Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Platinum-based compounds are commonly used as an initial treatment for colorectal cancer (CRC). However, the development of drug resistance in patients with CRC necessitates the administration of high drug concentrations during clinical treatment, thereby augmenting the toxicity of platinum-based compounds and increasing the mortality rate. STAG2 is a significantly associated drug-resistance gene in many cancers, but it has not been studied in colorectal cancer. Therefore, the present study aimed to investigate the role and drug sensitivity of the cisplatin-resistant gene STAG2.

Methods

The effects of STAG2 on drug resistance and survival rates of patients with CRC were examined using the Genomics of Drug Sensitivity in Cancer (GDSC) and Kaplan-Meier (KM) plotter databases. Subsequently, a sh-STAG2-HT-29 cell line was generated using a knockdown test of STAG2, and the half-maximal inhibitory concentration (IC50) of the two cell lines was determined using a cell viability test. We then used various techniques, including the Cell Counting Kit-8 (CCK-8), plate cloning, 5-ethynyl-2’-deoxyuridine (EdU) fluorescence staining, flow cytometry for cell cycle detection, the scar assay, the Transwell invasion assay, and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) fluorescence staining for apoptosis detection, to investigate the functionality of the four subgroups of cancer cell lines. Additionally, Western blotting (WB) was used to identify the potential pathways associated with the observed functional alterations. Finally, the phenotype, tumor weight, mouse weight, tumor volume, and tumor tissue structure of the developed tumors were assessed using the subcutaneous tumor formation method.

Results

Database analysis indicated that STAG2 plays a role in facilitating drug resistance among individuals with CRC. Furthermore, mutations in this gene lead to increased sensitivity to cisplatin, and its overexpression was associated with an unfavorable prognosis. Following the successful development of STAG2 knockdown cells, differences in IC50 concentrations were observed between HT-29 and sh-STAG2-HT-29 cells. A treatment concentration of 10 μM cisplatin was selected, and the proliferation, migration, and invasion capabilities of cancer cells decreased after STAG2 knockdown. Additionally, the sensitivity of the cells to cisplatin therapy was increased, which was potentially mediated by the epithelial-mesenchymal transition (EMT) pathway. In mice, the tumorigenic potential of HT-29 cells was reduced by STAG2 knockdown, accompanied by a decrease in resistance to cisplatin therapy.

Conclusion

STAG2 acts as a proto-oncogene in CRC, and its resistance to cisplatin therapy is more prominent. This study confirmed the role of STAG2 in CRC and provided a theoretical basis for the further development of STAG2 as an auxiliary criterion for determining dosage when patients are treated with platinum drugs.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928305100240613064754
2024-07-03
2025-12-05
Loading full text...

Full text loading...

