Skip to content
2000
image of LMNB1 and LMNB2 as Prognostic Risk Factors in Hepatocellular Carcinoma: Therapeutic Potential of GSK461364 via Downregulation of LMNB1 and LMNB2 Expression

Abstract

Introduction

This study aims to explore the potential of and as prognostic risk factors in hepatocellular carcinoma (HCC) and investigate small-molecule drugs targeting both for therapeutic application.

Methods

and expression in HCC was assessed using TCGA data and validated in clinical specimens. Kaplan–Meier and Cox models evaluated prognostic relevance. Drug sensitivity screening using CTRP and GDSC databases highlighted GSK461364 (a selective PLK1 inhibitor), whose effects were validated in Hep3B and SK-HEP-1.

Results

and were aberrantly up-regulated in HCC tissues and contributed to the poor prognosis of HCC patients. Co-expression modules and enriched pathways of and were linked to nuclear architecture and cell senescence, indicating their roles in genomic stability and cell cycle progression. GSK461364 was validated to inhibit the cell viability of HCC cells. It suppressed the expression of LMNB1 and LMNB2 but not PLK1, suggesting its anti-HCC effect depends on inhibition of LMNB1/2 rather than PLK1.

Discussion

Our findings suggest that and could serve as prognostic biomarkers. GSK461364 likely exerts anti-HCC effects through suppression of LMNB1 and LMNB2 expression. Further validation and molecular mechanism studies are needed to establish its clinical utility.

Conclusion

and are prognostic factors for HCC. GSK461364 is a novel therapeutic candidate for HCC, with anti-HCC effects associated with LMNB1/2 suppression.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928375684250716120144
2025-08-04
2025-11-13
Loading full text...

Full text loading...

