Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

There are eighteen members of the Poly (ADP-ribose) polymerases (PARPs) family, which oversees various cellular processes such as maintaining the integrity of the genome, regulating transcription, cell cycle progression, initiating the DNA damage response, and apoptosis. PARP1 is an essential member of the PARP family and plays a crucial role in repairing single-strand breaks in eukaryotic cells through a process called BER (base excision repair). It is the most extensively studied and commonly found member of this family.

Area Covered

This article discusses the advancements in developing PARP inhibitors for human cancers. It covers the discovery of new PARP1 inhibitors with chemical classifications that selectively target multiple areas using cancer models and and evaluate them critically. The focus is on patents that have been published from 2017 to 2023, except tankyrase inhibitors.

Expert Opinion

PARP1 inhibitors were developed by various companies and academic groups from the 1990s to enhance the effectiveness of chemo and radiotherapy. However, their progress was hindered due to their severe toxicity when combined with these treatments. Therefore, on finding PARP1 inhibitors that can amplify the ability of chemotherapy agents to kill tumors while causing minimal toxicity, these substances can either be used alone as part of the synthetic lethality approach or in conjunction with radiotherapy or chemotherapy, resulting in a mutually beneficial outcome.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928315021240603073902
2024-06-13
2025-12-26
Loading full text...

Full text loading...

References

  1. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. ZhouP. WangJ. MishailD. WangC.Y. Recent advancements in PARP inhibitors-based targeted cancer therapy.Precis. Clin. Med.20203318720110.1093/pcmedi/pbaa03032983586
    [Google Scholar]
  4. CurtinN.J. SzaboC. Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond.Mol. Aspects Med.20133461217125610.1016/j.mam.2013.01.00623370117
    [Google Scholar]
  5. RyuK.W. KimD.S. KrausW.L. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases.Chem. Rev.201511562453248110.1021/cr500424825575290
    [Google Scholar]
  6. YelamosJ. FarresJ. LlacunaL. AmpurdanesC. Martin-CaballeroJ. PARP-1 and PARP-2: New players in tumour development.Am. J. Cancer Res.20111332834621968702
    [Google Scholar]
  7. HottigerM.O. HassaP.O. LüscherB. SchülerH. Koch-NolteF. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.Trends Biochem. Sci.201035420821910.1016/j.tibs.2009.12.00320106667
    [Google Scholar]
  8. RatnamK. LowJ.A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology.Clin. Cancer Res.20071351383138810.1158/1078‑0432.CCR‑06‑226017332279
    [Google Scholar]
  9. ComenE.A. RobsonM. Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer.Oncology (Williston Park)2010241556220187322
    [Google Scholar]
  10. FerrarisD.V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic.J. Med. Chem.201053124561458410.1021/jm100012m20364863
    [Google Scholar]
  11. HuangS.M.A. MishinaY.M. LiuS. CheungA. StegmeierF. MichaudG.A. CharlatO. WielletteE. ZhangY. WiessnerS. HildM. ShiX. WilsonC.J. MickaninC. MyerV. FazalA. TomlinsonR. SerlucaF. ShaoW. ChengH. ShultzM. RauC. SchirleM. SchleglJ. GhidelliS. FawellS. LuC. CurtisD. KirschnerM.W. LengauerC. FinanP.M. TallaricoJ.A. BouwmeesterT. PorterJ.A. BauerA. CongF. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature2009461726461462010.1038/nature0835619759537
    [Google Scholar]
  12. WalshC.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy.Gynecol. Oncol.2015137234335010.1016/j.ygyno.2015.02.01725725131