References

  1. BrennerH. KloorM. PoxC.P. Colorectal cancer.Lancet201438399271490150210.1016/S0140‑6736(13)61649‑924225001
    [Google Scholar]
  2. MármolI. Sánchez-de-DiegoC. Pradilla DiesteA. CerradaE. Rodriguez YoldiM. Colorectal Carcinoma: A general overview and future perspectives in colorectal cancer.Int. J. Mol. Sci.201718119710.3390/ijms1801019728106826
    [Google Scholar]
  3. CiomborK.K. WuC. GoldbergR.M. Recent therapeutic advances in the treatment of colorectal cancer.Annu. Rev. Med.2015661839510.1146/annurev‑med‑051513‑10253925341011
    [Google Scholar]
  4. MeyersB.M. CosbyR. QuereshyF. JonkerD. Adjuvant chemotherapy for stage II and III colon cancer following complete resection: A cancer care ontario systematic review.Clin. Oncol.201729745946510.1016/j.clon.2017.03.00128341242
    [Google Scholar]
  5. FatmaH. SiddiqueH.R. Research and patents status of selected phytochemicals against cancer: How close and how far?Recent Patents Anticancer Drug Discov.202318442844710.2174/157489281866622110711364836345243
    [Google Scholar]
  6. KriplaniP. GuarveK. Nanotechnology a boon for colorectal cancer treatment.Recent Patents Anticancer Drug Discov.202318337939610.2174/157489281766622101109461936221866
    [Google Scholar]
  7. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.10744731756363
    [Google Scholar]
  8. McQuadeR.M. StojanovskaV. BornsteinJ.C. NurgaliK. Colorectal cancer chemotherapy: The evolution of treatment and new approaches.Curr. Med. Chem.201724151537155728079003
    [Google Scholar]
  9. KryczkaJ. KryczkaJ. Czarnecka-ChrebelskaK.H. Brzeziańska-LasotaE. Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy.Int. J. Mol. Sci.20212216888510.3390/ijms2216888534445588
    [Google Scholar]
  10. ChinV. NagrialA. SjoquistK. O’ConnorC.A. ChantrillL. BiankinA.V. ScholtenR.J.P.M. YipD. Chemotherapy and radiotherapy for advanced pancreatic cancer.Cochrane Libr.201820183CD01104410.1002/14651858.CD011044.pub229557103
    [Google Scholar]
  11. HashemiM. AraniH.Z. OroueiS. FallahS. GhorbaniA. KhaledabadiM. KakavandA. TavakolpournegariA. SaebfarH. HeidariH. SalimimoghadamS. EntezariM. TaheriazamA. HushmandiK. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions.Biomed. Pharmacother.202215511377410.1016/j.biopha.2022.11377436271556
    [Google Scholar]
  12. BairdR.D. KayeS.B. Drug resistance reversal—are we getting closer?Eur. J. Cancer200339172450246110.1016/S0959‑8049(03)00619‑114602131
    [Google Scholar]
  13. XuJ.F. WanY. TangF. ChenL. YangY. XiaJ. WuJ.J. AoH. PengC. Emerging significance of ginsenosides as potentially reversal agents of chemoresistance in cancer therapy.Front. Pharmacol.20211272047410.3389/fphar.2021.72047434975466
    [Google Scholar]
  14. IsabA A AltafM EhsanM A Method for administering cisplatin and a thiocyanate complex to treat ovarian cancer.PATENT US10538544B12020
  15. VivasM. PabloE. J. M.R. GonzalezA. K. Nanoliposomal c-MYC-siRNA inhibits in vivo tumor growth of cisplatin-resistant ovarian cancer.Patent US11090266B22021
  16. GouShaohua Anti-tumor compound capable of overcoming cisplatin resistance, preparation therefor, and application thereof.Patent WO2021190076A12021
  17. WangT. DongW. WangF. LiuQ. YangY. GuoP. LiX. WeiB. Downregulation of miRNA-14669 reverses vincristine resistance in colorectal cancer cells through PI3K/AKT signaling pathway.Recent Patents Anticancer Drug Discov.202217217818610.2174/157489281666621080615422534365931
    [Google Scholar]
  18. zhangQ. wangW. gaoQ. β-TRCP-mediated AEBP2 ubiquitination and destruction controls cisplatin resistance in ovarian cancer.Biochem. Biophys. Res. Commun.2020523127427910.1016/j.bbrc.2019.12.05031864706
    [Google Scholar]
  19. LiuJ. FanH. LiangX. ChenY. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy.Biomed. Pharmacother.202316911589710.1016/j.biopha.2023.11589737981459
    [Google Scholar]
  20. LosadaA. Cohesin in cancer: chromosome segregation and beyond.Nat. Rev. Cancer201414638939310.1038/nrc374324854081
    [Google Scholar]
  21. WaldmanT. Emerging themes in cohesin cancer biology.Nat. Rev. Cancer202020950451510.1038/s41568‑020‑0270‑132514055
    [Google Scholar]
  22. NakajimaM. KumadaK. HatakeyamaK. NodaT. PetersJ.M. HirotaT. The complete removal of cohesin from chromosome arms depends on separase.J. Cell Sci.2007120234188419610.1242/jcs.01152818003702
    [Google Scholar]
  23. RemeseiroS. CuadradoA. LosadaA. Cohesin in development and disease.Development2013140183715371810.1242/dev.09060523981654
    [Google Scholar]