References

  1. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  2. Brenner H Hoffmeister M Cost-effective improvement of real-world cancer screening. Lancet 2025 405 10484 1031 1033 10.1016/S0140‑6736(25)00108‑4
    [Google Scholar]
  3. Yeo Y.H. Abdelmalek M. Khan S. Moylan C.A. Rodriquez L. Villanueva A. Yang J.D. Current and emerging strategies for the prevention of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2025 22 3 173 190 10.1038/s41575‑024‑01021‑z 39653784
    [Google Scholar]
  4. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  5. Barcena-Varela M. Monga S.P. Lujambio A. Precision models in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2025 22 3 191 205 10.1038/s41575‑024‑01024‑w 39663463
    [Google Scholar]
  6. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  7. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  8. Gallage S. García-Beccaria M. Szydlowska M. Rahbari M. Mohr R. Tacke F. Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. Med (N. Y.) 2021 2 5 505 552 10.1016/j.medj.2021.03.002 35590232
    [Google Scholar]
  9. Llovet J.M. De Baere T. Kulik L. Haber P.K. Greten T.F. Meyer T. Lencioni R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021 18 5 293 313 10.1038/s41575‑020‑00395‑0 33510460
    [Google Scholar]
  10. Yang X. Yang C. Zhang S. Geng H. Zhu A.X. Bernards R. Qin W. Fan J. Wang C. Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024 42 2 180 197 10.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  11. Zhou Y. Tao L. Qiu J. Xu J. Yang X. Zhang Y. Tian X. Guan X. Cen X. Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024 9 1 132 38763973
    [Google Scholar]
  12. Qiu L. Xu H. Ji M. Shang D. Lu Z. Wu Y. Tu Z. Liu H. Circular RNAs in hepatocellular carcinoma: Biomarkers, functions and mechanisms. Life Sci. 2019 231 116660 10.1016/j.lfs.2019.116660 31319086
    [Google Scholar]
  13. Nault J.C. Villanueva A. Biomarkers for hepatobiliary cancers. Hepatology 2021 73 S1 115 127 10.1002/hep.31175 32045030
    [Google Scholar]
  14. Yu S.J. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol. Ther. 2023 244 108387 10.1016/j.pharmthera.2023.108387 36948423
    [Google Scholar]
  15. Liu B Liu L Pan X Zhang Y Zhang H Sun D InventorsPD-1/PD-L1 small molecule inhibitor and application thereof in medicines. CN Patent 117886814A 2024
  16. Bedard P.L. Hyman D.M. Davids M.S. Siu L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020 395 10229 1078 1088 10.1016/S0140‑6736(20)30164‑1 32222192
    [Google Scholar]
  17. Adams J.L. Smothers J. Srinivasan R. Hoos A. Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 2015 14 9 603 622 10.1038/nrd4596 26228631
    [Google Scholar]
  18. Li J. Van Valkenburgh J. Hong X. Conti P.S. Zhang X. Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019 9 25 7849 7871 10.7150/thno.37218 31695804
    [Google Scholar]
  19. Zhong L. Li Y. Xiong L. Wang W. Wu M. Yuan T. Yang W. Tian C. Miao Z. Wang T. Yang S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021 6 1 201 10.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  20. Nussinov R. Yavuz B.R. Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol. Sci. 2024 45 6 503 519 10.1016/j.tips.2024.04.012 38782689
    [Google Scholar]
  21. Turgay Y. Eibauer M. Goldman A.E. Shimi T. Khayat M. Ben-Harush K. Dubrovsky-Gaupp A. Sapra K.T. Goldman R.D. Medalia O. The molecular architecture of lamins in somatic cells. Nature 2017 543 7644 261 264 10.1038/nature21382 28241138
    [Google Scholar]
  22. Evangelisti C. Rusciano I. Mongiorgi S. Ramazzotti G. Lattanzi G. Manzoli L. Cocco L. Ratti S. The wide and growing range of lamin B-related diseases: From laminopathies to cancer. Cell. Mol. Life Sci. 2022 79 2 126 10.1007/s00018‑021‑04084‑2 35132494
    [Google Scholar]
  23. Garvalov B.K. Muhammad S. Dobreva G. Lamin B1 in cancer and aging. Aging 2019 11 18 7336 7338 10.18632/aging.102306 31541995
    [Google Scholar]