    [Google Scholar]
  13. Postel-VinayS. BajramiI. FribouletL. ElliottR. FontebassoY. DorvaultN. OlaussenK.A. AndréF. SoriaJ-C. LordC.J. AshworthA. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer.Oncogene201332475377538710.1038/onc.2013.31123934192
    [Google Scholar]
  14. SomyajitK. MishraA. JameeiA. NagarajuG. Enhanced non-homologous end joining contributes toward synthetic lethality of pathological RAD51C mutants with poly (ADP-ribose) polymerase.Carcinogenesis2015361132410.1093/carcin/bgu21125292178
    [Google Scholar]
  15. McLornanD.P. ListA. MuftiG.J. Applying synthetic lethality for the selective targeting of cancer.N. Engl. J. Med.2014371181725173510.1056/NEJMra140739025354106
    [Google Scholar]
  16. LordC.J. TuttA.N.J. AshworthA. Synthetic lethality and cancer therapy: Lessons learned from the development of PARP inhibitors.Annu. Rev. Med.201566145547010.1146/annurev‑med‑050913‑02254525341009
    [Google Scholar]
  17. BridgesK.A. ToniattiC. BuserC.A. LiuH. BuchholzT.A. MeynR.E. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells.Oncotarget20145135076508610.18632/oncotarget.208324970803
    [Google Scholar]
  18. GaniC. CoackleyC. KumareswaranR. SchützeC. KrauseM. ZafaranaG. BristowR.G. In vivo studies of the PARP inhibitor, AZD-2281, in combination with fractionated radiotherapy: An exploration of the therapeutic ratio.Radiother. Oncol.2015116348649410.1016/j.radonc.2015.08.00326277432
    [Google Scholar]
  19. EngertF. SchneiderC. WeiβL.M. ProbstM. FuldaS. PARP inhibitors sensitize ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway.Mol. Cancer Ther.201514122818283010.1158/1535‑7163.MCT‑15‑058726438158
    [Google Scholar]
  20. KarginovaO. SiegelM.B. Van SwearingenA.E.D. DealA.M. AdamoB. SambadeM.J. BazyarS. Nikolaishvili-FeinbergN. BashR. O’NealS. SandisonK. ParkerJ.S. SantosC. DarrD. ZamboniW. LeeY.Z. MillerC.R. AndersC.K. Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA -mutated and BRCA –wild-type triple-negative breast cancer.Mol. Cancer Ther.201514492093010.1158/1535‑7163.MCT‑14‑047425824335
    [Google Scholar]
  21. WulfG.M. JuvekarA. LyssiotisC.A. HuH. YadegaryniaS. LiuH. KimB. WinterE. ScullyR. AsaraJ. CantleyL.C. MatulonisU. Abstract CT338: Combination of a PI3K- and a PARP-inhibitor to treat high-grade serous ovarian or triple-negative breast cancer.Cancer Res.20147419_SupplementSuppl.CT338CT33810.1158/1538‑7445.AM2014‑CT338
    [Google Scholar]
  22. SuiH. ShiC. YanZ. LiH. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy.Drug Des. Devel. Ther.201593183319010.2147/DDDT.S8203526124641
    [Google Scholar]
  23. KonstantinopoulosP.A. WilsonA.J. SaskowskiJ. WassE. KhabeleD. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer.Gynecol. Oncol.2014133359960610.1016/j.ygyno.2014.03.00724631446
    [Google Scholar]
  24. PulliamN. TavernaP. LyonsJ. NephewK.P. Abstract 2943: Novel combination therapy of DNMT inhibitor SGI-110 and PARP inhibitor BMN-673 (talazoparib) for BRCA-proficient ovarian cancer.Cancer Res.20157515_SupplementSuppl.2943294310.1158/1538‑7445.AM2015‑2943
    [Google Scholar]
  25. KumarR. LiD-Q. MüllerS. KnappS. Epigenomic regulation of oncogenesis by chromatin remodeling.Oncogene201635344423443610.1038/onc.2015.51326804164
    [Google Scholar]
  26. HoyS.M. Talazoparib: First global approval.Drugs201878181939194610.1007/s40265‑018‑1026‑z30506138
    [Google Scholar]
