Recent Patents on Anti-Cancer Drug Discovery - Volume 20, Issue 2, 2025
Volume 20, Issue 2, 2025
-
-
Exosome-Derived Cargos in Immune Microenvironment in Esophageal Carcinoma: A Mini-Review
Authors: Yakun Zhang, Xiaoyan Sun, Yan Guan and Ying SunEsophageal carcinoma, a lethal malignancy with limited treatment options and poor prognosis, necessitates understanding its underlying mechanisms and identifying novel therapeutic targets. Recent studies have highlighted the critical role of the immune microenvironment in esophageal carcinoma, particularly the interplay between tumor cells and immune cells mediated by exosomes and their cargos. Exosomes, small extracellular vesicles secreted by various cells, including tumor cells, facilitate intercellular communication by transferring bioactive molecules such as proteins, nucleic acids, and lipids to recipient cells. In the context of esophageal carcinoma, tumor-derived exosomes have been shown to play a significant role in shaping the immune microenvironment. In esophageal carcinoma, exosomal cargos have been found to modulate immune cell function and impact tumor progression. These cargos can carry immune inhibitory molecules, such as programmed death-ligand 1 (PD-L1), to suppress T-cell activity and promote immune evasion by tumor cells. Furthermore, exosomal cargos can activate antigen-presenting cells, enhancing their ability to present tumor-specific antigens to T cells and thereby promoting anti-tumor immune responses. Additionally, the cargos of exosomes have been implicated in the induction of immune regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within the esophageal carcinoma microenvironment. These immunosuppressive effectors inhibit the activity of T cells, contributing to tumor immune evasion and resistance to immune therapies. In summary, exosomes and their cargo play a crucial role in the immune microenvironment of esophageal carcinoma. Understanding the mechanisms by which exosomal cargos regulate immune cell function and tumor progression may reveal novel therapeutic targets for this devastating disease.
-
-
-
Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling
Authors: Jiaqi Su, Xianbing Liu, Xiaoyue Zhao, Hongjie Ma, Yuzhu Jiang, Xu Wang, Peiyuan Wang, Mingdong Zhao and Xuemei HuBackgroundCurcumin has been reported to have anti-hepatocellular carcinoma (HCC) effects, but the underlying mechanism is not well known.
ObjectivesTo investigate whether membrane-associated RING-CH 1 (MARCH1) is involved in the curcumin-induced growth suppression in HCC and its underlying molecular mechanism. A few recent patents for curcumin for cancer are also reviewed in this article.
MethodsThe effect of curcumin on growth inhibition of HCC cells was analyzed through in vitro and in vivo experiments, and the expression levels of MARCH1, Bcl-2, VEGF, cyclin B1, cyclin D1, and JAK2/STAT3 signaling molecules were measured in HCC cells and the xenograft tumors in nude mice. Cell transfection with MARCH1 siRNAs or expression plasmid was used to explore the role of MARCH1 in the curcumin-induced growth inhibition of HCC cells.
ResultsCurcumin inhibited cell proliferation, promoted apoptosis, and arrested the cell cycle at the G2/M phase in HCC cells with the decrease of Bcl-2, VEGF, cyclin B1, and cyclin D1 expression as well as JAK2 and STAT3 phosphorylation, resulting in the growth suppression of HCC cells. MARCH1 is highly expressed in HCC cells, and its expression was downregulated after curcumin treatment in a dose-dependent manner. The knockdown of MARCH1 by siRNA decreased the phosphorylation levels of JAK2 and STAT3 and inhibited the growth of HCC cells. In contrast, opposite results were observed when HCC cells overexpressed MARCH1. A xenograft tumor model in nude mice also showed that curcumin downregulated MARCH1 expression and decelerated the growth of transplanted HCC with the downregulation of JAK2/STAT3 signaling and functional molecules. The ADC value of MRI analysis showed that curcumin slowed down the progression of HCC.
ConclusionOur results demonstrated that curcumin may inhibit the activation of JAK2/STAT3 signaling pathway by downregulating MARCH1 expression, resulting in the growth suppression of HCC. MARCH1 may be a novel target of curcumin in HCC treatment.
-
-
-
Differentiation of Acute Leukemia Cells Including Cells with MLL-AF4 Rearrangements Induced by Jiyuan Oridonin A
Authors: Xueming Li, Fenglian Zhang, Yu Ke, Hongmin Liu, Zhenbo Hu and Liuya WeiBackgroundChromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9. Moreover, AL is characterized by a differentiation blockage resulting in the accumulation of immature cells. An ent-kaurene diterpenoid compound, Jiyuan Oridonin A (JOA), has been shown to reduce the viability of AML cells by differentiation.
