Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Radiofrequency ablation (RFA) is an effective therapy for hepatocellular carcinoma (HCC). However, incomplete radiofrequency ablation (IRFA) can promote the progression of residual cancer cells, which is a serious problem in the clinical application of RFA. Therefore, it is of great significance to explore the mechanism and countermeasures of the progression of residual tumors after IRFA. Our previous study confirmed that IRFA can activate the hypoxia/autophagy pathway of residual tumors in mice and then induce the proliferation of residual tumor cells. Additionally, we found a metal ruthenium complex [Ru(bpy)(ipad)](ClO) (Ru, where bpy = 2,2’-bipyridine and ipad = 2-(anthracene-9,10-dione-2-yl)imidazo[4,5-f][1,10]phenanthroline) can effectively inhibit hypoxia-inducible factor (HIF-1α) and has good anti-tumor effect in a hypoxic environment; however, whether Ru could suppress the proliferation of residual tumor cells after IRFA is unknown.

Objectives

This study intends to evaluate the effect of Ru in suppressing the proliferation of residual hepatocellular carcinoma after IRFA in a mice model.

Methods

The Hepa1-6 xenograft mouse model was established in C57BL/6 mice to simulate clinical IRFA. H&E staining was used to evaluate the biosafety of major organs in the treated mice. TUNEL assay was employed to assess the antitumor effect. Immunohistochemically and immunofluorescence staining was performed to detect the expression of HIF-1α and autophagy-related proteins. The ELISA assay was used to examine the cytokines of interferon-gamma (IFN-γ) and interleukin 10 (IL-10).

Results

Our findings revealed that the residual tumor relapsed the HIF-1α/LC3B/P62 autophagy-related pathway after IRFA, while Ru could suppress this process. In addition, it was demonstrated that Ru could effectively activate the immune system of the mice and reverse the tumor immune suppression microenvironment after IRFA.

Conclusion

The ruthenium complex Ru could suppress the proliferation of residual hepatocellular carcinoma cells after IRFA in the mice model. This study introduces a novel approach that combines the use of ruthenium complexes with IRFA, offering a potential solution to address the reoccurrence of residual liver cancer following IRFA in clinical settings.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928320508240802055846
2024-08-12
2025-12-05
Loading full text...

Full text loading...

