Skip to content
2000
image of Targeted Therapy with Dalpiciclib in a Pediatric Patient with Anaplastic Ependymoma: A Case Study and Literature Review

Abstract

Introduction

Ependymoma is the third most common brain tumor in children, with a high recurrence rate and poor prognosis. The traditional treatment of ependymoma is surgery and radiation therapy. However, the effectiveness of conventional chemotherapy has been modest. Recent breakthroughs in molecular biology and genetics have opened doors to more targeted and effective therapeutic approaches. Complex mutations, such as CDK4 amplification in anaplastic ependymoma, are infrequently documented, warranting further investigation.

Case Presentations

This case study presents a twelve-year-old girl with a WHO Grade III anaplastic ependymoma. She underwent two surgical procedures, followed by radiotherapy and chemotherapy. Despite this comprehensive treatment, she experienced a relapse after one year. Genetic testing identified CDK4 amplification in the tumor tissue. Subsequently, based on the genetic finding, she was treated with a CDK4/6 inhibitor, Dalpiciclib, in combination with bevacizumab. So far, she has survived for over 48 months following her surgery and continues to be monitored, underscoring the remarkable efficacy of the treatment.

Conclusions

This report represents the first use of the CDK4/6 inhibitor Dalpiciclib for the treatment of anaplastic ependymoma. The treatment was guided by insights from next-generation sequencing (NGS) analysis and has shown promising results in terms of patient survival.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928392108250728050114
2025-08-11
2025-11-13
Loading full text...

Full text loading...

