Skip to content
2000
image of CAD is Associated with Cancer Prognosis and Promotes Enzalutamide Resistance in Prostate Cancer

Abstract

Introduction

Preliminary investigations into the feasibility of Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase (CAD)-targeted therapies have been conducted in a limited range of cancer types in pre-clinical studies. A comprehensive exploration of the diagnostic and prognostic capabilities of CAD, along with an understanding of its underlying biological mechanisms, is needed.

Methods

A range of bioinformatics tools was employed to produce an extensive pan-cancer analysis of CAD expression. Experimental validation of the role of CAD in enzalutamide resistance in prostate cells was conducted. The molecular classification and drug patents of CAD were reviewed using the Worldwide Espacenet ®.

Results

Our study revealed that CAD was upregulated in tumor tissues in most cancer types. The expression of CAD was significantly different in clinical stages, pathological grades, and clinical prognosis. The highest frequency of CAD mutation was shown, but CAD mutations did not affect the clinical outcome of cancer patients. Comprehensive data across different cancer types illustrate the relationship between the expression of CAD and tumor mutation burden (TMB), microsatellite instability (MSI), and homologous recombination deficiency (HRD). Immune infiltration algorithms showed a positive link between CAD level and the prevalence of tumor-associated fibroblasts, MDSC, mast cells, and CD4+T cells. CAD level was positively linked to the immune checkpoint, suggesting a potential synergistic effect between CAD and immunotherapy. The GSEA analysis revealed that CAD expression is significantly associated with angiogenesis and epithelial-mesenchymal transition (EMT) pathways. Finally, we demonstrated that knockdown of CAD inhibits the growth of prostate cancer (PCa) cells and resistance to enzalutamide.

Discussion

Our pan-cancer analysis revealed that CAD upregulation correlated with poor prognosis, genomic instability, and an immunosuppressive microenvironment. Functionally, CAD promoted prostate cancer cell proliferation and drove enzalutamide resistance. Targeting CAD suppressed tumor growth and overcame drug resistance, highlighting its potential as a therapeutic target and prognostic biomarker in cancer.

Conclusion

This study revealed the diagnostic and prognostic potential of CAD. Notably, CAD exhibits essential functions in PCa cell proliferation and enzalutamide resistance.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928412596251011092220
2025-10-29
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/pra/10.2174/0115748928412596251011092220/BMS-PRA-2025-61.html?itemId=/content/journals/pra/10.2174/0115748928412596251011092220&mimeType=html&fmt=ahah