References

  1. LiangX. LiuQ. ZhuS. LiZ. ChenH. SuZ. GSDME has prognostic and immunotherapeutic significance in residual hepatocellular carcinoma after insufficient radiofrequency ablation.Transl. Oncol.20243910179610.1016/j.tranon.2023.10179637862939
    [Google Scholar]
  2. FuR. LingW. The current role of radiofrequency ablation in the treatment of intrahepatic recurrent hepatocellular carcinoma.J. Surg. Oncol.202312881340134610.1002/jso.2745737753714
    [Google Scholar]
  3. LeeE. Cannulas for radio frequency ablation.US Patent 11832873, 2023.
  4. WenZ. WangJ. TuB. LiuY. YangY. HouL. YangX. LiuX. XieH. Radiofrequency ablation combined with toripalimab for recurrent hepatocellular carcinoma: A prospective controlled trial.Cancer Med.20231220203112032010.1002/cam4.660237814921
    [Google Scholar]
  5. ZhaiB. WangH. LiuY. ShenK. DongY. SunJ. ShuY. WanX. RenX. WeiX. A comparison between radiofrequency ablation combined with transarterial chemoembolization and surgical resection in hepatic carcinoma: A meta-analysis.J. Cancer Res. Ther.20191571617162310.4103/jcrt.JCRT_503_1931939446
    [Google Scholar]
  6. YanZ. LuZ. LiuL. HuK. WuJ. DongY. Comparison between ultrasound-guided percutaneous radiofrequency and microwave ablation in benign thyroid nodules.J. Cancer Res. Ther.20191571535154010.4103/jcrt.JCRT_322_1931939434
    [Google Scholar]
  7. Liu Impedance detection device for living body and radiofrequency ablation system.US Patent 2023200879, 2023.
    [Google Scholar]
  8. ChenY. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter. US Patent 2023380881, 2023.2023
  9. GeP. WuY. LiL. Radiofrequency ablation has similar short-term effects but significantly lowers the long-term effect compared with routine resection in the treatment of small hepatocellular carcinoma.J. Gastrointest. Oncol.20221352693269510.21037/jgo‑22‑58836388643
    [Google Scholar]
  10. SongQ. GaoH. TianX. RenL. LanY. YanL. LuoY. Evaluation of Ultrasound-Guided Radiofrequency Ablation as a Treatment Option for Papillary Thyroid Microcarcinoma in the Isthmus: A Retrospective Study.Front. Endocrinol. (Lausanne)20211159947110.3389/fendo.2020.59947133633683
    [Google Scholar]
  11. DuanF. BaiY-H. ChenG. XuY. CuiL. LiX-H. WangX.Q. WangM-Q. General versus local anesthesia for percutaneous radiofrequency ablation of hepatocellular carcinoma at unusual regions.J. Cancer Res. Ther.20201671686169010.4103/jcrt.JCRT_1187_2033565517
    [Google Scholar]
  12. MannionG.H. LeardB.C. WangR. SmithR.D. EllswoodM.R. LienK.T. System and method for packaging and preparing a radiofrequency ablation kit.US Patent 2023293255, 2023.2023
  13. GuoY. RenY. DongX. KanX. ZhengC. An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation.J. Hepatocell. Carcinoma2022934335510.2147/JHC.S35853935502292
    [Google Scholar]
  14. TakadaY. KurataM. OhkohchiN. Rapid and aggressive recurrence accompanied by portal tumor thrombus after radiofrequency ablation for hepatocellular carcinoma.Int. J. Clin. Oncol.20038533233510.1007/s10147‑003‑0328‑614586761
    [Google Scholar]
  15. PortolaniN. TiberioG.A. RonconiM. ConiglioA. GhidoniS. GaveriniG. GiuliniS.M. Aggressive recurrence after radiofrequency ablation of liver neoplasms.Hepatogastroenterology200350542179218414696492
    [Google Scholar]
  16. WanJ. WuW. ChenY. KangN. ZhangR. Insufficient radiofrequency ablation promotes the growth of non-small cell lung cancer cells through PI3K/Akt/HIF-1α signals.Acta Biochim. Biophys. Sin. (Shanghai)201648437137710.1093/abbs/gmw00526922319
    [Google Scholar]
  17. LiY. SongZ. ZhouT. LiuB. WangY. WangW. ChangH. LiD. Insufficient radiofrequency ablation promotes epithelial–mesenchymal transition mediated by interleukin-6/signal transducer and activator of transcription 3/Snail pathway in the H22 cells.J. Cancer Res. Ther.20201651112111810.4103/jcrt.JCRT_12_2033004756
    [Google Scholar]
  18. ZengJ. CaiX. HaoX. HuangF. HeZ. SunH. LuY. LeiJ. ZengW. LiuY. LuoR. LncRNA FUNDC2P4 down-regulation promotes epithelial–mesenchymal transition by reducing E-cadherin expression in residual hepatocellular carcinoma after insufficient radiofrequency ablation.Int. J. Hyperthermia201834680281110.1080/02656736.2017.142203029295626
    [Google Scholar]
  19. KongJ. KongJ. PanB. KeS. DongS. LiX. ZhouA. ZhengL. SunW. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA.PLoS One201275e3726610.1371/journal.pone.003726622615958
    [Google Scholar]
  20. DongS. KongJ. KongF. KongJ. GaoJ. JiL. PanB. ChenL. ZhengL. SunW. Sorafenib suppresses the epithelial-mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency ablation.BMC Cancer201515193910.1186/s12885‑015‑1949‑726620566