References

  1. Marinoff A.E. Ma C. Guo D. Snuderl M. Wright K.D. Manley P.E. Al-Sayegh H. Sinai C.E. Ullrich N.J. Marcus K. Haas-Kogan D. Goumnerova L. London W.B. Kieran M.W. Chi S.N. Fangusaro J. Bandopadhayay P. Rethinking childhood ependymoma: A retrospective, multi-center analysis reveals poor long-term overall survival. J Neurooncol 2017 135 1 201 211 10.1007/s11060‑017‑2568‑8 28733870
    [Google Scholar]
  2. Rudà R. Reifenberger G. Frappaz D. Pfister S.M. Laprie A. Santarius T. Roth P. Tonn J.C. Soffietti R. Weller M. Moyal E.C.J. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-oncol 2018 20 4 445 456 10.1093/neuonc/nox166 29194500
    [Google Scholar]
  3. Messahel B. Ashley S. Saran F. Ellison D. Ironside J. Phipps K. Cox T. Chong W.K. Robinson K. Picton S. Pinkerton C.R. Mallucci C. Macarthur D. Jaspan T. Michalski A. Grundy R.G. Relapsed intracranial ependymoma in children in the UK: Patterns of relapse, survival and therapeutic outcome. Eur J Cancer 2009 45 10 1815 1823 10.1016/j.ejca.2009.03.018 19427780
    [Google Scholar]
  4. Khatua S. Ramaswamy V. Bouffet E. Current therapy and the evolving molecular landscape of paediatric ependymoma. Eur J Cancer 2017 70 34 41 10.1016/j.ejca.2016.10.013 27866097
    [Google Scholar]
  5. Otto T. Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017 17 2 93 115 10.1038/nrc.2016.138 28127048
    [Google Scholar]
  6. Kent L.N. Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 2019 19 6 326 338 10.1038/s41568‑019‑0143‑7 31053804
    [Google Scholar]
  7. Malumbres M. Sotillo R. Santamaría D. Galán J. Cerezo A. Ortega S. Dubus P. Barbacid M. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004 118 4 493 504 10.1016/j.cell.2004.08.002 15315761
    [Google Scholar]
  8. Nasser A.M. Melamed L. Wetzel E.A. Chang J.C.C. Nagashima H. Kitagawa Y. Muzyka L. Wakimoto H. Cahill D.P. Miller J.J. CDKN2A/B homozygous deletion sensitizes idh-mutant glioma to cdk4/6 inhibition. Clin Cancer Res 2024 30 14 2996 3005 10.1158/1078‑0432.CCR‑24‑0562 38718141
    [Google Scholar]
  9. Santarius T. Shipley J. Brewer D. Stratton M.R. Cooper C.S. A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010 10 1 59 64 10.1038/nrc2771 20029424
    [Google Scholar]
  10. Glaviano A Wander SA Baird RD Yap KCH Lam HY Toi M Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024 76 101103 10.1016/j.drup.2024.101103
    [Google Scholar]
  11. Olmez I. Zhang Y. Manigat L. Benamar M. Brenneman B. Nakano I. Godlewski J. Bronisz A. Lee J. Abbas T. Abounader R. Purow B. Combined c-Met/Trk inhibition overcomes resistance to cdk4/6 inhibitors in glioblastoma. Cancer Res 2018 78 15 4360 4369 10.1158/0008‑5472.CAN‑17‑3124 29844123
    [Google Scholar]
  12. Olmez I. Brenneman B. Xiao A. Serbulea V. Benamar M. Zhang Y. Manigat L. Abbas T. Lee J. Nakano I. Godlewski J. Bronisz A. Abounader R. Leitinger N. Purow B. Combined CDK4/6 and mTOR inhibition is synergistic against glioblastoma via multiple mechanisms. Clin Cancer Res 2017 23 22 6958 6968 10.1158/1078‑0432.CCR‑17‑0803 28814434
    [Google Scholar]
  13. Michaud K. Solomon D.A. Oermann E. Kim J.S. Zhong W.Z. Prados M.D. Ozawa T. James C.D. Waldman T. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 2010 70 8 3228 3238 10.1158/0008‑5472.CAN‑09‑4559 20354191
    [Google Scholar]
  14. Lukashova-v Zangen I. Kneitz S. Monoranu C.M. Rutkowski S. Hinkes B. Vince G.H. Huang B. Roggendorf W. Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol 2007 113 3 325 337 10.1007/s00401‑006‑0190‑5 17265049
    [Google Scholar]
  15. Zhang X. Ning L. Wu H. Yang S. Hu Z. Wang W. Cao Y. Xin H. You C. Lin F. Targeting CDK4/6 in glioblastoma via in situ injection of a cellulose-based hydrogel. Nanoscale 2023 15 30 12518 12529 10.1039/D3NR00378G 37278298
    [Google Scholar]