References

  1. Mullen N.J. Singh P.K. Nucleotide metabolism: A pan-cancer metabolic dependency. Nat. Rev. Cancer 2023 23 5 275 294 10.1038/s41568‑023‑00557‑7 36973407
    [Google Scholar]
  2. Ali E.S. Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol. 2023 33 11 950 966 10.1016/j.tcb.2023.03.003 36967301
    [Google Scholar]
  3. Dunderdale E.M. Abt E.R. Landscape of targets within nucleoside metabolism for the modification of immune responses. Front. Oncol. 2025 15 1483769 10.3389/fonc.2025.1483769 40519286
    [Google Scholar]
  4. Suleiman H. Emerson A. Wilson P.M. Mulligan K.A. Ladner R.D. LaBonte M.J. Harnessing nucleotide metabolism and immunity in cancer: A tumour microenvironment perspective. FEBS J. 2025 292 9 2155 2172 10.1111/febs.17278 39308084
    [Google Scholar]
  5. Siddiqui A. Ceppi P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab. 2020 35 100962 10.1016/j.molmet.2020.02.005 32244187
    [Google Scholar]
  6. Li G. Li D. Wang T. He S. Pyrimidine biosynthetic enzyme CAD: Its function, regulation, and diagnostic potential. Int. J. Mol. Sci. 2021 22 19 10253 10.3390/ijms221910253 34638594
    [Google Scholar]
  7. Wang X. Yang K. Wu Q. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 2019 11 504 eaau4972 10.1126/scitranslmed.aau4972 31391321
    [Google Scholar]
  8. Yang C. Zhao Y. Wang L. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat. Cell Biol. 2023 25 6 836 847 10.1038/s41556‑023‑01146‑4 37291265
    [Google Scholar]
  9. Lin F. Li J. Zhou L. Yi R. Chen Y. He S. Targeting vulnerability in tumor therapy: Dihydroorotate dehydrogenase. Life Sci. 2025 371 123612 10.1016/j.lfs.2025.123612 40187643
    [Google Scholar]
  10. Yu Y.Z. Xie X. Cai M.P. Identification of pyrimidine metabolism-based molecular subtypes and prognostic signature to predict immune landscape and guide clinical treatment in prostate cancer. Ann. Med. 2025 57 1 2449584 10.1080/07853890.2025.2449584 39803822
    [Google Scholar]
  11. Schild T. Keshari K.R. Revealing de novo pyrimidine synthesis as a key vulnerability in brain tumors. Cancer Cell 2022 40 12 1457 1458 10.1016/j.ccell.2022.10.023 36400017
    [Google Scholar]
  12. He D. Chen M. Chang L. De novo pyrimidine synthesis fuels glycolysis and confers chemoresistance in gastric cancer. Cancer Lett. 2022 549 215837 10.1016/j.canlet.2022.215837 35921972
    [Google Scholar]
  13. Bray F. Laversanne M. Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  14. Sandhu S. Moore C.M. Chiong E. Beltran H. Bristow R.G. Williams S.G. Prostate cancer. Lancet 2021 398 10305 1075 1090 10.1016/S0140‑6736(21)00950‑8 34370973
    [Google Scholar]
  15. Wang J. Zeng L. Wu N. Inhibition of phosphoglycerate dehydrogenase induces ferroptosis and overcomes enzalutamide resistance in castration-resistant prostate cancer cells. Drug Resist. Updat. 2023 70 100985 10.1016/j.drup.2023.100985 37423117
    [Google Scholar]
  16. Heiss B.L. Chang E. Gao X. US food and drug administration approval summary: Talazoparib in combination with enzalutamide for treatment of patients with homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2024 42 15 1851 1860 10.1200/JCO.23.02182 38452327
    [Google Scholar]
  17. Hadfield M.J. Lyall V. Holle L.M. Dennison M. Updates in the treatment of non-metastatic castrate-resistant prostate cancer: The benefit of second-generation androgen receptor antagonists. Ann. Pharmacother. 2023 57 11 1302 1311 10.1177/10600280231155441 36840339
    [Google Scholar]
  18. Wang W. Li S. Upregulation of M6A reader HNRNPA2B1 associated with poor prognosis and tumor progression in lung adenocarcinoma. Recent Patents Anticancer Drug Discov. 2024 19 5 652 665 10.2174/0115748928258696230925064550 37877146
    [Google Scholar]
  19. Jiao J. Jiang L. Luo Y. N6-methyladenosine-related RNA signature predicting the prognosis of ovarian cancer. Recent Patents Anticancer Drug Discov. 2021 16 3 407 416 10.2174/1574892816666210615164645 34137363
    [Google Scholar]
