Recent Patents on Anti-Cancer Drug Discovery - Volume 14, Issue 2, 2019
Volume 14, Issue 2, 2019
-
-
Novel Small Molecule Inhibitors of Programmed Cell Death (PD)-1, and its Ligand, PD-L1 in Cancer Immunotherapy: A Review Update of Patent Literature
Authors: Spandana R. Kopalli, Tae-Bong Kang, Kwang-Ho Lee and Sushruta KoppulaBackground: In the last few decades, cancer immunotherapy has been extensively researched, and novel checkpoint signaling mechanisms involving Programmed Death (PD)-1 and PDLigand 1 (PD-L1) receptors have been targeted. The PD-1/PD-L1 binding and interaction play a critical role in the development of malignancies. Objective: The present review focuses on recent patents on the pharmacological and biological cancerregulating properties of PD-1/PD-L1 inhibitors involved in immunotherapeutic cancer drug development. Methods: Thorough patent literature search published during the last seven years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents, to identify PD-1/PD-L1-targeting small molecule immunomodulators. Results: Several small molecule PD-1/PD-L1 inhibitors were patented for regulation of tumor progression by academic and industry-associated investigators. Most of the claimed patents have been validated and confined to in vitro and in vivo mouse models limiting their entry into clinical settings. Majority of the patents are claimed by the researchers at Aurigene Ltd. (India) on novel peptidomimetic compounds. It is worth to be noted that macrocyclic compounds such as the peptides QP20, HD20, WQ20, SQ20, and CQ-22 from Bristol-Myers Squibb (BMS) Company, biaryl, and heterocyclic derivatives including 1,3-dihydroxy-phenyl compounds were efficient in regulating the PD-1/PD-L1 protein-protein binding and interaction compared to those of the approved monoclonal antibodies. Conclusion: PD-1/PD-L1 inhibitors show significant anti-cancer responses as stand-alone agents and in combination with other cancer therapies. More efficient experimental studies and clinical trials are necessary to evaluate the host-tumor cells’ interactions. Understanding the cancer microenvironment, and identifying specific biomarkers and X-ray crystalline structures of PD-1/PD-L1 complexes, including molecular and genomic signature studies are essential to determine the feasibility of PD-1/PD-L1 inhibitors for development into drug-like cancer immunotherapeutics.
-
-
-
Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents
Authors: Elmira Ekinci, Sagar Rohondia, Raheel Khan and Qingping P. DouBackground: Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. Objective: To summarize the anti-cancer effects of Disulfiram through a thorough patent review. Methods: This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. Results: Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. Conclusion: For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
-
-
-
Cucurbitacins as Anticancer Agents: A Patent Review
Authors: Hidayat Hussain, Ivan R. Green, Muhammad Saleem, Khanzadi F. Khattak, Muhammad Irshad and Maroof AliBackground: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: This review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.
-
-
-
Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer’s Disease
Authors: Dongmei Chen, Xiao Z. Zhou and Tae H. LeeBackground: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apoptosis, tumor suppression and neurodegeneration including Alzheimer’s Disease (AD). Objective: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. Methods: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. Results: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting susceptibility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream targets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. Conclusion: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregulation is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.
-
-
-
A Truncated Snail1 Transcription Factor Alters the Expression of Essential EMT Markers and Suppresses Tumor Cell Migration in a Human Lung Cancer Cell Line
Background: Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT. Objective: We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis. Methods: The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-β1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration. Results: CSnail1 inhibited TGF-β1-induced N-cadherin and vimentin mRNA expression and increased β-catenin expression in transfected TGF-β1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test. Conclusion: Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.
-
-
-
Lentiviral-Mediated Overexpression of MicroRNA-141 Promotes Cell Proliferation and Inhibits Apoptosis in Human Esophageal Squamous Cell Carcinoma
Authors: Jun-He Zhang and Hai-Bin XiaBackground: Esophageal Carcinoma (EC) is the eighth most common cancer worldwide. Numerous studies have highlighted a vital role of microRNAs (miRNAs) in the development of EC. However, the mechanism of microRNA (miRNA)-141 in Esophageal Squamous Cell Carcinoma (ESCC) remains unknown. Objective: In this study, we explored the effects of miRNA-141 on EC cell proliferation, apoptosis, xenograft tumour growth and their possible mechanisms. Methods: A lentivirus-vector-expressing miRNA-141 was constructed, and a TE-1 cell line of ESCC with a stable expression of miRNA-141 was transfected and screened. The miRNA-141 expression level was detected using qRT-PCR. Effects of miRNA-141 overexpression on cell proliferation and apoptosis were detected using MTT and flow cytometry, respectively. Using a dual-luciferase reporter assay, a direct interaction between miRNA-141 and the 3'-Untranslated Region (UTR) of YAP1 and SOX17 was confirmed. Tumour xenograft experiment in nude mice was used to detect the tumour growth, and the effects of miRNA-141 overexpression on YAP1 and SOX17 were analysed using Western blot. Results: We found that miRNA-141 was highly expressed in TE-1 cells, and miRNA-141 overexpression promoted cell proliferation and inhibited apoptosis. Moreover, the miRNA-141 group showed significantly increased tumour growth ability, luciferase activities and expression levels of YAP1 and SOX17 in the miRNA-141group were significantly down-regulated. Conclusion: miRNA-141 promotes cell proliferation and inhibits apoptosis in ESCC by downregulating the expression level of YAP1 and SOX17, indicating that miRNA-141 may be a potential molecular target for the treatment of ESCC.