  24. de Leeuw R. Gruenbaum Y. Medalia O. Nuclear Lamins: Thin Filaments with Major Functions. Trends Cell Biol. 2018 28 1 34 45 10.1016/j.tcb.2017.08.004 28893461
    [Google Scholar]
  25. Simon D.N. Wilson K.L. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013 122 1-2 13 31 10.1007/s00412‑013‑0399‑8 23475188
    [Google Scholar]
  26. Li X.N. Yang H. Yang T. miR-122 Inhibits hepatocarcinoma cell progression by targeting LMNB2. Oncol. Res. 2020 28 1 41 49 10.3727/096504019X15615433287579 31558184
    [Google Scholar]
  27. Sun S. Xu M.Z. Poon R.T. Day P.J. Luk J.M. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res. 2010 9 1 70 78 10.1021/pr9002118 19522540
    [Google Scholar]
  28. Toh M.R. Wong E.Y.T. Wong S.H. Ng A.W.T. Loo L.H. Chow P.K.H. Ngeow J. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology 2023 164 5 766 782 10.1053/j.gastro.2023.01.033 36738977
    [Google Scholar]
  29. Koshy A. Evolving global etiology of hepatocellular carcinoma (HCC): Insights and trends for 2024. J. Clin. Exp. Hepatol. 2025 15 1 102406 10.1016/j.jceh.2024.102406 39346785
    [Google Scholar]
  30. Kather J.N. Calderaro J. Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2020 17 10 591 592 10.1038/s41575‑020‑0343‑3 32620817
    [Google Scholar]
  31. Wang Y. Deng B. Hepatocellular carcinoma: Molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev. 2023 42 3 629 652 10.1007/s10555‑023‑10084‑4 36729264
    [Google Scholar]
  32. Lee J.M. Jung H.J. Fong L.G. Young S.G. Do lamin B1 and lamin B2 have redundant functions? Nucleus 2014 5 4 287 292 10.4161/nucl.29615 25482116
    [Google Scholar]
  33. Peng F. Liao M. Qin R. Zhu S. Peng C. Fu L. Chen Y. Han B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022 7 1 286 10.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  34. Javdan B. Lopez J.G. Chankhamjon P. Lee Y.J. Hull R. Wu Q. Wang X. Chatterjee S. Donia M.S. Personalized mapping of drug metabolism by the human gut microbiome. Cell 2020 181 7 1661 1679.e22 32526207
    [Google Scholar]
  35. Liu S. Wu Y. Yang L. Li X. Huang L. Xing X. [Functions of lamin B1 and the new progress of its roles in neurological diseases and tumors]. Chin. J. Biotechnol. 2018 34 11 1742 1749 30499270
    [Google Scholar]
  36. Matias I. Diniz L.P. Damico I.V. Araujo A.P.B. Neves L.D.S. Vargas G. Leite R.E.P. Suemoto C.K. Nitrini R. Jacob-Filho W. Grinberg L.T. Hol E.M. Middeldorp J. Gomes F.C.A. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 2022 21 1 13521 34894056
    [Google Scholar]
  37. Hu Z. Yang A. Su G. Zhao Y. Wang Y. Chai X. Tu P. Huaier restrains proliferative and invasive potential of human hepatoma SKHEP-1 cells partially through decreased Lamin B1 and elevated NOV. Sci. Rep. 2016 6 31298 10.1038/srep31298 27503760
    [Google Scholar]
  38. Burns J.J.R. Shealy B.T. Greer M.S. Hadish J.A. McGowan M.T. Biggs T. Smith M.C. Feltus F.A. Ficklin S.P. Addressing noise in co-expression network construction. Brief. Bioinform. 2022 23 1 bbab495 10.1093/bib/bbab495 34850822
    [Google Scholar]
  39. Xiang X.H. Yang L. Zhang X. Ma X.H. Miao R.C. Gu J.X. Fu Y.N. Yao Q. Zhang J.Y. Liu C. Lin T. Qu K. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma. World J. Gastroenterol. 2019 25 14 1715 1728 10.3748/wjg.v25.i14.1715 31011256
    [Google Scholar]
  40. Lu H.P. Du X.F. Li J.D. Huang S.N. He R.Q. Wu H.Y. Li M.F. Wu W.Z. Chen J.T. Mo W.J. Chen G. Expression of cell division cycle protein 45 in tissue microarrays and the cdc45 gene by bioinformatics analysis in human hepatocellular carcinoma and patient outcomes. Med. Sci. Monit. 2021 27 928800 33622998
    [Google Scholar]
  41. Xiong Y. Lu J. Fang Q. Lu Y. Xie C. Wu H. Yin Z. UBE2C functions as a potential oncogene by enhancing cell proliferation, migration, invasion, and drug resistance in hepatocellular carcinoma cells. Biosci. Rep. 2019 39 4 BSR20182384 30914455
    [Google Scholar]