MethodsWe aimed to evaluate the effect of JOA on the growth and differentiation of AL cells (SEM, JURKAT and MV4-11) including cells with MLLr-AF4 by cell proliferation assay, colony formation assay, cell cycle analysis, cell apoptosis analysis, measurement of cell surface antigens and cell morphology, mRNA-sequencing analysis, quantitative Real-time PCR and Western blotting analysis.
ResultsOur findings demonstrated that the proliferation of AL cells including cells with MLLr-AF4 was significantly suppressed by JOA, which induced cell differentiation followed by G0/G1 cell cycle withdrawal. Moreover, JOA-mediated cell differentiation was likely due to activation of G-CSFR in MV4-11 cells.
ConclusionOur results suggest that JOA may be considered a promising anti-leukemia compound to develop to surmount the differentiation block in AL patients.
-
-
-
Tyrosine Kinase Inhibitor Lenvatinib Causes Cardiotoxicity by Inducing Endoplasmic Reticulum Stress and Apoptosis through Activating ATF6, IRE1α and PERK Signaling Pathways
Authors: Siqi Wang, Fang Ji, Xiaoli Gao, Zhiyi Li, Si Lv, Juan Zhang, Jiarui Luo, Dan Li, Jie Yan, Huayang Zhang, Kaicheng Fang, Lin Wu and Miaoling LiBackgroundLenvatinib is a tyrosine kinase inhibitor that can improve progression-free survival in patients with thyroid cancer and hepatocellular carcinoma. However, it is limited by adverse cardiovascular events, including hypertension and cardiac dysfunction. Activation of endoplasmic reticulum stress is involved in cardiomyocyte apoptosis.
ObjectiveThis study aimed to confirm whether the cardiotoxicity of lenvatinib is associated with endoplasmic reticulum stress by targeting the activating transcription factor 6 (ATF6), inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like ER kinase (PERK) signaling pathways.
MethodsMale C57/BL6 mice were intragastric administration with 30 mg/kg/day lenvatinib. Electrocardiography (ECG) and echocardiography were used to detect arrhythmias and cardiac function. Neonatal rat cardiomyocytes were treated with lenvatinib for 48h. Cell counting kit (CCK8), 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFHDA), Hoechst 33258 and dihydrorhodamine 123 were respectively used for evaluating cell viability, the level of reactive oxygen species (ROS), nuclear morphological changes and mitochondrial membrane potential (MMP) level.
ResultsLenvatinib remarkably decreased the posterior wall thickness of left ventricle during diastole and systole but caused little decrease to the left ventricular ejection fraction (LVEF, %). Furthermore, lenvatinib greatly prolonged the corrected QT interval (QTc) and altered the morphology of cardiomyocytes. No significant difference in fibrosis was found in mouse cardiac slices. Lenvatinib upregulates apoptosis-related protein expression. In addition, lenvatinib increased ERS-related proteins expression (GRP78, CHOP, and ATF6) and enhanced PERK phosphorylation. In neonatal rat cardiac myocytes, lenvatinib markedly decreased the viability of cardiomyocytes and induced apoptosis. Furthermore, ROS production increased and MMP decreased. Similar to the mice experiment, lenvatinib caused upregulation of apoptosis-related and ERS-related proteins and increased the phosphorylation levels of PERK and IRE1α.
ConclusionLenvatinib-induced cardiotoxicity is associated with ERS-induced apoptosis by targeting the ATF6, IRE1α, and PERK signaling pathways.
-
-
-
Comprehensive Analysis of Prognostic Alternative Splicing Signatures in Tumor Immune Infiltration in Bladder Cancer
Authors: Gao-Lei Liu, Hao Luo, Dan-Dan Liang, Li Zhong, Nan Dai and Wei-Hua LanBackgroundBladder cancer exhibits substantial heterogeneity encompassing genetic expressions and histological features. This heterogeneity is predominantly attributed to alternative splicing (AS) and AS-regulated splicing factors (SFs), which, in turn, influence bladder cancer development, progression, and response to treatment.
ObjectiveThis study aimed to explore the immune landscape of aberrant AS in bladder cancer and establish the prognostic signatures for survival prediction.