  27. DonawhoC.K. LuoY. LuoY. PenningT.D. BauchJ.L. BouskaJ.J. Bontcheva-DiazV.D. CoxB.F. DeWeeseT.L. DillehayL.E. FergusonD.C. Ghoreishi-HaackN.S. GrimmD.R. GuanR. HanE.K. Holley-ShanksR.R. HristovB. IdlerK.B. JarvisK. JohnsonE.F. KleinbergL.R. KlinghoferV. LaskoL.M. LiuX. MarshK.C. McGonigalT.P. MeulbroekJ.A. OlsonA.M. PalmaJ.P. RodriguezL.E. ShiY. StavropoulosJ.A. TsurutaniA.C. ZhuG.D. RosenbergS.H. GirandaV.L. FrostD.J. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models.Clin. Cancer Res.20071392728273710.1158/1078‑0432.CCR‑06‑303917473206
    [Google Scholar]
  28. ColemanR.L. SillM.W. Bell-McGuinnK. AghajanianC. GrayH.J. TewariK.S. RubinS.C. RutherfordT.J. ChanJ.K. ChenA. SwisherE.M. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation — An NRG Oncology/Gynecologic Oncology Group study.Gynecol. Oncol.2015137338639110.1016/j.ygyno.2015.03.04225818403
    [Google Scholar]
  29. SteffensenK.D. AdimiP. JakobsenA. Veliparib monotherapy to patients with BRCA germ line mutation and platinum-resistant or partially platinum-sensitive relapse of epithelial ovarian cancer: A phase I/II study.Int. J. Gynecol. Cancer20172791842184910.1097/IGC.000000000000108928763368
    [Google Scholar]
  30. MarkhamA. Pamiparib: First approval.Drugs202181111343134810.1007/s40265‑021‑01552‑834287805
    [Google Scholar]
  31. ZhuG.D. GongJ. GandhiV.B. LiuX. ShiY. JohnsonE.F. DonawhoC.K. EllisP.A. BouskaJ.J. OsterlingD.J. OlsonA.M. ParkC. LuoY. ShoemakerA. GirandaV.L. PenningT.D. Discovery and SAR of orally efficacious tetrahydropyridopyridazinone PARP inhibitors for the treatment of cancer.Bioorg. Med. Chem.201220154635464510.1016/j.bmc.2012.06.02122766219
    [Google Scholar]
  32. ChenA. PARP inhibitors: Its role in treatment of cancer.Chin. J. Cancer201130746347110.5732/cjc.011.1011121718592
    [Google Scholar]
  33. CepedaV. FuertesM. CastillaJ. AlonsoC. QuevedoC. SotoM. PérezJ. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy.Recent Patents Anticancer Drug Discov.200611395310.2174/15748920677524643018221025
    [Google Scholar]
  34. PrzybycinskiJ. NalewajskaM. Marchelek-MysliwiecM. DziedziejkoV. PawlikA. Poly-ADP-ribose polymerases (PARPs) as a therapeutic target in the treatment of selected cancers.Expert Opin. Ther. Targets201923977378510.1080/14728222.2019.165445831394942
    [Google Scholar]
  35. Nerviano Medical Sciences SRL4-carboxamido-isoindolinone derivatives as selective PARP-1 inhibitors.US Patent 20190330151A12019
  36. YuL. LiJ. ZhuJ. WangY. YanZ. ZhangL. LiS. Discovery of novel 2,3,4,5-tetrahydrospiro[benzo[c]azepine-1,1′-cyclohexan]-5-ol derivatives as PARP-1 inhibitors.BMC Chem.202317114710.1186/s13065‑023‑01060‑837891641
    [Google Scholar]
  37. China Medical UniversityDibenzo [b, e] azepine -6,11- diketone triazole compound and its preparation method and application.CN Patent 110172059B2019
  38. WangB. ChuD. FengY. ShenY. Aoyagi-ScharberM. PostL.E. Discovery and Characterization of (8 S, 9 R )-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1 H -1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3 H -pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent.J. Med. Chem.201659133535710.1021/acs.jmedchem.5b0149826652717
    [Google Scholar]
  39. AlmahliH. HadchityE. JaballahM.Y. DaherR. GhabbourH.A. KabilM.M. Al-shakliahN.S. EldehnaW.M. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer.Bioorg. Chem.20187744345610.1016/j.bioorg.2018.01.03429453076
    [Google Scholar]
  40. Jiangsu Hansoh Pharmaceutical CoMethods of using phthalazinone ketone derivatives.US Patent 9566277B22017
  41. Sichuan Biopharmaceutica CoPhthalazine Ketone derivative, and preparation method and use thereof.WO Patent 2017101796A12017
    [Google Scholar]
  42. Shanghai Weicen Pharmaceutical Technology CoA kind of PARP inhibitor, its pharmaceutical composition, preparation method and application.CN Patent 108164468A2018