  20. Xie X. Dou C.X. Luo M.R. Plasma cell subtypes analyzed using artificial intelligence algorithm for predicting biochemical recurrence, immune escape potential, and immunotherapy response of prostate cancer. Front. Immunol. 2022 13 946209 10.3389/fimmu.2022.946209 36569837
    [Google Scholar]
  21. Lv D. Wu X. Wang M. Functional assessment of four novel immune-related biomarkers in the pathogenesis of clear cell renal cell carcinoma. Front. Cell Dev. Biol. 2021 9 621618 10.3389/fcell.2021.621618 33796525
    [Google Scholar]
  22. Li Z. Zhou S. Bin T. NIFK, a potential prognostic and immunological biomarker in pan-cancer analysis, significantly regulates proliferation and metastasis of colorectal cancer. Recent Patents Anticancer Drug Discov. 2024 38659266
    [Google Scholar]
  23. Wang W. Gao Y. Liu Y. Pan-cancer analysis reveals MTTP as a prognostic and immunotherapeutic biomarker in human tumors. Front. Immunol. 2025 16 1549965 10.3389/fimmu.2025.1549965 40213543
    [Google Scholar]
  24. Huang Z. Zhao X. Jiang Z. IP6K2 mutations as a novel mechanism of resistance to oncolytic virus therapy. J. Transl. Med. 2025 23 1 311 10.1186/s12967‑025‑06265‑0 40075351
    [Google Scholar]
  25. Zhou J. Construction of enhanced MRI-based radiomics models using machine learning algorithms for non-invasive prediction of IL7R expression in high-grade gliomas and its prognostic value in clinical practice. J. Transl. Med. 2025 23 1 383 10.1186/s12967‑025‑06402‑9 40165301
    [Google Scholar]
  26. Miao L. Chen B. Jing L. Zeng T. Chen Y. TPD52 as a potential prognostic biomarker and its correlation with immune infiltrates in uterine corpus endometrial carcinoma: Bioinformatic analysis and experimental verification. Recent Patents Anticancer Drug Discov. 2025 20 1 71 88 10.2174/0115748928267447231107101539 38305309
    [Google Scholar]
  27. Zhang X. Wu L. Jia L. The implication of integrative multiple RNA modification-based subtypes in gastric cancer immunotherapy and prognosis. iScience 2024 27 2 108897 10.1016/j.isci.2024.108897 38318382
    [Google Scholar]
  28. Wu R.Z. Sun Q.Q. Fu Y. Fatty acid metabolism-derived prognostic model for lung adenocarcinoma: Unraveling the link to survival and immune response. Front. Immunol. 2025 16 1507845 10.3389/fimmu.2025.1507845 40181976
    [Google Scholar]
  29. Liu X.H. Zhong N.N. Yi J.R. NR2F2 and its contribution to lymph node metastasis in oral squamous cell carcinoma. Cell. Signal. 2025 132 111814 10.1016/j.cellsig.2025.111814 40262715
    [Google Scholar]
  30. Wang Q.Q. Zhu M.J. Yu X. Genome-wide identification and expression analysis of terpene synthase genes in Cymbidium faberi. Front Plant Sci 2021 12 751853 10.3389/fpls.2021.751853 34899778
    [Google Scholar]
  31. Li T. Fu J. Zeng Z. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 48 W1 W509-14 10.1093/nar/gkaa407 32442275
    [Google Scholar]
  32. Fu J. Li K. Zhang W. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  33. Shen W. Song Z. Zhong X. Sangerbox: A comprehensive, interaction‐friendly clinical bioinformatics analysis platform. iMeta 2022 1 3 e36 10.1002/imt2.36 38868713
    [Google Scholar]
  34. Zheng M. High tumor mutation burden mitigates the negative impact of chemotherapy history on immune checkpoint blockade therapy. Semin. Oncol. 2025 52 2 152334 10.1053/j.seminoncol.2025.01.003 40081267
    [Google Scholar]
  35. Shiravand Y. Khodadadi F. Kashani S.M.A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022 29 5 3044 3060 10.3390/curroncol29050247 35621637
    [Google Scholar]
  36. Awosika J.A. Gulley J.L. Pastor D.M. Deficient mismatch repair and microsatellite instability in solid tumors. Int. J. Mol. Sci. 2025 26 9 4394 10.3390/ijms26094394 40362635
    [Google Scholar]
  37. Nakamura S. Kojima Y. Takeuchi S. Causative genes of homologous recombination deficiency (HRD)-related breast cancer and specific strategies at present. Curr. Oncol. 2025 32 2 90 10.3390/curroncol32020090 39996890
    [Google Scholar]
  38. Guo R. Wang P. Tumor-derived extracellular vesicles: Hijacking T cell function through exhaustion. Pathol. Res. Pract. 2025 269 155948 10.1016/j.prp.2025.155948 40168777
    [Google Scholar]