MethodsBladder cancer-related RNA-Seq, transcriptome, and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to identify significantly enriched pathways of cancer-related AS events. The underlying interactions among differentially expressed genes (DEGs) and cancer-related AS events were assessed by a protein-protein interaction network. Univariate and multivariate Cox regression analyses were performed to identify crucial prognostic DEGs that co-occurred with cancer-related AS events (DEGAS) for overall survival. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to assess the efficiency of the prognostic signatures. The CIBERSORT algorithm was used to explore the abundance of immune infiltrating cells.
ResultsA total of 3755 cancer-related AS events and 3110 DEGs in bladder cancer were identified. Among them, 379 DEGs co-occurred with cancer-related AS events (DEGAS), of which 102 DEGAS were associated with 14 dysregulated SFs. GSEA and KEGG analysis showed that cancer-related AS events were predominantly enriched in pathways related to immunity, tumorigenesis, and treatment difficulties of bladder cancer. Multivariate Cox regression analysis identified 8 DEGAS (CABP1, KCNN2, TNFRSF13B, PCDH7, SNRPA1, APOLD1, CX3CL1, and DENND5A) significantly associated with OS, and they were further integrated into the prediction model with good AUCs at 3-year, 5-year and 7-year ROC curves (all>0.7). Immune infiltration analysis revealed the significant enrichment of three immune cell types (B cells naïve, dendritic cells resting, and dendritic cell activated) in high-risk bladder cancer patients.
ConclusionThis study not only unveiled comprehensive prognostic signatures of AS events in bladder cancer but also established a robust prognostic model based on survival-related DEGAS. These aberrant AS events, dysregulated SFs, and the identified 8 DEGAS may have significant clinical potential as therapeutic targets for bladder cancer.
-
-
-
Ligustilide Inhibits the PI3K/AKT Signalling Pathway and Suppresses Cholangiocarcinoma Cell Proliferation, Migration, and Invasion
Authors: Yue Wu, Li Rong, Suifeng Zhang, Yuxi He, Na Song, Guoqing Zuo and Zhechuan MeiBackgroundAngelica sinensis (Oliv.) Diels, a renowned traditional Chinese medicine, has gained widespread recognition for its antitumor properties. Further investigation is warranted to determine whether ligustilide (LIG), which is extracted from this plant, can effectively inhibit tumors.
ObjectivesWe delved into the impact of LIG on cholangiocarcinoma cells, aiming to unravel the mechanisms underlying its effects.
Materials and MethodsCholangiocarcinoma cells (HuccT1 and RBE) were exposed to varying concentrations of LIG (2, 5, 10, 15, 20 μg/mL) for 24, 48, and 72 h. After identifying differentially expressed genes, stable transcription strains were utilized to explore LIG’s antitumor mechanism. The inhibitory effects of LIG (5 μg/mL, 48 h) were assessed by CCK-8, colony formation, wound healing, transwell migration, western blotting, and immunofluorescence. In vivo, experiments in NOG mice (Ac, Ac+LIG; five per group) evaluated LIG’s antiproliferative efficacy (5 mg/kg, intraperitoneal injection, 18-day period).
ResultsLIG significantly inhibited cell proliferation and migration with IC50 5.08 and 5.77 μg/mL in HuccT1 and RBE cell lines at 48h, increased the expression of E-cadherin while decreased N-cadherin and the protein of PI3K/AKT pathway. Silenced NDRG1 (N-Myc downstream-regulated gene 1) attenuated these effects. In vivo, the AC+LIG group (LIG, 5 mg/kg, qd, 18 d) exhibited smaller tumor volumes compared to the Ac group. The expression of Ki-67 was significantly downregulated in the AC+LIG group.
ConclusionFor the first time, our study has revealed that LIG holds therapeutic potential for treating cholangiocarcinoma. These findings hold promise for advancing innovative therapeutic approaches in the treatment of cholangiocarcinoma. LIG may serve as a useful patent for treating CCA.
-
-
-
Metformin Inhibits NLRP3 Inflammasome Expression and Regulates Inflammatory Microenvironment to Delay the Progression of Colorectal Cancer
Authors: Gaojie Liu, Feixiang Wang, Yanlin Feng and Hongsheng TangBackgroundColorectal cancer is a common malignant tumor, with about one million people diagnosed with it worldwide each year. Recent studies have found that metformin can inhibit the production of inflammatory factors and regulate the polarization of immune cells. However, whether metformin can regulate the inflammatory microenvironment and delay the progression of colorectal cancer by inhibiting the inflammatory response has not been deeply studied yet.
ObjectivesThis study aimed to explore the molecular mechanism by which metformin inhibits the expression of NLRP3 inflammasome, regulates the inflammatory microenvironment, and delays the progression of colorectal cancer through in vitro cell experiments.