  43. Suzhou Kintor Pharmaceuticals IncDihydropyridophthalazinone compounds as inhibitors of poly (adp-ribose) polymerase (parp) for treatment of diseases and method of use thereof.US Patent 20200002337A12020
  44. Medivation Technologies LLCDihydropyridophthalazinone inhibitors of poly (ADP-ribose) polymerase (PARP).US Patent 011364241B22022
  45. Rhizen Pharmaceuticals AgNovel compounds useful as poly(adp-ribose) polymerase (PARP) inhibitors.US Patent 20230234938A12023
  46. McGonigleS. ChenZ. WuJ. ChangP. Kolber-SimondsD. AckermannK. TwineN.C. ShieJ.L. MiuJ.T. HuangK.C. MonizG.A. NomotoK. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling.Oncotarget2015638413074132310.18632/oncotarget.584626513298
    [Google Scholar]
  47. Suzhou Kangrun Pharmaceuticals IncAza-phenalene-3-ketone derivative, preparation method thereof, and its application as PARP inhibitor.US Patent 010106550B22018
  48. Suzhou Kangrun Pharmaceuticals IncAzaphenalene - 3 - One derivative, preparation method therefor, and application therof.US Patent 10669274B2020
  49. YaoH. JiM. ZhuZ. ZhouJ. CaoR. ChenX. XuB. Discovery of 1-substituted benzyl-quinazoline-2,4(1H,3H)-dione derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors.Bioorg. Med. Chem.201523468169310.1016/j.bmc.2014.12.07125614115
    [Google Scholar]
  50. ZhouJ. JiM. YaoH. CaoR. ZhaoH. WangX. ChenX. XuB. Discovery of quinazoline-2,4(1 H, 3 H )-dione derivatives as novel PARP-1/2 inhibitors: Design, synthesis and their antitumor activity.Org. Biomol. Chem.201816173189320210.1039/C8OB00286J29648554
    [Google Scholar]
  51. Institute of Materia MedicaPiperazinone-containing quinazolinone PARP-1/2 inhibitor, and preparation method, medicine composition and purpose thereof.CN Patent 107098886B2017
  52. Institute of Materia Medica3-Amino Nafoxidine-containing quinazoline ketone PARP (Poly Adenosine Diphosphate Ribose Polymerase)-1/2 inhibitor as well as preparation method, medicinal composition and application thereof.CN Patent 108727343A2018
  53. Janssen Pharmaceutica NVQuinazolinedione derivatives as Parp inhibitors.US Patent 20160108020A12016
  54. Janssen Pharmaceutica NVQuinazolinone derivatives as PARP inhibitors.US Patent 010150757B22018
  55. Impact Therapeutics, Inc.1- (Arylmethyl) Quinazoline 2,4 (1H,3H)-Diones as PARP inhibitors and the use thereof.US Patent 10316027B22019
  56. Shuzhou Four Health Pharmaceuticals Co LtdQuinazoline-2, 4-dione derivatives as parp inhibitors.US Patent 20220227757A12022
  57. Xinthera IncPARP1 inhibitors and uses thereof.US Patent 20230128041A12023
  58. Washington University in St Louis WUSTLA poly (adp-ribose) polymerase-1 (parp-1) inhibitor and uses therefor.EP Patent 3424909A12019
  59. Rakovina Therapeutics IncTricyclic inhibitors of poly (adp-ribose) polymerase.US Patent 20230027257A12023
  60. Impact Therapeutics IncSubstituted tricyclic compounds as parp inhibitors and the use thereof.WO Patent 2023169226A12023
  61. TongY. BouskaJ.J. EllisP.A. JohnsonE.F. LeversonJ. LiuX. MarcotteP.A. OlsonA.M. OsterlingD.J. PrzytulinskaM. RodriguezL.E. ShiY. SoniN. StavropoulosJ. ThomasS. DonawhoC.K. FrostD.J. LuoY. GirandaV.L. PenningT.D. Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents.J. Med. Chem.200952216803681310.1021/jm900697r19888760
    [Google Scholar]
  62. AjaniO.O. AderohunmuD.V. IkpoC.O. AdedapoA.E. OlanrewajuI.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine.Arch. Pharm. (Weinheim)2016349747550610.1002/ardp.20150046427213292
    [Google Scholar]
  63. WaliaR. HedaitullahM. NaazS.F. IqbalK. LambaH. Benzimidazole derivatives-an overview.Int. J. Res. Pharm. Chem.201113565574
    [Google Scholar]