    [Google Scholar]
  21. DongS. KongJ. KongF. KongJ. GaoJ. KeS. WangS. DingX. SunW. ZhengL. Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways.J. Transl. Med.201311127310.1186/1479‑5876‑11‑27324168056
    [Google Scholar]
  22. IwahashiS. ShimadaM. UtsunomiyaT. ImuraS. MorineY. IkemotoT. TakasuC. SaitoY. YamadaS. Epithelial–mesenchymal transition-related genes are linked to aggressive local recurrence of hepatocellular carcinoma after radiofrequency ablation.Cancer Lett.20163751475010.1016/j.canlet.2016.02.04126940140
    [Google Scholar]
  23. NijkampM.W. HoogwaterF.J.H. StellerE.J.A. WestendorpB.F. van der MeulenT.A. LeendersM.W.H. Borel RinkesI.H.M. KranenburgO. CD95 is a key mediator of invasion and accelerated outgrowth of mouse colorectal liver metastases following radiofrequency ablation.J. Hepatol.20105361069107710.1016/j.jhep.2010.04.04020832890
    [Google Scholar]
  24. TongY. YangH. XuX. RuanJ. LiangM. WuJ. LuoB. Effect of a hypoxic microenvironment after radiofrequency ablation on residual hepatocellular cell migration and invasion.Cancer Sci.2017108475376210.1111/cas.1319128182306
    [Google Scholar]
  25. ZhangN. ChenR. CaoX. WangL. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation.J. Cancer Res. Ther.20231961517152410.4103/jcrt.jcrt_1458_2138156917
    [Google Scholar]
  26. YangY. ChenW. MaiW. GaoY. HIF-2α regulates proliferation, invasion, and metastasis of hepatocellular carcinoma cells via VEGF/Notch1 signaling axis after insufficient radiofrequency ablation.Front. Oncol.20221299829510.3389/fonc.2022.99829536212390
    [Google Scholar]
  27. WanJ. LingX. RaoZ. PengB. DingG. Independent prognostic value of HIF-1α expression in radiofrequency ablation of lung cancer.Oncol. Lett.202019184985731897199
    [Google Scholar]
  28. WanJ. WuW. HuangY. GeW. LiuS. Incomplete radiofrequency ablation accelerates proliferation and angiogenesis of residual lung carcinomas via HSP70/HIF-1α.Oncol. Rep.201636265966810.3892/or.2016.485827278081
    [Google Scholar]
  29. WanJ. WuW. ZhangR. Local recurrence of small cell lung cancer following radiofrequency ablation is induced by HIF-1α expression in the transition zone.Oncol. Rep.20163531297130810.3892/or.2015.454126750332
    [Google Scholar]
  30. ZhaoZ. WuJ. LiuX. LiangM. ZhouX. OuyangS. YaoJ. WangJ. LuoB. Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy.Cancer Lett.2018421738110.1016/j.canlet.2018.02.02429458142
    [Google Scholar]
  31. WangJ. KouJ. HouX. ZhaoZ. ChaoH. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1α inhibition.Inorg. Chim. Acta201745417618310.1016/j.ica.2016.04.050
    [Google Scholar]
  32. ChenD. GuoS. TangX. RongY. BoH. ShenH. ZhaoZ. QiaoA. ShenJ. WangJ. Combination of ruthenium (II) polypyridyl complex Δ-Ru1 and Taxol enhances the anti-cancer effect on Taxol-resistant cancer cells through Caspase-1/GSDMD-mediated pyroptosis.J. Inorg. Biochem.202223011174910.1016/j.jinorgbio.2022.11174935144218
    [Google Scholar]
  33. TangX.G. LinK. GuoS.W. RongY. ChenD. ChenZ.S. PingF.F. WangJ.Q. The Synergistic Effect of Ruthenium Complex Δ-Ru1 and Doxorubicin in a Mouse Breast Cancer Model.Recent Patents Anticancer Drug Discov.202318217418610.2174/157489281766622062910554335770412
    [Google Scholar]
  34. RongY. FanZ. YuZ. WeiL. ShenH. HuangH. HaoX. ZhaoZ. WangJ. An endoplasmic reticulum-targeting iridium( iii ) complex induces immunogenic cell death in melanoma cells and enhances anti-PD-1 immunotherapy by remodeling tumor microenvironment.Inorg. Chem. Front.202310185278529110.1039/D3QI00841J
    [Google Scholar]
  35. BhallaA. AttriS. MalikV. Potential heavy metal toxicity of over-the-counter available ayurvedic drugs.Clin. Toxicol. (Phila.)2020584307307
    [Google Scholar]
  36. YadavA. FloraS.J.S. Nano drug delivery systems: a new paradigm for treating metal toxicity.Expert Opin. Drug Deliv.201613683184110.1517/17425247.2016.116089027030893
    [Google Scholar]
  37. ValenteA. Podolski-RenićA. PoetschI. FilipovićN. LópezÓ. TurelI. HeffeterP. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance.Drug Resist. Updat.20215810077810.1016/j.drup.2021.10077834403910
    [Google Scholar]
  38. HeffeterP. JungwirthU. JakupecM. HartingerC. GalanskiM.S. ElblingL. MickscheM. KepplerB. BergerW. Resistance against novel anticancer metal compounds: Differences and similarities.Drug Resist. Updat.2008111-211610.1016/j.drup.2008.02.00218394950
    [Google Scholar]
  39. de-CarvalhoR.R. Gomes-CarneiroM.R. GeraldinoB.R. LopesG.S. PaumgarttenF.J.R. Evaluation of the developmental toxicity of solvents, metals, drugs, and industrial chemicals using a freshwater snail ( Biomphalaria glabrata ) assay.J. Toxicol. Environ. Health A2022851979881410.1080/15287394.2022.208941335723169