MethodsIn this research, NLRP3 was knocked down in human colorectal cancer cells, and metformin was added to them. Cell proliferation ability was detected by CCK8, and cell migration and invasion abilities were assessed by Transwell assay. The apoptosis rate was determined by flow cytometry. In addition, the expression of NLRP3 inflammatory vesicles and inflammatory factors in each group of cells was studied by qRT-PCR and Western blotting. Finally, clinical colorectal cancer samples were analyzed by immunohistochemistry.
ResultsThe results of the study showed that NLRP3 expression was significantly increased in colorectal cancer cell lines and human colorectal cancer tissues. Knockdown of NLRP3 significantly inhibited tumor cell proliferation, migration, and invasion. In addition, the proliferation, migration and invasion of tumor cells were also significantly reduced by the addition of metformin intervention. Furthermore, qRT-PCR and WB results demonstrated that the expression of IL-1β, IL-6, TNF-α, TGF-β, and IL-10 was down-regulated in LS1034 tumor cells after NLRP3 knockdown. In addition, metformin intervention also resulted in different degrees of downregulation of NLRP3 and inflammatory factor expression (p <0.05). Notably, the reduction in inflammatory factors was more pronounced after the combination of NLRP3 knockdown and metformin intervention.
ConclusionMetformin can inhibit the expression of NLRP3 inflammasome, thereby suppressing the expression of inflammation-related factors, reducing the damage of the inflammatory microenvironment to normal cells, and delaying the progression of colorectal cancer.
-
-
-
Matrine Enhances the Antitumor Efficacy of Chidamide in CTCL by Promoting Apoptosis
Authors: Xinglan He, Guanyu Wang, Yimeng Wang and Chunlei ZhangBackgroundCutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL.
MethodsBoth HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice.
Results and DiscussionCompared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both in vitro and in vivo. The results from the in vitro and in vivo studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase-3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis.
ConclusionOur data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.
-
-
-
USP31 Activates the Wnt/β-catenin Signaling Pathway and Promotes Gastric Cancer Cell Proliferation, Invasion and Migration
Authors: Lan Li, Limin Ye, Yinying Cui, Yueting Wu, Ling Shui, Zheng Zong and Zhao NieBackgroundGastric cancer (GC) has a poor prognosis because it is highly aggressive, yet there are currently few effective therapies available. Although protein ubiquitination has been shown to play a complex role in the development of gastric cancer, to date, no efficient ubiquitinating enzymes have been identified as treatment targets for GC.
MethodsThe TCGA database was used for bioinformatic investigation of ubiquitin-specific protease 31 (USP31) expression in GC, and experimental techniques, including Western blotting, qRT-PCR, and immunohistochemistry, were used to confirm the findings. We also analyzed the relationship between USP31 expression and clinical prognosis in patients with GC. We further investigated the effects of USP31 on the proliferation, invasion, migration, and glycolysis of GC cells in vitro and in vivo by using colony formation, CCK-8 assays, Transwell chamber assays, cell scratch assays, and cell-derived xenograft. Furthermore, we examined the molecular processes by which USP31 influences the biological development of GC.
ResultsPatients with high USP31 expression have a poor prognosis because USP31 is abundantly expressed in GC. Therefore, USP31 reduces the level of ubiquitination of the Wnt/β-catenin pathway by binding to β-catenin, thereby activating glycolysis, which ultimately promotes GC proliferation and aggressive metastasis.
ConclusionUSP31 inhibits ubiquitination of β-catenin by binding to it, stimulates the Wnt/β-catenin pathway, activates glycolysis, and accelerates the biology of GCs, which are all demonstrated in this work.
-
-
-
The Emerging Role of ADAM 12 Regulates Epithelial-mesenchymal Transition by Activating the Wnt/β-catenin Signaling Pathway in Colorectal Cancer
Authors: Chengchen Huang, Jian Wang, Jianqin Xiang, Chunrong Wu, Fan Wang, Jiangyan Chen, Guiyin Sun and Debing XiangObjectiveThe objective of this study is to investigate the expression and regulatory mechanisms of A disintegrin and metalloproteinase domain 12 (ADAM12) in colorectal cancer (CRC) tissues and cells.
