Microflora and the risk of vaginal infection: An open-label prospective evaluation.PLoS One2015108e013446010.1371/journal.pone.0134460 26267119
    [Google Scholar]
  27. KaurS. KaurS. Recent advances in vaginal delivery for the treatment of vulvovaginal candidiasis.Curr. Mol. Pharmacol.202114328129110.2174/1573405616666200621200047 32564767
    [Google Scholar]
  28. CoudrayM.S. MadhivananP. Bacterial vaginosis: A brief synopsis of the literature.Eur. J. Obstet. Gynecol. Reprod. Biol.202024514314810.1016/j.ejogrb.2019.12.035 31901667
    [Google Scholar]
  29. ShearyB. DayanL. Recurrent vulvovaginal candidiasis.Aust. Fam. Physician2005343147150 15799663
    [Google Scholar]
  30. Abou ChacraL. FenollarF. DiopK. Bacterial vaginosis: What do we currently know?Front. Cell. Infect. Microbiol.20221167242910.3389/fcimb.2021.672429 35118003
    [Google Scholar]
  31. CalderonL. WilliamsR. MartinezM. ClemonsK.V. StevensD.A. Genetic susceptibility to vaginal candidiasis.Med. Mycol.200341214314710.1080/mmy.41.2.143.147 12964847
    [Google Scholar]
  32. FaughtB.M. ReyesS. Characterization and treatment of recurrent bacterial vaginosis.J. Womens Health (Larchmt.)20192891218122610.1089/jwh.2018.7383 31403349
    [Google Scholar]
  33. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.006
    [Google Scholar]
  34. WatsonC. CalabrettoH. Comprehensive review of conventional and non‐conventional methods of management of recurrent vulvovaginal candidiasis.Aust. N. Z. J. Obstet. Gynaecol.200747426227210.1111/j.1479‑828X.2007.00736.x 17627679
    [Google Scholar]
  35. JohalH.S. GargT. RathG. GoyalA.K. Advanced topical drug delivery system for the management of vaginal candidiasis.Drug Deliv.201623255056310.3109/10717544.2014.928760 24959937
    [Google Scholar]
  36. RotemR. FishmanB. DanielS. KorenG. LunenfeldE. LevyA. Risk of major congenital malformations following first‐trimester exposure to vaginal azoles used for treating vulvovaginal candidiasis: A population‐based retrospective cohort study.BJOG2018125121550155610.1111/1471‑0528.15293 29790255
    [Google Scholar]
  37. BenitezL.L. CarverP.L. Adverse effects associated with long-term administration of azole antifungal agents.Drugs201979883385310.1007/s40265‑019‑01127‑8 31093949
    [Google Scholar]
  38. B F, R S, M B, P N. Fluconazole resistant Candida albicans. vaginal infections at a referral center and results with boric acid as a treatment regimen.Am. J. Obstet. Gynecol.20232282S78310.1016/j.ajog.2022.11.136
    [Google Scholar]
  39. BeckK.R. OdermattA. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess.Mol. Cell. Endocrinol.202152411116810.1016/j.mce.2021.111168 33484741
    [Google Scholar]
  40. SeeniammalS. SelvakumarM. NirmaladeviP. Clinicomycological study of vulvovaginal candidiasis.Indian J. Sex. Transm. Dis. AIDS2021421576110.4103/ijstd.IJSTD_49_18 34765939
    [Google Scholar]
  41. AzieN. AnguloD. DehnB. SobelJ.D. Oral Ibrexafungerp: An investigational agent for the treatment of vulvovaginal candidiasis.Expert Opin. Investig. Drugs202029989390010.1080/13543784.2020.1791820 32746636
    [Google Scholar]
  42. HaciogluM. GuzelC.B. SavageP.B. TanA.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis.Med. Mycol.201957329129910.1093/mmy/myy023 29846682
    [Google Scholar]
  43. QinF. WangQ. ZhangC. Efficacy of antifungal drugs in the treatment of vulvovaginal candidiasis: A Bayesian network meta-analysis.Infect. Drug Resist.2018111893190110.2147/IDR.S175588 30425538
    [Google Scholar]