  16. Bronner S.M. Merrick K.A. Murray J. Salphati L. Moffat J.G. Pang J. Sneeringer C.J. Dompe N. Cyr P. Purkey H. Boenig G.L. Li J. Kolesnikov A. Larouche-Gauthier R. Lai K.W. Shen X. Aubert-Nicol S. Chen Y.C. Cheong J. Crawford J.J. Hafner M. Haghshenas P. Jakalian A. Leclerc J.P. Lim N.K. O’Brien T. Plise E.G. Shalan H. Sturino C. Wai J. Xiao Y. Yin J. Zhao L. Gould S. Olivero A. Heffron T.P. Design of a brain-penetrant CDK4/6 inhibitor for glioblastoma. Bioorg Med Chem Lett 2019 29 16 2294 2301 10.1016/j.bmcl.2019.06.021 31307887
    [Google Scholar]
  17. Zhang P. Zhang Q. Tong Z. Sun T. Li W. Ouyang Q. Hu X. Cheng Y. Yan M. Pan Y. Teng Y. Yan X. Wang Y. Xie W. Zeng X. Wang X. Hu C. Geng C. Zhang H. Li W. Wu X. Zhong J. Xu J. Shi Y. Wei W. Bayaxi N. Zhu X. Xu B. Dalpiciclib plus letrozole or anastrozole versus placebo plus letrozole or anastrozole as first-line treatment in patients with hormone receptor-positive, HER2-negative advanced breast cancer (DAWNA-2): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2023 24 6 646 657 10.1016/S1470‑2045(23)00172‑9 37182538
    [Google Scholar]
  18. Long F. He Y. Fu H. Li Y. Bao X. Wang Q. Wang Y. Xie C. Lou L. Preclinical characterization of SHR6390, a novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft models. Cancer Sci 2019 110 4 1420 1430 10.1111/cas.13957 30724426
    [Google Scholar]
  19. Wang J. Li Q. Yuan J. Wang J. Chen Z. Liu Z. Li Z. Lai Y. Gao J. Shen L. CDK4/6 inhibitor-SHR6390 exerts potent antitumor activity in esophageal squamous cell carcinoma by inhibiting phosphorylated Rb and inducing G1 cell cycle arrest. J Transl Med 2017 15 1 127 10.1186/s12967‑017‑1231‑7 28578693
    [Google Scholar]
  20. Shi C. Ju H. Zhou R. Xu S. Wu Y. Gu Z. Wang Y. Chen W. Huang X. Han Y. Sun S. Li C. Wang M. Zhou G. Zhang Z. Li J. Ren G. The efficacy and safety of dalpiciclib, a cyclin-dependent kinase 4/6 inhibitor, in patients with advanced head and neck mucosal melanoma harboring CDK4 amplification. BMC Med 2024 22 1 215 10.1186/s12916‑024‑03431‑x 38807144
    [Google Scholar]
  21. Xu B. Zhang Q. Zhang P. Hu X. Li W. Tong Z. Sun T. Teng Y. Wu X. Ouyang Q. Yan X. Cheng J. Liu Q. Feng J. Wang X. Yin Y. Shi Y. Pan Y. Wang Y. Xie W. Yan M. Liu Y. Yan P. Wu F. Zhu X. Zou J. Dalpiciclib or placebo plus fulvestrant in hormone receptor-positive and HER2-negative advanced breast cancer: A randomized, phase 3 trial. Nat Med 2021 27 11 1904 1909 10.1038/s41591‑021‑01562‑9 34737452
    [Google Scholar]
  22. Liang M.L. Hsieh T.H. Liu Y.R. Chen Y.W. Lee Y.Y. Chang F.C. Lin S.C. Huang M.C. Ming-Tak Ho D. Wong T.T. Yen Y. Yang M.H. Significance of cyclin D1 overexpression in progression and radio-resistance of pediatric ependymomas. Oncotarget 2018 9 2 2527 2542 10.18632/oncotarget.23509 29416789
    [Google Scholar]
  23. Yadav D Patil-Takbhate B Khandagale A Bhawalkar J Tripathy S Khopkar-Kale P Next-Generation sequencing transforming clinical practice and precision medicine. Clin Chim Acta 2023 551 117568 10.1016/j.cca.2023.117568
    [Google Scholar]
  24. Lau L.M.S. Khuong-Quang D.A. Mayoh C. Wong M. Barahona P. Ajuyah P. Senapati A. Nagabushan S. Sherstyuk A. Altekoester A.K. Fuentes-Bolanos N.A. Yeung V. Sullivan A. Omer N. Diamond Y. Jessop S. Battaglia L. Zhukova N. Cui L. Lin A. Gifford A.J. Fleuren E.D.G. Dalla-Pozza L. Moore A.S. Khaw S.L. Eisenstat D.D. Gottardo N.G. Wood P.J. Tapp H. Alvaro F. McCowage G. Nicholls W. Hansford J.R. Manoharan N. Kotecha R.S. Mateos M.K. Lock R.B. Tyrrell V. Haber M. Trahair T.N. Cowley M.J. Ekert P.G. Marshall G.M. Ziegler D.S. Precision-guided treatment in high-risk pediatric cancers. Nat Med 2024 30 7 1913 1922 10.1038/s41591‑024‑03044‑0 38844796
    [Google Scholar]
  25. Busse-Wicher M. Wicher K.B. Kusche-Gullberg M. The extostosin family: Proteins with many functions. Matrix Biol 2014 35 25 33 10.1016/j.matbio.2013.10.001 24128412
    [Google Scholar]