  42. Xu X. Zhou Y. Miao R. Chen W. Qu K. Pang Q. Liu C. Transcriptional modules related to hepatocellular carcinoma survival: Coexpression network analysis. Front. Med. 2016 10 2 183 190 10.1007/s11684‑016‑0440‑4 27052251
    [Google Scholar]
  43. Li Q. Qiu J. Yang H. Sun G. Hu Y. Zhu D. Deng Z. Wang X. Tang J. Jiang R. Kinesin family member 15 promotes cancer stem cell phenotype and malignancy via reactive oxygen species imbalance in hepatocellular carcinoma. Cancer Lett. 2020 482 112 125 10.1016/j.canlet.2019.11.008 31733289
    [Google Scholar]
  44. Huang Y. Wang H. Lian Y. Wu X. Zhou L. Wang J. Deng M. Huang Y. Upregulation of kinesin family member 4A enhanced cell proliferation via activation of Akt signaling and predicted a poor prognosis in hepatocellular carcinoma. Cell Death Dis. 2018 9 2 141 10.1038/s41419‑017‑0114‑4 29396392
    [Google Scholar]
  45. Hamdy H. Yang Y. Cheng C. Liu Q. Identification of potential hub genes related to aflatoxin b1, liver fibrosis and hepatocellular carcinoma via integrated bioinformatics analysis. Biology 2023 12 2 205 10.3390/biology12020205 36829489
    [Google Scholar]
  46. Li X. Li Y. Xu A. Zhou D. Zhang B. Qi S. Chen Z. Wang X. Ou X. Cao B. Qu C. Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. OncoImmunology 2021 10 1 1992104 10.1080/2162402X.2021.1992104 34676150
    [Google Scholar]
  47. Hu Z.D. Jiang Y. Sun H.M. Wang J. Zhai L.L. Yin Z.Q. Yan J. KIF11 Promotes proliferation of hepatocellular carcinoma among patients with liver cancers. BioMed Res. Int. 2021 2021 1 2676745 10.1155/2021/2676745 33490265
    [Google Scholar]
  48. Qiu J. Zhang S. Wang P. Wang H. Sha B. Peng H. Ju Z. Rao J. Lu L. BUB1B promotes hepatocellular carcinoma progression via activation of the mTORC1 signaling pathway. Cancer Med. 2020 9 21 8159 8172 10.1002/cam4.3411 32977361
    [Google Scholar]
  49. Dong Y. Sun X. Zhang K. He X. Zhang Q. Song H. Xu M. Lu H. Ren R. Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by regulating Snail expression. Bioengineered 2021 12 2 12967 12979 10.1080/21655979.2021.2012069 34939898
    [Google Scholar]
  50. Messling J.E. Agger K. Andersen K.L. Kromer K. Kuepper H.M. Lund A.H. Helin K. Targeting RIOK2 ATPase activity leads to decreased protein synthesis and cell death in acute myeloid leukemia. Blood 2022 139 2 245 255 10.1182/blood.2021012629 34359076
    [Google Scholar]
  51. Fiengo L. Lauro G. Bellone M.L. Bifulco G. Dal Piaz F. De Tommasi N. The plant diterpene epoxysiderol targets Hsp70 in cancer cells, affecting its ATPase activity and reducing its translocation to plasma membrane. Int. J. Biol. Macromol. 2021 189 262 270 10.1016/j.ijbiomac.2021.08.138 34437915
    [Google Scholar]
  52. Ibrahim S.A. Kulshrestha A. Katara G.K. Riehl V. Sahoo M. Beaman K.D. Cancer‐associated V‐ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol. Oncol. 2020 14 3 590 610 10.1002/1878‑0261.12630 31925882
    [Google Scholar]
  53. Liu J. Peng Y. Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022 32 1 30 44 10.1016/j.tcb.2021.07.001 34304958
    [Google Scholar]
  54. Calcinotto A. Kohli J. Zagato E. Pellegrini L. Demaria M. Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019 99 2 1047 1078 10.1152/physrev.00020.2018 30648461
    [Google Scholar]
  55. Jamasbi E. Hamelian M. Hossain M.A. Varmira K. The cell cycle, cancer development and therapy. Mol. Biol. Rep. 2022 49 11 10875 10883 10.1007/s11033‑022‑07788‑1 35931874
    [Google Scholar]
  56. Herranz N. Gil J. Mechanisms and functions of cellular senescence. J. Clin. Invest. 2018 128 4 1238 1246 10.1172/JCI95148 29608137
    [Google Scholar]
  57. Stallings R.L. Are chromosomal imbalances important in cancer? Trends Genet. 2007 23 6 278 283 10.1016/j.tig.2007.03.009 17400327
    [Google Scholar]
  58. Jia R. Chai P. Zhang H. Fan X. Novel insights into chromosomal conformations in cancer. Mol. Cancer 2017 16 1 173 29149895
    [Google Scholar]
  59. Vyas S. Zaganjor E. Haigis M.C. Mitochondria and Cancer. Cell 2016 166 3 555 566 10.1016/j.cell.2016.07.002 27471965