  44. AlkhanjafA.A.M. AtharM.T. UllahZ. UmarA. ShaikhI.A. In vitro and in vivo evaluation of a nano-tool appended oilmix (Clove and Tea Tree Oil) thermosensitive gel for vaginal candidiasis.J. Funct. Biomater.202213420310.3390/jfb13040203 36412844
    [Google Scholar]
  45. ShenoyA. GottliebA. Probiotics for oral and vulvovaginal candidiasis: A review.Dermatol. Ther.2019324e1297010.1111/dth.12970 31112355
    [Google Scholar]
  46. López-MorenoA. AguileraM. Vaginal probiotics for reproductive health and related dysbiosis: Systematic review and meta-analysis.J. Clin. Med.2021107146110.3390/jcm10071461 33918150
    [Google Scholar]
  47. ZhaoC. ZhouL. ChiaoM. YangW. Antibacterial hydrogel coating: Strategies in surface chemistry.Adv. Colloid Interface Sci.202028510228010.1016/j.cis.2020.102280 33010575
    [Google Scholar]
  48. QiL. ZhangC. WangB. YinJ. YanS. Progress in hydrogels for skin wound repair.Macromol. Biosci.2022227210047510.1002/mabi.202100475 35388605
    [Google Scholar]
  49. HsinY.K. ThangarajooT. ChoudhuryH. PandeyM. MengL.W. GorainB. Stimuli-responsive in situ spray gel of miconazole nitrate for vaginal candidiasis.J. Pharm. Sci.2023112256257210.1016/j.xphs.2022.09.002 36096286
    [Google Scholar]
  50. HuangH. QiX. ChenY. WuZ. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review.Saudi Pharm. J.201927799099910.1016/j.jsps.2019.08.001 31997906
    [Google Scholar]
  51. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  52. RoseF. WernJ.E. GavinsF. AndersenP. FollmannF. FogedC. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522.J. Control. Release2018271889710.1016/j.jconrel.2017.12.003 29217176
    [Google Scholar]
  53. LiL. MengJ. ZhangM. LiuT. ZhangC. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors.Chem. Commun. (Camb.)202158218520710.1039/D1CC05526G 34881748
    [Google Scholar]
  54. AlzainyA. BoatengJ. Novel mucoadhesive wafers for treating local vaginal infections.Biomedicines20221012303610.3390/biomedicines10123036 36551789
    [Google Scholar]
  55. AbdellatifM.M. KhalilI.A. ElakkadY.E. EliwaH.A. SamirT. Al-MokaddemA.K. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis.Int. J. Nanomedicine2020154079409010.2147/IJN.S250960 32606665
    [Google Scholar]
  56. JiangY. WangY. LiQ. YuC. ChuW. Natural polymer-based stimuli-responsive hydrogels.Curr. Med. Chem.202027162631265710.2174/0929867326666191122144916 31755377
    [Google Scholar]
  57. FalavignaM. PattaciniM. WibelR. SonvicoF. Škalko-BasnetN. FlatenG.E. The vaginal-PVPA: A vaginal mucosa-mimicking in vitro permeation tool for evaluation of mucoadhesive formulations.Pharmaceutics202012656810.3390/pharmaceutics12060568 32575388
    [Google Scholar]
  58. Campaña-SeoaneM. Pérez-GagoA. VázquezG. Vaginal residence and pharmacokinetic preclinical study of topical vaginal mucoadhesive W/S emulsions containing ciprofloxacin.Int. J. Pharm.201955427628310.1016/j.ijpharm.2018.11.022 30423417
    [Google Scholar]
  59. LiQ. GongS. YaoW. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration.Artif. Cells Nanomed. Biotechnol.202149134535310.1080/21691401.2021.1879104 33784224
    [Google Scholar]
  60. KaliaN. SinghJ. KaurM. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review.Ann. Clin. Microbiol. Antimicrob.2020191510.1186/s12941‑020‑0347‑4 31992328
    [Google Scholar]
  61. YeruvaT. LeeC.H. Enzyme responsive delivery of anti-retroviral peptide via smart hydrogel.AAPS PharmSciTech202223723410.1208/s12249‑022‑02391‑w 36002705
    [Google Scholar]
  62. Bordbar-KhiabaniA. GasikM. Smart hydrogels for advanced drug delivery systems.Int. J. Mol. Sci.2022237366510.3390/ijms23073665 35409025