  39. Mahaki H. Nobari S. Tanzadehpanah H. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed. Pharmacother. 2025 186 118023 10.1016/j.biopha.2025.118023 40164047
    [Google Scholar]
  40. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  41. Cai M. Song X.L. Li X.A. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist. Updat. 2023 68 100962 10.1016/j.drup.2023.100962 37068396
    [Google Scholar]
  42. Shiota M. Ushijima M. Tsukahara S. NR5A2/HSD3B1 pathway promotes cellular resistance to second-generation antiandrogen darolutamide. Drug Resist. Updat. 2023 70 100990 10.1016/j.drup.2023.100990 37478518
    [Google Scholar]
  43. Gebrael G. Fortuna G.G. Sayegh N. Swami U. Agarwal N. Advances in the treatment of metastatic prostate cancer. Trends Cancer 2023 9 10 840 854 10.1016/j.trecan.2023.06.009 37442702
    [Google Scholar]
  44. Sahu U. Villa E. Reczek C.R. Pyrimidines maintain mitochondrial pyruvate oxidation to support de novo lipogenesis. Science 2024 383 6690 1484 1492 10.1126/science.adh2771 38547260
    [Google Scholar]
  45. Wang W. Cui J. Ma H. Lu W. Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front. Oncol. 2021 11 684961 10.3389/fonc.2021.684961 34123854
    [Google Scholar]
  46. Pan J. Zhang M. Rao D. CAD manipulates tumor intrinsic DHO/UBE4B/NF-κB pathway and fuels macrophage cross-talk, promoting HCC metastasis. Hepatology 2025 Mar 12; 10.1097/HEP.0000000000001304 40073276
    [Google Scholar]
  47. Yan L. Liu Y. Huang Y. Erianin inhibits the proliferation of lung cancer cells by suppressing mTOR activation and disrupting pyrimidine metabolism. Cancer Biol. Med. 2025 22 2 1 22 10.20892/j.issn.2095‑3941.2024.0385 39995202
    [Google Scholar]
  48. Selvi S. Real C.M. Gentiluomo M. Genomic instability, DNA damage response and telomere homeostasis in pancreatic cancer. Semin. Cancer Biol. 2025 113 59 73 10.1016/j.semcancer.2025.05.005 40378535
    [Google Scholar]
  49. Ambrosini M. Manca P. Nasca V. Epidemiology, pathogenesis, biology and evolving management of MSI-H/dMMR cancers. Nat. Rev. Clin. Oncol. 2025 22 6 385 407 10.1038/s41571‑025‑01015‑z 40181086
    [Google Scholar]
  50. Franks D.M. Izumikawa T. Kitagawa H. Sugahara K. Okkema P.G. C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Dev. Biol. 2006 296 2 409 420 10.1016/j.ydbio.2006.06.008 16828468
    [Google Scholar]
  51. Choucair K. Morand S. Stanbery L. Edelman G. Dworkin L. Nemunaitis J. TMB: A promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther. 2020 27 12 841 853 10.1038/s41417‑020‑0174‑y 32341410
    [Google Scholar]
  52. Wilbur H.C. Le D.T. Agarwal P. Immunotherapy of MSI cancer: Facts and hopes. Clin. Cancer Res. 2024 30 8 1438 1447 10.1158/1078‑0432.CCR‑21‑1935 38015720
    [Google Scholar]
  53. Lenis A.T. Ravichandran V. Brown S. Microsatellite instability, tumor mutational burden, and response to immune checkpoint blockade in patients with prostate cancer. Clin. Cancer Res. 2024 30 17 3894 3903 10.1158/1078‑0432.CCR‑23‑3403 38949888
    [Google Scholar]
  54. Hayashi A. Hong J. Iacobuzio-Donahue C.A. The pancreatic cancer genome revisited. Nat. Rev. Gastroenterol. Hepatol. 2021 18 7 469 481 10.1038/s41575‑021‑00463‑z 34089011
    [Google Scholar]
  55. Witz A. Dardare J. Betz M. Homologous recombination deficiency (HRD) testing landscape: Clinical applications and technical validation for routine diagnostics. Biomark. Res. 2025 13 1 31 10.1186/s40364‑025‑00740‑y 39985088
    [Google Scholar]
  56. Qi R. Bai Y. Li K. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist. Updat. 2023 68 100960 10.1016/j.drup.2023.100960 37003125
    [Google Scholar]
  57. Erin N. Grahovac J. Brozovic A. Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist. Updat. 2020 53 100715 10.1016/j.drup.2020.100715 32679188
    [Google Scholar]
  58. Amit M. Eichwald T. Roger A. Neuro-immune cross-talk in cancer. Nat. Rev. Cancer 2025 25 8 573 589 10.1038/s41568‑025‑00831‑w 40523971
    [Google Scholar]
  59. Beringer D.X. Straetemans T. Minguet S. Disrupting the balance between activating and inhibitory receptors of γδT cells for effective cancer immunotherapy. Nat. Rev. Cancer 2025 25 8 590 612 10.1038/s41568‑025‑00830‑x 40456901