MethodsDownload and analyze the expression levels of ADAM12 in the TCGA and GSE68468 datasets. Collect paraffin-preserved specimens from the Chongqing University Jiangjin Hospital from April 2017 to December 2019 and detect the expression of ADAM12 through immunohistochemistry. Cell experiments were conducted using colorectal cancer cell lines (SW480, HCT116), and cells with high expression of ADAM12 were selected for silencing experiments, and cell proliferation ability using CCK-8, and migration ability of cells in each group using scratch assay and Transwell invasion assay. The EMT markers (E-cadherin, N-cadherin, Vimentin, Twist) and the Wnt/β-catenin markers (β-catenin, GSK-3β, p-GSK-3β, C-MYC, MMP-7) were detected using western blot. We construct a nude mouse CRC tumor model and validate the effect of ADAM12 on EMT and Wnt/β-catenin through immunohistochemistry and Western blot.
ResultsBioinformatics showed that increased expression of ADAM12 was strongly correlated with patient prognosis. Immunohistochemistry showed that elevated ADAM12 was associated with vascular invasion (p < 0.05), neurological invasion (p < 0.01), lymph node metastasis (p < 0.01), and TNM staging (p < 0.001). Experiments on cell function revealed that the ADAM12 overexpression group augmented CRC cells' proliferation and migration. After overexpression of ADAM12, the expression of N-cadherin, Vimentin, and Twist increased, while the expression of E-cadherin decreased (p < 0.01). The expression of Proteins related to Wnt/β-catenin: β-catenin, p-GSK-3 β, C-MYC and MMP-7 increased (p < 0.01), and Wnt/β-catenin inhibitor MSAB can counteract the effect of ADAM12 on EMT in CRC cells. The subcutaneous tumor formation experiment results in nude mice showed that ADAM12 promoted tumor growth and induced EMT compared to the control group.
ConclusionADAM12 overexpression through the Wnt/β-catenin signal axis controls the EMT of CRC to promote invasion and metastasis.
-
-
-
PDLIM1 Inhibits Chemoresistance by Blocking DNA Damage Repair in Gastric Cancer
More LessObjectiveCurrent cisplatin (CDDP) resistance remains a major challenge in the treatment of advanced gastric cancer. To address the issue of drug resistance, we explored the regulatory functions of PDZ and LIM structural domain protein 1 (PDLIM1) in CDDP chemotherapy for gastric cancer.
MethodsIn this study, we analyzed PDLIM1 expression and prognosis using bioinformatics on publicly available data. PDLIM1 expression in a gastric mucosal epithelial cell line (GSE-1), CDDP-sensitive (SGC7901, BGC823) and CDDP-resistant gastric cancer cells was detected by RT-qPCR and Western blotting. Cell proliferative capacity was assessed by knockdown of PDLIM1 and overexpression of PDLIM1 in cells administered in combination with cisplatin, and apoptotic levels were measured by CCK-8 and colony formation assay and by flow cytometry. Expression of breast cancer susceptibility gene 1 (BRCA1) and γH2AX was determined by Western blotting or immunofluorescence staining.
ResultsDownregulation of PDLIM1 was found in tumor tissues and cells, which was associated with poor clinical outcomes. Knockdown of PDLIM1 enhanced proliferation and attenuated apoptosis in gastric cancer cells. In addition, the therapeutic effects of CDDP on proliferation, apoptosis, and DNA damage repair were attenuated by PDLIM1 deletion.PDLIM1 expression was downregulated in CDDP-resistant tumor cells. Overexpression of PDLIM1 overcomes CDDP resistance in tumor cells as BRCA1 expression decreases and γH2AX expression increases.
ConclusionOur findings demonstrate that PDLIM1 enables to alleviate gastric cancer progression and resistance to cisplatin via impeding DNA damage repair.
-
-
-
Selinexor as a Therapeutic Target: Advances in Non-small Cell and Small Cell Lung Cancer Treatment Strategies
Authors: Bosheng Zheng, Wenqi Zhang, Shaonan Xie, Yaqing Han, Guangjie Liu, Yanjie Liu, Maogang Gao, Shize Wang and Qingyi LiuSelinexor treats lung cancer, particularly non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). This review summarizes the prevalence and types of lung cancer and emphasizes the challenges associated with current treatments like resistance and limited effectiveness. Selinexor is a selective inhibitor of nuclear export (SINE) that has emerged as a potential therapy that targets the nuclear export of tumor suppressor proteins. The mechanisms of selinexor, its potential in combination therapies, and challenges like side effects and drug resistance are explained in this review. Key findings highlight the effectiveness of selinexor in preclinical studies, particularly against KRAS-mutant NSCLC and in combination with chemotherapy for SCLC. The review concludes with a discussion of future directions and underscores the potential of selinexor to improve the treatment strategies for lung cancer.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