  26. Wang X. Cornelis F.M.F. Lories R.J. Monteagudo S. Exostosin-1 enhances canonical Wnt signaling activity during chondrogenic differentiation. Osteoarthritis Cartilage 2019 27 11 1702 1710 10.1016/j.joca.2019.07.007 31330188
    [Google Scholar]
  27. Wuyts W. Van Hul W. Molecular basis of multiple exostoses: Mutations in the EXT1 and EXT2 genes. Hum Mutat 2000 15 3 220 227 10.1002/(SICI)1098‑1004(200003)15:3<220::AID‑HUMU2>3.0.CO;2‑K 10679937
    [Google Scholar]
  28. Pacifici M. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses. Matrix Biol 2018 71-72 28 39 10.1016/j.matbio.2017.12.011 29277722
    [Google Scholar]
  29. Pannier S. Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 2008 22 1 45 54 10.1016/j.berh.2007.12.004 18328980
    [Google Scholar]
  30. Sethi S. New ‘Antigens’ in membranous nephropathy. J Am Soc Nephrol 2021 32 2 268 278 10.1681/ASN.2020071082 33380523
    [Google Scholar]
  31. Borszéková Pulzová L. Ward T.A. Chovanec M. XPA: DNA repair protein of significant clinical importance. Int J Mol Sci 2020 21 6 2182 10.3390/ijms21062182 32235701
    [Google Scholar]
  32. Lehmann A.R. McGibbon D. Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis 2011 6 1 70 10.1186/1750‑1172‑6‑70 22044607
    [Google Scholar]
  33. Shiloh Y. ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer 2003 3 3 155 168 10.1038/nrc1011 12612651
    [Google Scholar]
  34. Gumy-Pause F. Wacker P. Sappino A-P. ATM gene and lymphoid malignancies. Leukemia 2004 18 2 238 242 10.1038/sj.leu.2403221 14628072
    [Google Scholar]
  35. Kratz C.P. Smirnov D. Autry R. Jäger N. Waszak S.M. Großhennig A. Berutti R. Wendorff M. Hainaut P. Pfister S.M. Prokisch H. Ripperger T. Malkin D. Heterozygous BRCA1 and BRCA2 and mismatch repair gene pathogenic variants in children and adolescents with cancer. J Natl Cancer Inst 2022 114 11 1523 1532 10.1093/jnci/djac151 35980168
    [Google Scholar]
  36. Liang M.L. Chen C.H. Liu Y.R. Huang M.H. Lin Y.C. Wong T.T. Lin S.E. Chu S.S. Ding Y.H. Hsieh T.H. Abemaciclib, a selective CDK4/6 inhibitor, restricts the growth of pediatric ependymomas. Cancers 2020 12 12 3597 10.3390/cancers12123597 33271970
    [Google Scholar]
  37. Shen J Luo P Xu J Adverse event profiles of CDK4/6 inhibitors: Data mining and disproportionality analysis of the FDA adverse event reporting system. Ther Adv Drug Saf 2024 15 20420986241278498 10.1177/20420986241278498
    [Google Scholar]
  38. Moreno L. Popov S. Jury A. Al Sarraj S. Jones C. Zacharoulis S. Role of platelet derived growth factor receptor (PDGFR) over-expression and angiogenesis in ependymoma. J Neurooncol 2013 111 2 169 176 10.1007/s11060‑012‑0996‑z 23135775
    [Google Scholar]
  39. Virág J. Kenessey I. Haberler C. Piurkó V. Bálint K. Döme B. Tímár J. Garami M. Hegedűs B. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res 2014 20 2 417 426 10.1007/s12253‑013‑9711‑4 24190638
    [Google Scholar]
  40. Garcia J Hurwitz HI Sandler AB Miles D Coleman RL Deurloo R Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 2020 86 102017 10.1016/j.ctrv.2020.102017
    [Google Scholar]
  41. Green R.M. Cloughesy T.F. Stupp R. DeAngelis L.M. Woyshner E.A. Ney D.E. Lassman A.B. Bevacizumab for recurrent ependymoma. Neurology 2009 73 20 1677 1680 10.1212/WNL.0b013e3181c1df34 19917990
    [Google Scholar]
  42. Saleh A.H. Samuel N. Juraschka K. Saleh M.H. Taylor M.D. Fehlings M.G. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022 22 4 208 222 10.1038/s41568‑021‑00433‑2 35031778
    [Google Scholar]
  43. Schröder LBW McDonald KL CDK4/6 inhibitor PD0332991 in glioblastoma treatment: Does it have a future?. Front Oncol 2015 5 259 10.3389/fonc.2015.00259
    [Google Scholar]
  44. Lim J.S.J. Turner N.C. Yap T.A. CDK4/6 inhibitors: Promising opportunities beyond breast cancer. Cancer Discov 2016 6 7 697 699 10.1158/2159‑8290.CD‑16‑0563 27371575
    [Google Scholar]