  64. Hubei Bio-Pharmaceutical Industrial Technological Institute IncAnalogues of 4H-pyrazolo [1, 5-a] benzimidazole compound as PARP inhibitors.US Patent 009856262B22018
  65. BeiGene, Ltd.Fused tetra or penta-cyclic dihydrodiazepinocarbazolones as PARP inhibitors.US Patent 010501467322019
  66. Lupin LtdHeteroaryl Derivatives as PARP Inhibitors.US Patent 20200101068A12020
  67. Shanghai Huilun Life Science & Technology Co., Ltd.Heterocyclic-imidazole compounds, pharmaceutical compositions thereof, preparation method therefor and use thereof.US Patent 010174023B22019
  68. González-MartínA. PothuriB. VergoteI. DePont ChristensenR. GraybillW. MirzaM.R. McCormickC. LorussoD. HoskinsP. FreyerG. BaumannK. JardonK. RedondoA. MooreR.G. VulstekeC. O’CearbhaillR.E. LundB. BackesF. Barretina-GinestaP. HaggertyA.F. Rubio-PérezM.J. ShahinM.S. MangiliG. BradleyW.H. BruchimI. SunK. MalinowskaI.A. LiY. GuptaD. MonkB.J. Niraparib in patients with newly diagnosed advanced ovarian cancer.N. Engl. J. Med.2019381252391240210.1056/NEJMoa191096231562799
    [Google Scholar]
  69. DenyaI. MalanS.F. JoubertJ. Indazole derivatives and their therapeutic applications: A patent review (2013-2017).Expert Opin. Ther. Pat.201828644145310.1080/13543776.2018.147224029718740
    [Google Scholar]
  70. Inc., C. C.Deuterated (S)-2-(4-(piperidin-3-yl)phenyl)-2H-indazole-7-carboxamide.US Patent 11384062B22022
  71. MSD Italia SRLAmide substituted indazoles as poly (ADP-ribose) polymerase (PARP) inhibitors.EP Patent 2805945B12019
  72. Merck Patent GmbHOxoquinazolinyl-Butanamide Derivatives.US Patent 9901577B22018
  73. Merck Patent GmbH1, 4-dicarbonyl-piperidyl derivatives.US Patent 10570116B22020
  74. University of PittsburghMitochondrially targeted PARP inhibitor, and uses thereof.US Patent 20200038518A12020
  75. Prolynx LLCConjugated inhibitors of dna damage response.US Patent 20220331437A12022
  76. Mitopower LLCNicotinyl riboside compounds and their uses.US Patent 20220062314A12023
  77. FischerE.G. Nuclear morphology and the biology of cancer cells.Acta Cytol.202064651151910.1159/00050878032570234
    [Google Scholar]
  78. PeyraudF. ItalianoA. Combined PARP inhibition and immune checkpoint therapy in solid tumors.Cancers (Basel)2020126150210.3390/cancers1206150232526888
    [Google Scholar]
  79. DréanA. LordC.J. AshworthA. PARP inhibitor combination therapy.Crit. Rev. Oncol. Hematol.2016108738510.1016/j.critrevonc.2016.10.01027931843
    [Google Scholar]
  80. SunW. SandersonP.E. ZhengW. Drug combination therapy increases successful drug repositioning.Drug Discov. Today20162171189119510.1016/j.drudis.2016.05.01527240777
    [Google Scholar]
  81. HockingsH. MillerR.E. The role of PARP inhibitor combination therapy in ovarian cancer.Ther. Adv. Med. Oncol.20231510.1177/1758835923117318337215065
    [Google Scholar]
  82. Drug interactions are risky for older adults. Seven common drug combinations could cause serious side effects, a new study shows.Duke Med. Health News20091544519639660
    [Google Scholar]
  83. RiechelmannR.P. Del GiglioA. Drug interactions in oncology: How common are they?Ann. Oncol.200920121907191210.1093/annonc/mdp36919713244
    [Google Scholar]
  84. PourkavoosN. Unique risks, benefits, and challenges of developing drug-drug combination products in a pharmaceutical industrial setting.Combination Products in Therapy201221210.1007/s13556‑012‑0002‑2
    [Google Scholar]
  85. JinG. WongS.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines.Drug Discov. Today201419563764410.1016/j.drudis.2013.11.00524239728
    [Google Scholar]
  86. DukeJ. D. HanX. WangZ. Literature based drug interaction prediction with clinical assessment using electronic medical records: Novel myopathy associated drug interactions.PLoS Comput Biol.201288e100261410.1371/journal.pcbi.1002614