-
-
-
Enzyme and Transporter Kinetics for CPT-11 (Irinotecan) and SN-38: An Insight on Tumor Tissue Compartment Pharmacokinetics Using PBPK
Background: Computational tools are becoming more and more powerful and comprehensive as compared to past decades in facilitating pharmaceutical, pharmacological and clinical practice. Anticancer agents are used either as monotherapy or in combination therapy to treat malignant conditions of the body. A single antineoplastic agent may be used in different types of malignancies at different doses according to the stage of the disease. Objective: To study the behavior of CPT-11 (Irinotecan) and its metabolite SN-38 in tumor tissue compartment through the Whole Body-Physiologically Pharmacokinetics (WB-PBPK) and to determine the activity of metabolic enzymes and transporters participating in the disposition of CPT-11 and SN-38 working in their physiological environment inside the human body. Methods: Whole body PBPK approach is used to determine the activity of different metabolic enzymes and transporters involved in the disposition of CPT-11 and its active metabolite, SN-38. The concentrations and pharmacokinetic parameters of the parent compound and its metabolite administered at clinically applicable dose via the intravenous route in the tumor tissue are predicted using this approach. Results: The activity rate constants of metabolic enzymes and transporters of CPT-11 are derived at their natural anatomic locations. Concentration-time curves of CPT-11 and SN-38 with their 5th to 95th percentage range are achieved at the tumor tissue level. Mean tumor tissue pharmacokinetics of both compounds are determined in a population of 100 individuals. Conclusion: Tumor tissue concentration-time curves of CPT-11 and SN-38 can be determined via PBPK modeling. Rate constants of enzymes and transporters can be shown for healthy and tumor bearing individuals. The results will throw light on the effective concentration of active compound at its target tissue at the clinically applied IV dose.
-
-
-
Inhibitory Effect of Hydroxysafflor Yellow B on the Proliferation of Human Breast Cancer MCF-7 Cells
Authors: Chuanjun Qu, Weiwei Zhu, Kaijie Dong, Zhaohai Pan, Ying Chen, Xiaoyu Chen, Xiaona Liu, Wenjuan Xu, Haiyan Lin, Qiusheng Zheng and Defang LiBackground: A recent patent has been issued for hydroxysafflor yellow A (HSYA) as a drug to prevent blood circulation disorders. Hydroxysafflor yellow B (HSYB), an isomer of HSYA with antioxidative effects, has been isolated from the florets of Carthamus tinctorius. The effects of HSYB on the proliferation of cancer cells and its mechanism of action have not been investigated. Objective: The aims of this study were to investigate the anti-cancer effects and the molecular mechanism of HSYB for breast cancer MCF-7 cells. Methods: MTT assays and colony formation assays were used to assess the survival and proliferation of MCF-7 cells, respectively. Hoechst 33258 and flow cytometry were used to measure cell apoptosis and flow cytometry to determine effects on the cell cycle. Western blots were used to measure protein levels. Results: Treatment with HSYB reduced survival and proliferation of human breast cancer MCF-7 cells in a dose-dependent manner. Furthermore, HSYB arrested the MCF-7 cell cycle at the S phase and downregulated cyclin D1, cyclin E, and CDK2. Compared with a control group, HSYB suppressed the protein levels of p-PI3K, PI3K, AKT, and p-AKT in MCF-7 cells. In addition, HSYB decreased the levels of Bcl- 2, increased the levels of Bax, cleaved caspase-3 and caspase-9, and subsequently induced MCF-7 cell apoptosis. Conclusion: These data demonstrate that HSYB arrests the MCF-7 cell cycle at the S phase and induces cell apoptosis. Patent US20170246228 indicates that HSYB can be potentially used for the prevention and treatment of human breast cancer.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