    [Google Scholar]
  60. Abate M. Festa A. Falco M. Lombardi A. Luce A. Grimaldi A. Zappavigna S. Sperlongano P. Irace C. Caraglia M. Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin. Cell Dev. Biol. 2020 98 139 153 10.1016/j.semcdb.2019.05.022 31154010
    [Google Scholar]
  61. Vinayagam A. Gibson T.E. Lee H.J. Yilmazel B. Roesel C. Hu Y. Kwon Y. Sharma A. Liu Y.Y. Perrimon N. Barabási A.L. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc. Natl. Acad. Sci. USA 2016 113 18 4976 4981 10.1073/pnas.1603992113 27091990
    [Google Scholar]
  62. Zhu G. Luo L. He Y. Xiao Y. Cai Z. Tong W. Deng W. Xie J. Zhong Y. Hu Z. Shan R. AURKB targets DHX9 to promote hepatocellular carcinoma progression via PI3K/AKT/mTOR pathway. Mol. Carcinog. 2024 63 9 1814 1826 10.1002/mc.23775 38874176
    [Google Scholar]
  63. Kopanja D. Pandey A. Kiefer M. Wang Z. Chandan N. Carr J.R. Franks R. Yu D.Y. Guzman G. Maker A. Raychaudhuri P. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features. J. Hepatol. 2015 63 2 429 436 10.1016/j.jhep.2015.03.023 25828473
    [Google Scholar]
  64. Raychaudhuri P. Park H.J. FoxM1: A master regulator of tumor metastasis. Cancer Res. 2011 71 13 4329 4333 10.1158/0008‑5472.CAN‑11‑0640 21712406
    [Google Scholar]
  65. Mok W.C. Wasser S. Tan T. Lim S.G. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma. World J. Gastroenterol. 2012 18 27 3527 3536 10.3748/wjg.v18.i27.3527 22826617
    [Google Scholar]
  66. Yu S Xiao J InventorsApplication of small molecule inhibitors in preparation of drugs for treatment of colorectal cancer. CN Patent 119033756A 2024
  67. Dai Z Chen S Zhang P Quan B Cai J Zhu G InventorsThe role of small molecule inhibitors of GSDME protein in tumor and its immunotherapy. CN Patent 119174765A 2024
    [Google Scholar]
  68. Schöffski P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 2009 14 6 559 570 10.1634/theoncologist.2009‑0010 19474163
    [Google Scholar]
  69. Iliaki S. Beyaert R. Afonina I.S. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem. Pharmacol. 2021 193 114747 10.1016/j.bcp.2021.114747 34454931
    [Google Scholar]
  70. Shi W. Zhang G. Ma Z. Li L. Liu M. Qin L. Yu Z. Zhao L. Liu Y. Zhang X. Qin J. Ye H. Jiang X. Zhou H. Sun H. Jiao Z. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat. Commun. 2021 12 1 2812 10.1038/s41467‑021‑23053‑8 33990570
    [Google Scholar]
  71. Wang B. Huang X. Liang H. Yang H. Guo Z. Ai M. Zhang J. Khan M. Tian Y. Sun Q. Mao Z. Zheng R. Yuan Y. PLK1 inhibition sensitizes breast cancer cells to radiation via suppressing autophagy. Int. J. Radiat. Oncol. Biol. Phys. 2021 110 4 1234 1247 10.1016/j.ijrobp.2021.02.025 33621661
    [Google Scholar]
  72. Schwermer M. Dreesmann S. Eggert A. Althoff K. Steenpass L. Schramm A. Schulte J.H. Temming P. Pharmaceutically inhibiting polo‐like kinase 1 exerts a broad anti‐tumour activity in retinoblastoma cell lines. Clin. Exp. Ophthalmol. 2017 45 3 288 296 10.1111/ceo.12838 27647547
    [Google Scholar]
  73. Chou Y.S. Yen C.C. Chen W.M. Lin Y.C. Wen Y.S. Ke W.T. Wang J.Y. Liu C.Y. Yang M.H. Chen T.H. Liu C.L. Cytotoxic mechanism of PLK1 inhibitor GSK461364 against osteosarcoma: Mitotic arrest, apoptosis, cellular senescence, and synergistic effect with paclitaxel. Int. J. Oncol. 2016 48 3 1187 1194 10.3892/ijo.2016.3352 26794530
    [Google Scholar]
  74. Brassesco M.S. Pezuk J.A. Morales A.G. Carvalho de Oliveira J. Roberto G.M. Nicioli da Silva G. Francisco de Oliveira H. Scrideli C.A. Tone L.G. In vitro targeting of Polo-like kinase 1 in bladder carcinoma. Cancer Biol. Ther. 2013 14 7 648 657 10.4161/cbt.25087 23792639
    [Google Scholar]
/content/journals/pra/10.2174/0115748928375684250716120144
Loading
/content/journals/pra/10.2174/0115748928375684250716120144
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: LMNB1 ; LMNB2 ; hepatocellular carcinoma ; GSK461364 ; prognostic biomarker
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test