    [Google Scholar]
  63. GuptaK.M. BarnesS.R. TangaroR.A. Temperature and pH sensitive hydrogels: An approach towards smart semen-triggered vaginal microbicidal vehicles.J. Pharm. Sci.200796367068110.1002/jps.20752 17154368
    [Google Scholar]
  64. KasińskiA. Zielińska-PisklakM. OledzkaE. SobczakM. Smart hydrogels: Synthetic stimuli-responsive antitumor drug release systems.Int. J. Nanomedicine2020154541457210.2147/IJN.S248987 32617004
    [Google Scholar]
  65. AliA. SarojS. SahaS. GuptaS.K. RakshitT. PalS. Glucose-Responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo.ACS Appl. Mater. Interfaces20231527322403225010.1021/acsami.3c05031 37368956
    [Google Scholar]
  66. ThambiT. JungJ.M. LeeD.S. Recent strategies to develop pH-sensitive injectable hydrogels.Biomater. Sci.20231161948196110.1039/D2BM01519F 36723174
    [Google Scholar]
  67. RavaniL. EspositoE. BoriesC. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies.Int. J. Pharm.2013454269570210.1016/j.ijpharm.2013.06.015 23792467
    [Google Scholar]
  68. AbbasiM. SohailM. MinhasM.U. Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to manage ulcerative colitis.Int. J. Biol. Macromol.2019136839610.1016/j.ijbiomac.2019.06.046 31195039
    [Google Scholar]
  69. SassiA.B. IsaacsC.E. MonclaB.J. GuptaP. HillierS.L. RohanL.C. Effects of physiological fluids on physical-chemical characteristics and activity of topical vaginal microbicide products.J. Pharm. Sci.20089783123313910.1002/jps.21192 17922539
    [Google Scholar]
  70. VegadU. PatelM. KhuntD. ZupančičO. ChauhanS. PaudelA. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery.Front. Bioeng. Biotechnol.202311127036410.3389/fbioe.2023.1270364 37781530
    [Google Scholar]
  71. CaoH. DuanL. ZhangY. CaoJ. ZhangK. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct. Target. Ther.20216142610.1038/s41392‑021‑00830‑x 34916490
    [Google Scholar]
  72. DorishettyP. DuttaN.K. ChoudhuryN.R. Bioprintable tough hydrogels for tissue engineering applications.Adv. Colloid Interface Sci.202028110216310.1016/j.cis.2020.102163 32388202
    [Google Scholar]
  73. IshiharaK. OdaH. KonnoT. Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering.Biomaterials202023011962810.1016/j.biomaterials.2019.119628 31767444
    [Google Scholar]
  74. Abd El-HadyM.M. SaeedS.E.S. Antibacterial properties and ph sensitive swelling of in situ formed silver-curcumin nanocomposite based chitosan hydrogel.Polymers20201211245110.3390/polym12112451 33114003
    [Google Scholar]
  75. GuanS. ZhangK. CuiL. LiangJ. LiJ. GuanF. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration.Biomater. Adv.202213311260410.1016/j.msec.2021.112604 35527157
    [Google Scholar]
  76. HuangH. WangX. WangW. Injectable hydrogel for postoperative synergistic photothermal-chemodynamic tumor and anti-infection therapy.Biomaterials202228012128910.1016/j.biomaterials.2021.121289 34861512
    [Google Scholar]
  77. LuL. YuanS. WangJ. The formation mechanism of hydrogels.Curr. Stem Cell Res. Ther.201813749049610.2174/1574888X12666170612102706 28606044
    [Google Scholar]
  78. LiZ. LuF. LiuY. A review of the mechanism, properties, and applications of hydrogels prepared by enzymatic cross-linking.J. Agric. Food Chem.20237127102381024910.1021/acs.jafc.3c01162 37390351
    [Google Scholar]
  79. LiX. LiX. YangJ. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration.Small20231917220721110.1002/smll.202207211 36651038
    [Google Scholar]
  80. ZhuJ. TangX. JiaY. HoC.T. HuangQ. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery: A review.Int. J. Pharm.202057811912710.1016/j.ijpharm.2020.119127 32036009