    [Google Scholar]
  60. Li Y.R. Zhou K. Zhu Y. Halladay T. Yang L. Breaking the mold: Unconventional T cells in cancer therapy. Cancer Cell 2025 43 3 317 322 10.1016/j.ccell.2024.11.010 39672171
    [Google Scholar]
  61. Hayday A. Dechanet-Merville J. Rossjohn J. Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024 386 6717 eabq7248 10.1126/science.abq7248 39361750
    [Google Scholar]
  62. Ge S. Cen J. Liu X. TGFβ-activated Asporin interacts with STMN1 to promote prostate cancer docetaxel chemoresistance and metastasis by upregulating the Wnt/β-catenin signaling pathway. Drug Resist. Updat. 2025 81 101227 10.1016/j.drup.2025.101227 40073743
    [Google Scholar]
  63. Tang Y. Hu M. Xu Y. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1. Theranostics 2020 10 5 2229 2242 10.7150/thno.40559 32104505
    [Google Scholar]
  64. Li Y. Duan W. Shen L. Shengji solution accelerates the wound angiogenesis of full-thickness skin defect in rats via activation of TGF-β1/Smad3-VEGF signaling pathway. Biotechnol. Genet. Eng. Rev. 2024 40 3 1855 1872 10.1080/02648725.2023.2196901 37009818
    [Google Scholar]
  65. Zou C. Li W. Zhang Y. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. Sci. Adv. 2024 10 14 eadm7098 10.1126/sciadv.adm7098 38569039
    [Google Scholar]
  66. Zhang S. Zhang T. Kinsella G.K. Curtin J.F. A review of the efficacy of prostate cancer therapies against castration-resistant prostate cancer. Drug Discov. Today 2025 30 6 104384 10.1016/j.drudis.2025.104384 40409404
    [Google Scholar]
  67. He D. Zhang L. Yu L. Fine structural design of 3βHSD1 inhibitors for prostate cancer therapy. Proc. Natl. Acad. Sci. USA 2025 122 26 e2422267122 10.1073/pnas.2422267122 40560608
    [Google Scholar]
  68. Zhang Y. Song X. Zhang N. Ezetimibe engineered L14‐8 suppresses advanced prostate cancer by activating PLK1/TP53‐ SAT1 ‐induced ferroptosis. Adv. Sci. 2025 12 29 e04192 10.1002/advs.202504192 40536697
    [Google Scholar]
  69. Zhang W. Zhu H. Chen Z. Discovery of novel bifunctional agents as potent androgen receptor antagonists and degraders for the treatment of enzalutamide-resistant prostate cancer. J. Med. Chem. 2025 68 8 8330 8345 10.1021/acs.jmedchem.4c03043 40231807
    [Google Scholar]
  70. Xu W. Wu T. Liu Y. The prognostic role of interferon gamma-inducible protein 30 in clear cell renal cell carcinoma with immune infiltrates. Recent Patents Anticancer Drug Discov. 2025 20 10.2174/0115748928367598250124123411 39936439
    [Google Scholar]
  71. Loh E. Kufe D.W. Synergistic effects with inhibitors of de novo pyrimidine synthesis, acivicin, and N-(phosphonacetyl)-L-aspartic acid. Cancer Res. 1981 41 9 Pt 1 3419 3423 7260907
    [Google Scholar]
  72. Yoshida T. Stark G.R. Hoogenraad N.J. Inhibition by N-(phosphonacetyl)-L-aspartate of aspartate transcarbamylase activity and drug-induced cell proliferation in mice. J. Biol. Chem. 1974 249 21 6951 6955 10.1016/S0021‑9258(19)42150‑9 4418148
    [Google Scholar]
  73. Gehlot P. Vyas V.K. A patent review of human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents and their other therapeutic applications (1999-2022). Recent Patents Anticancer Drug Discov. 2024 19 3 280 297 10.2174/1574892818666230417094939 37070439
    [Google Scholar]
  74. Jiang X. Ma Y. Wang T. Targeting UBE2T potentiates gemcitabine efficacy in pancreatic cancer by regulating pyrimidine metabolism and replication stress. Gastroenterology 2023 164 7 1232 1247 10.1053/j.gastro.2023.02.025 36842710
    [Google Scholar]
  75. Zou S. Qin B. Yang Z. CSN6 mediates nucleotide metabolism to promote tumor development and chemoresistance in colorectal cancer. Cancer Res. 2023 83 3 414 427 10.1158/0008‑5472.CAN‑22‑2145 36512632
    [Google Scholar]
/content/journals/pra/10.2174/0115748928412596251011092220
Loading
/content/journals/pra/10.2174/0115748928412596251011092220
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: prognosis ; enzalutamide resistance ; immune infiltration ; pan-cancer ; CAD ; prostate cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test