    [Google Scholar]
  40. SavaG. FrausinF. CocchiettoM. VitaF. PoddaE. SpessottoP. FurlaniA. ScarciaV. ZabucchiG. Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A.Eur. J. Cancer20044091383139610.1016/j.ejca.2004.01.03415177498
    [Google Scholar]
  41. SavaG. BacacM. BeijnenJ.H. BergamoA. CasarsaC. CocchiettoM. FlaibaniA. PacorS. SchellensJ.H.M. SorcA. VadoriM. VitaF. ZorzetS. Host toxicity of the antimetastasis ruthenium complex NAMI-A.Clin. Cancer Res.200064525s4525s
    [Google Scholar]
  42. BergamoA. GavaB. AlessioE. MestroniG. SerliB. CocchiettoM. ZorzetS. SavaG. Ruthenium-based NAMI-A type complexes with in vivo selective metastasis reduction and in vitro invasion inhibition unrelated to cell cytotoxicity.Int. J. Oncol.20022161331133810.3892/ijo.21.6.133112429985
    [Google Scholar]
  43. LambE.J. O’RiordanS.E. WebbM.C. NewmanD.J. Serum cystatin C may be a better marker of renal impairment than creatinine.J. Am. Geriatr. Soc.200351111674167510.1046/j.1532‑5415.2003.515244.x14687406
    [Google Scholar]
  44. ChenS. WuQ. LiX. LiD. MeiN. NingB. PuigM. RenZ. TollesonW.H. GuoL. Characterization of cytochrome P450s (CYP)-overexpressing HepG2 cells for assessing drug and chemical-induced liver toxicity.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.2021391688610.1080/26896583.2021.188024233576714
    [Google Scholar]
  45. ShiL. WangJ. DingN. ZhangY. ZhuY. DongS. WangX. PengC. ZhouC. ZhouL. LiX. ShiH. WuW. LongX. WuC. LiaoW. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy.Nat. Commun.2019101542110.1038/s41467‑019‑13204‑331780645
    [Google Scholar]
  46. SprinkleL. Electrosurgical console for radiofrequency ablation.AU Patent 2022319037A1, 2024.
  47. YangZ. ZhuY. DongZ. LiW. YangN. WangX. FengL. LiuZ. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses.Nat. Commun.2021121429910.1038/s41467‑021‑24604‑934262038
    [Google Scholar]
  48. WangP. TianM. RenW. Correlation Between Contrast‐Enhanced Ultrasound and Immune Response of Distant Hepatocellular Carcinoma After Radiofrequency Ablation in a Murine Model.J. Ultrasound Med.202241371372310.1002/jum.1575334018628
    [Google Scholar]
  49. XinY. YangY. LiuN. ChenY. WangY. ZhangX. LiX. ZhouX. Prognostic significance of systemic immune-inflammation index- based nomogram for early stage hepatocellular carcinoma after radiofrequency ablation.J. Gastrointest. Oncol.202112273575010.21037/jgo‑20‑34234012662
    [Google Scholar]
  50. QiX. YangM. MaL. SauerM. AvellaD. KaifiJ.T. BryanJ. ChengK. Staveley-O’CarrollK.F. KimchiE.T. LiG. Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response.J. Immunother. Cancer202082e00103810.1136/jitc‑2020‑00103833115942
    [Google Scholar]
  51. ZhouY. QianY. XiongW. YanN. HuB. XiongZ. HeW. Effect of Transcatheter Arterial Chemoembolization Combined with Radiofrequency Ablation on Liver Function and Immune Function in Patients with Hepatocellular Carcinoma.Emerg. Med. Int.202220221510.1155/2022/484237036204334
    [Google Scholar]
  52. YpsilantisP. LambropoulouM. EvagellouA. PapadopoulosN. SimopoulosC. Immune and Inflammatory Responses of the Intestinal Mucosa following Extended Liver Radiofrequency Ablation.Gastroenterol. Res. Pract.201720171610.1155/2017/345063529209365
    [Google Scholar]
  53. HabibiM. KmieciakM. GrahamL. MoralesJ.K. BearH.D. ManjiliM.H. Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis.Breast Cancer Res. Treat.2009114342343110.1007/s10549‑008‑0024‑318425677
    [Google Scholar]
  54. WuH. LiS. ZhouM. JiangA.N. HeY. WangS. YangW. LiuH. Palliative Radiofrequency Ablation Accelerates the Residual Tumor Progression Through Increasing Tumor-Infiltrating MDSCs and Reducing T-Cell-Mediated Anti-Tumor Immune Responses in Animal Model.Front. Oncol.202010130810.3389/fonc.2020.0130833014771
    [Google Scholar]
  55. El-SayedA.F.M. Figueiredo-SilvaC. ZeidS.M.S. MakledS.O. Metal–amino acid complexes (Zn, Se, Cu, Fe, and Mn) enhance immune response, antioxidant capacity, liver function enzymes, and expression of cytokine genes in Nile Tilapia reared under field conditions.J. Aquat. Anim. Health202335424826210.1002/aah.1019437501584
    [Google Scholar]
  56. EnglingerB. PirkerC. HeffeterP. TerenziA. KowolC.R. KepplerB.K. BergerW. Metal Drugs and the Anticancer Immune Response.Chem. Rev.201911921519162410.1021/acs.chemrev.8b0039630489072
    [Google Scholar]
/content/journals/pra/10.2174/0115748928320508240802055846
Loading
/content/journals/pra/10.2174/0115748928320508240802055846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test