    [Google Scholar]
  81. ZhengD. WangK. BaiB. HuN. WangH. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel.Carbohydr. Polym.202228211911310.1016/j.carbpol.2022.119113 35123748
    [Google Scholar]
  82. GhasemzadehM. GozalzadehS. SirousazarM. KheiriF. Amoxicillin-loaded bionanocomposite hydrogels: Swelling, dehydration, and in vitro drug release kinetics and mechanism.J. Biomater. Sci. Polym. Ed.202435446348110.1080/09205063.2023.2295058 38127680
    [Google Scholar]
  83. IanchisR. NinciuleanuC.M. GifuI.C. Hydrogel-clay nanocomposites as carriers for controlled release.Curr. Med. Chem.202027691995410.2174/0929867325666180831151055 30182847
    [Google Scholar]
  84. LiY. FuR. DuanZ. ZhuC. FanD. Artificial nonenzymatic antioxidant mxene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing.ACS Nano20221657486750210.1021/acsnano.1c10575 35533294
    [Google Scholar]
  85. Mohammadzadeh PakdelP. PeighambardoustS.J. A review on acrylic based hydrogels and their applications in wastewater treatment.J. Environ. Manage.201821712314310.1016/j.jenvman.2018.03.076 29602074
    [Google Scholar]
  86. PulatM. EksiH. AbbasogluU. Fluconazole release from hydrogels including acrylamide-acrylic acid-itaconic acid, and their microbiological interactions.J. Biomater. Sci. Polym. Ed.200819219320510.1163/156856208783432480 18237492
    [Google Scholar]
  87. ShiL. XuS. ZhuQ. WeiY. Chitosan-coated miconazole as an effective anti-inflammatory agent for the treatment of postoperative infections in obstetrics and vaginal yeast infection control on in vitro evaluations.Microb. Pathog.202318410631210.1016/j.micpath.2023.106312 37652266
    [Google Scholar]
  88. HamediH. MoradiS. HudsonS.M. TonelliA.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review.Carbohydr. Polym.201819944546010.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  89. DetheM.R. A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels.J. Control. Release202234321723610.1016/j.jconrel.2022.01.035 35090961
    [Google Scholar]
  90. ShaX. ChanL. FanX. Thermosensitive tri-block polymer nanoparticle-hydrogel composites as payloads of natamycin for antifungal therapy against Fusarium Solani.Int. J. Nanomedicine2022171463147810.2147/IJN.S332127 35378880
    [Google Scholar]
  91. TomićSLj Babić RadićMM VukovićJS Alginate-based hydrogels and scaffolds for biomedical applications.Mar. Drugs2023213177 36976226
    [Google Scholar]
  92. MohammadiM. KarimiM. Malaekeh-NikoueiB. TorkashvandM. AlibolandiM. Hybrid in situ- forming injectable hydrogels for local cancer therapy.Int. J. Pharm.202261612153410.1016/j.ijpharm.2022.121534 35124117
    [Google Scholar]
  93. WangF. ZhaoL. SongF. WuJ. ZhouQ. XieL. Hybrid natural hydrogels integrated with voriconazole-loaded microspheres for ocular antifungal applications.J. Mater. Chem. B Mater. Biol. Med.20219153377338810.1039/D1TB00263E 33881428
    [Google Scholar]
  94. ArpaM.D. YoltaşA. Onay TarlanE. New therapeutic system based on hydrogels for vaginal candidiasis management: Formulation–characterization and in vitro evaluation based on vaginal irritation and direct contact test.Pharm. Dev. Technol.202025101238124810.1080/10837450.2020.1809457 32787718
    [Google Scholar]
  95. CiT. YuanL. BaoX. Development and anti- Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel.J. Drug Target.201826982983910.1080/1061186X.2018.1434660 29378463
    [Google Scholar]