  45. Fassl A. Geng Y. Sicinski P. CDK4 and CDK6 kinases: From basic science to cancer therapy. Science 2022 375 6577 eabc1495 10.1126/science.abc1495 35025636
    [Google Scholar]
  46. Schubert N.A. Chen C.Y. Rodríguez A. Koster J. Dowless M. Pfister S.M. Shields D.J. Stancato L.F. Vassal G. Caron H.N. van den Boogaard M.L. Henssen A.G. Molenaar J.J. Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur J Cancer 2022 170 196 208 10.1016/j.ejca.2022.04.028 35671543
    [Google Scholar]
  47. Van Mater D. Gururangan S. Becher O. Campagne O. Leary S. Phillips J.J. Huang J. Lin T. Poussaint T.Y. Goldman S. Baxter P. Dhall G. Robinson G. DeWire-Schottmiller M. Hwang E.I. Stewart C.F. Onar-Thomas A. Dunkel I.J. Fouladi M. A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: A Pediatric Brain Tumor Consortium study (PBTC‐042). Pediatr Blood Cancer 2021 68 4 28879 10.1002/pbc.28879 33405376
    [Google Scholar]
  48. Tien A.C. Li J. Bao X. Derogatis A. Kim S. Mehta S. Sanai N. A phase 0 trial of ribociclib in recurrent glioblastoma patients incorporating a tumor pharmacodynamic- and pharmacokinetic-guided expansion cohort. Clin Cancer Res 2019 25 19 5777 5786 10.1158/1078‑0432.CCR‑19‑0133 31285369
    [Google Scholar]
  49. DeWire M. Fuller C. Hummel T.R. Chow L.M.L. Salloum R. de Blank P. Pater L. Lawson S. Zhu X. Dexheimer P. Carle A.C. Kumar S.S. Drissi R. Stevenson C.B. Lane A. Breneman J. Witte D. Jones B.V. Leach J.L. Fouladi M. A phase I/II study of ribociclib following radiation therapy in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). J Neurooncol 2020 149 3 511 522 10.1007/s11060‑020‑03641‑2 33034839
    [Google Scholar]
  50. Geoerger B. Bourdeaut F. DuBois S.G. Fischer M. Geller J.I. Gottardo N.G. Marabelle A. Pearson A.D.J. Modak S. Cash T. Robinson G.W. Motta M. Matano A. Bhansali S.G. Dobson J.R. Parasuraman S. Chi S.N. A phase i study of the CDK4/6 inhibitor ribociclib (lee011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res 2017 23 10 2433 2441 10.1158/1078‑0432.CCR‑16‑2898 28432176
    [Google Scholar]
  51. Julson J.R. Horton S.C. Quinn C.H. Beierle A.M. Bownes L.V. Stewart J.E. Aye J. Yoon K.J. Beierle E.A. CDK4/6 inhibition with lerociclib is a potential therapeutic strategy for the treatment of pediatric sarcomas. J Pediatr Surg 2024 59 3 473 482 10.1016/j.jpedsurg.2023.10.004 37919169
    [Google Scholar]
  52. Macy M.E. Mody R. Reid J.M. Piao J. Saguilig L. Alonzo T.A. Berg S.L. Fox E. Weigel B.J. Hawkins D.S. Mooney M.M. Williams P.M. Patton D.R. Coffey B.D. Roy-Chowdhuri S. Takebe N. Tricoli J.V. Janeway K.A. Seibel N.L. Parsons D.W. Palbociclib in solid tumor patients with genomic alterations in the cyclind-CDK4/6-INK4A-RB pathway: Results from national cancer institute-children’s oncology group pediatric molecular analysis for therapy choice trial arm i (apec1621i). JCO Precis Oncol 2024 8 8 2400418 10.1200/PO‑24‑00418 39298716
    [Google Scholar]
  53. Raetz E.A. Teachey D.T. Minard C. Liu X. Norris R.E. Denic K.Z. Reid J. Evensen N.A. Gore L. Fox E. Loh M.L. Weigel B.J. Carroll W.L. Palbociclib in combination with chemotherapy in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia and lymphoma: A Children’s Oncology Group study (AINV18P1). Pediatr Blood Cancer 2023 70 11 30609 10.1002/pbc.30609 37553297
    [Google Scholar]
  54. Mishra A Sharma S Pandey SK The present state and potential applications of artificial intelligence in cancer diagnosis and treatment. Recent Pat Anti-Cancer Drug Discov 2025 1 5 10.2174/0115748928361472250123105507
    [Google Scholar]
  55. Takefuji Y. AI-driven visualization tool for analyzing data and predicting drug-resistant outbreaks. Drug Resist Updat 2025 78 101174 10.1016/j.drup.2024.101174
    [Google Scholar]
/content/journals/pra/10.2174/0115748928392108250728050114
Loading
/content/journals/pra/10.2174/0115748928392108250728050114
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test