    [Google Scholar]
  87. LuY. ShenD. PietschM. NagarC. FadliZ. HuangH. TuY.C. ChengF. A novel algorithm for analyzing drug-drug interactions from MEDLINE literature.Sci. Rep.2015511735710.1038/srep1735726612138
    [Google Scholar]
  88. GoelN. FoxallM.E. ScaliseC.B. WallJ.A. ArendR.C. Strategies in overcoming homologous recombination proficiency and PARP inhibitor resistance.Mol. Cancer Ther.20212091542154910.1158/1535‑7163.MCT‑20‑099234172532
    [Google Scholar]
  89. PoirierG.G. de MurciaG. Jongstra-BilenJ. NiedergangC. MandelP. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure.Proc. Natl. Acad. Sci. USA198279113423342710.1073/pnas.79.11.34236808510
    [Google Scholar]
  90. GottschalkA.J. TiminszkyG. KongS.E. JinJ. CaiY. SwansonS.K. WashburnM.P. FlorensL. LadurnerA.G. ConawayJ.W. ConawayR.C. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.Proc. Natl. Acad. Sci. USA200910633137701377410.1073/pnas.090692010619666485
    [Google Scholar]
  91. MullinsD.W.Jr GiriC.P. SmulsonM. Poly(adenosine diphosphate-ribose) polymerase: The distribution of a chromosome-associated enzyme within the chromatin substructure.Biochemistry197716350651310.1021/bi00622a026189803
    [Google Scholar]
  92. MeisterernstM. StelzerG. RoederR.G. Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro.Proc. Natl. Acad. Sci. USA19979462261226510.1073/pnas.94.6.22619122182
    [Google Scholar]
  93. WeaverA.N. YangE.S. Beyond DNA repair: Additional functions of PARP-1 in cancer.Front. Oncol.2013329010.3389/fonc.2013.0029024350055
    [Google Scholar]
  94. LeeE.K. KonstantinopoulosP.A. PARP inhibition and immune modulation: Scientific rationale and perspectives for the treatment of gynecologic cancers.Ther. Adv. Med. Oncol.20201210.1177/175883592094411632782491
    [Google Scholar]
  95. HerronJ. SmithN. StanberyL. AaronP. ManningL. BognarE. WallravenG. HorvathS. NemunaitisJ. Vigil: Personalized immunotherapy generating systemic cytotoxic T cell response. Cancer. Cancer Science & Research2020341410.33425/2639‑8478.1055
    [Google Scholar]
  96. CiprianiG. RapizziE. VannacciA. RizzutoR. MoroniF. ChiarugiA. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction.J. Biol. Chem.200528017172271723410.1074/jbc.M41452620015750180
    [Google Scholar]
  97. MoralesJ. LiL. FattahF.J. DongY. BeyE.A. PatelM. GaoJ. BoothmanD.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases.Crit. Rev. Eukaryot. Gene Expr.2014241152810.1615/CritRevEukaryotGeneExpr.201300687524579667
    [Google Scholar]
  98. HoppeM.M. SundarR. TanD.S.P. JeyasekharanA.D. Biomarkers for homologous recombination deficiency in cancer.J. Natl. Cancer Inst.2018110770471310.1093/jnci/djy08529788099
    [Google Scholar]
  99. O’KaneG.M. JangG.H. DenrocheR. ZhangA. PicardoS.L. GrantR.C. AllenM. WangY. DoddA. RamotarS. HutchinsonS. TehfeM. BiagiJ.J. LamB. WilsonJ. NottaF. FischerS. ZogopoulosG. GallingerS. KnoxJ.J. Outcomes and Immunogenicity of pancreatic cancer stratified by the HRDetect score.J. Clin. Oncol.20203815_suppl463010.1200/JCO.2020.38.15_suppl.4630
    [Google Scholar]
  100. ZhongY. MengY. XuX. ZhaoL. LiZ. YouQ. BianJ. Design, synthesis and evaluation of phthalazinone thiohydantoin-based derivative as potent PARP-1 inhibitors.Bioorg. Chem.20199110318110.1016/j.bioorg.2019.10318131404795
    [Google Scholar]
/content/journals/pra/10.2174/0115748928315021240603073902
Loading
/content/journals/pra/10.2174/0115748928315021240603073902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): combination therapy; DNA repair; hemotherapy; PARP; PARP inhibitors; PARP patent
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test