  96. Del PupL. Treatment of atrophic and irritative vulvovaginal symptoms with an anhydrous lipogel and its complementary effect with vaginal estrogenic therapy: New evidences.Minerva Ginecol.2010624287291 20827246
    [Google Scholar]
  97. SatoM.R. Oshiro-JuniorJ.A. RoderoC.F. Enhancing antifungal treatment of Candida albicans with hypericin-loaded nanostructured lipid carriers in hydrogels: Characterization, in vitro, and in vivo photodynamic evaluation.Pharmaceuticals2023168109410.3390/ph16081094 37631009
    [Google Scholar]
  98. JaiswalM. DeshmukhR. PatelA. Parkinson’s disease: Neurodegeneration and the potential role of medicinal plants.Int. Neurourol. J.2023274567586
    [Google Scholar]
  99. SpaggiariL. Squartini RamosG.B. Squartini RamosC.A. Anti-Candida and anti-inflammatory properties of a vaginal gel formulation: Novel data concerning vaginal infection and dysbiosis.Microorganisms2023116155110.3390/microorganisms11061551 37375053
    [Google Scholar]
  100. AnguloD.A. AlexanderB. Rautemaa-RichardsonR. Ibrexafungerp, a novel triterpenoid antifungal in development for the treatment of mold infections.J. Fungi2022811112110.3390/jof8111121 36354888
    [Google Scholar]
  101. GasparC. RoloJ. CercaN. Palmeira-de-OliveiraR. Martinez-de-OliveiraJ. Palmeira-de-OliveiraA. Dequalinium chloride effectively disrupts bacterial vaginosis (BV) Gardnerella spp. biofilms.Pathogens202110326110.3390/pathogens10030261 33668706
    [Google Scholar]
  102. ChindamoG. SapinoS. PeiraE. ChirioD. GallarateM. Recent advances in nanosystems and strategies for vaginal delivery of antimicrobials.Nanomaterials202111231110.3390/nano11020311 33530510
    [Google Scholar]
  103. SwidsinskiS. MollW.M. SwidsinskiA. Bacterial vaginosis—vaginal polymicrobial biofilms and dysbiosis.Dtsch. Arztebl. Int.202312020347354 37097068
    [Google Scholar]
  104. Rodríguez-GascónA. del Pozo-RodríguezA. IslaA. SolinísM.A. Vaginal gene therapy.Adv. Drug Deliv. Rev.201592718310.1016/j.addr.2015.07.002 26189799
    [Google Scholar]
  105. BaxiK. SawarkarS. MominM. PatelV. FernandesT. Vaginal siRNA delivery: Overview on novel delivery approaches.Drug Deliv. Transl. Res.202010496297410.1007/s13346‑020‑00741‑4 32170657
    [Google Scholar]
  106. LiT. NiuX. ZhangX. WangS. LiuZ. Recombinant human IFNα-2b response promotes vaginal epithelial cells defense against Candida albicans.Front. Microbiol.2017869710.3389/fmicb.2017.00697
    [Google Scholar]
  107. ScarsiniM. TomasinsigL. ArzeseA. D’EsteF. OroD. SkerlavajB. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections.Peptides20157121122110.1016/j.peptides.2015.07.023 26238597
    [Google Scholar]
  108. MartínR EscobedoS SuárezJE Induction, structural characterization, and genome sequence of Lv1, a prophage from a human vaginal Lactobacillus jensenii strain.Int Microbiol202113311310.1016/s0020‑7292(00)00350‑7
  109. ChengF.M. ChenH.X. LiH.D. Recent progress on hydrogel actuators.J. Mater. Chem. B202191762178010.1039/d0tb02524k
    [Google Scholar]
  110. LiJ. WuQ. WuJ. Synthesis of nanoparticles via solvothermal and hydrothermal methods.In: Handbook of Nanoparticles.Springer International Publishing201529532810.1007/978‑3‑319‑13188‑7_17‑1
    [Google Scholar]
  111. LiuJ. QuS. SuoZ. YangW. Functional hydrogel coatings.Natl. Sci. Rev.202082nwaa25410.1093/nsr/nwaa254
    [Google Scholar]
  112. YukH. LuB. ZhaoX. Hydrogel bioelectronics.Chem. Soc. Rev.2019481642166710.1039/C8CS00595H
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344348928250220063431
Loading
/content/journals/raaidd/10.2174/0127724344348928250220063431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test