  24. ChuZ. GuL. HuY. ZhangX. LiM. ChenJ. TengD. HuangM. ShenC.H. CaiL. YoshidaT. QiY. NiuZ. FengA. GengS. FrederickD.T. SpechtE. PirisA. SullivanR.J. FlahertyK.T. BolandG.M. GeorgopoulosK. LiuD. ShiY. ZhengB. STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming.Nat. Commun.2022131185910.1038/s41467‑022‑29541‑935388001
    [Google Scholar]
  25. LiX. LiuY. LiuJ. QiangW. MaJ. XieJ. ChenP. WangY. HouP. JiM. STAG2 inactivation reprograms glutamine metabolism of BRAF-mutant thyroid cancer cells.Cell Death Dis.202314745410.1038/s41419‑023‑05981‑z37479689
    [Google Scholar]
  26. SolomonD.A. KimT. Diaz-MartinezL.A. FairJ. ElkahlounA.G. HarrisB.T. ToretskyJ.A. RosenbergS.A. ShuklaN. LadanyiM. SamuelsY. JamesC.D. YuH. KimJ.S. WaldmanT. Mutational inactivation of STAG2 causes aneuploidy in human cancer.Science201133360451039104310.1126/science.120361921852505
    [Google Scholar]
  27. Romero-PérezL. SurdezD. BrunetE. DelattreO. GrünewaldT.G.P. STAG mutations in cancer.Trends Cancer20195850652010.1016/j.trecan.2019.07.00131421907
    [Google Scholar]
  28. CuadradoA. LosadaA. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture.Curr. Opin. Genet. Dev.20206191610.1016/j.gde.2020.02.02432294612
    [Google Scholar]
  29. AdaneB. AlexeG. SeongB.K.A. LuD. HwangE.E. HniszD. LareauC.A. RossL. LinS. Dela CruzF.S. RichardsonM. WeintraubA.S. WangS. IniguezA.B. DhariaN.V. ConwayA.S. RobichaudA.L. TanenbaumB. Krill-BurgerJ.M. VazquezF. SchenoneM. BermanJ.N. KungA.L. CarrS.A. AryeeM.J. YoungR.A. CromptonB.D. StegmaierK. STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma.Cancer Cell2021396827844.e1010.1016/j.ccell.2021.05.00734129824
    [Google Scholar]
  30. SurdezD. ZaidiS. GrossetêteS. Laud-DuvalK. FerreA.S. MousL. Vourc’hT. TirodeF. PierronG. RaynalV. BaulandeS. BrunetE. HillV. DelattreO. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma.Cancer Cell2021396810826.e910.1016/j.ccell.2021.04.00133930311
    [Google Scholar]
  31. TaylorC.F. PlattF.M. HurstC.D. ThygesenH.H. KnowlesM.A. Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes.Hum. Mol. Genet.20142381964197410.1093/hmg/ddt58924270882
    [Google Scholar]
  32. SolomonD.A. KimJ.S. BondarukJ. ShariatS.F. WangZ.F. ElkahlounA.G. OzawaT. GerardJ. ZhuangD. ZhangS. NavaiN. Siefker-RadtkeA. PhillipsJ.J. RobinsonB.D. RubinM.A. VolkmerB. HautmannR. KüferR. HogendoornP.C.W. NettoG. TheodorescuD. JamesC.D. CzerniakB. MiettinenM. WaldmanT. Frequent truncating mutations of STAG2 in bladder cancer.Nat. Genet.201345121428143010.1038/ng.280024121789
    [Google Scholar]
  33. Balbás-MartínezC. SagreraA. Carrillo-de-Santa-PauE. EarlJ. MárquezM. VazquezM. LapiE. Castro-GinerF. BeltranS. BayésM. CarratoA. CigudosaJ.C. DomínguezO. GutM. HerranzJ. JuanpereN. KogevinasM. LangaX. López-KnowlesE. LorenteJ.A. LloretaJ. PisanoD.G. RichartL. RicoD. SalgadoR.N. TardónA. ChanockS. HeathS. ValenciaA. LosadaA. GutI. MalatsN. RealF.X. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy.Nat. Genet.201345121464146910.1038/ng.279924121791
    [Google Scholar]
  34. AthansS.R. KrishnanN. RamakrishnanS. Cortes GomezE. Lage-VickersS. RakM. KazmierczakZ.I. OhmJ.E. AttwoodK. WangJ. WoloszynskaA. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer.Canc.Res. Commun.20222101129114310.1158/2767‑9764.CRC‑22‑015536275363
    [Google Scholar]
  35. GuoG. SunX. ChenC. WuS. HuangP. LiZ. DeanM. HuangY. JiaW. ZhouQ. TangA. YangZ. LiX. SongP. ZhaoX. YeR. ZhangS. LinZ. QiM. WanS. XieL. FanF. NickersonM.L. ZouX. HuX. XingL. LvZ. MeiH. GaoS. LiangC. GaoZ. LuJ. YuY. LiuC. LiL. FangX. JiangZ. YangJ. LiC. ZhaoX. ChenJ. ZhangF. LaiY. LinZ. ZhouF. ChenH. ChanH.C. TsangS. TheodorescuD. LiY. ZhangX. WangJ. YangH. GuiY. WangJ. CaiZ. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation.Nat. Genet.201345121459146310.1038/ng.279824121792
    [Google Scholar]
  36. MondalG. SteversM. GoodeB. AshworthA. SolomonD.A. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers.Nat. Commun.2019101168610.1038/s41467‑019‑09659‑z30975996
    [Google Scholar]
  37. KongX. BallA.R.Jr PhamH.X. ZengW. ChenH.Y. SchmiesingJ.A. KimJ.S. BernsM. YokomoriK. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair.Mol. Cell. Biol.201434468569810.1128/MCB.01503‑1324324008
    [Google Scholar]
  38. RonconiL. FotopoulouE. TitilasI. Metallodrugs as anticancer chemotherapeutics and diagnostic agents: A critical patent review (2010-2020).Recent Patents Anticancer Drug Discov.2022171425410.2174/157489281666621090710114634493191
    [Google Scholar]
  39. DasariS. Bernard TchounwouP. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.02525058905
    [Google Scholar]
  40. CohenA. IoannidisK. EhrlichA. RegenbaumS. CohenM. AyyashM. TikvaS.S. NahmiasY. Mechanism and reversal of drug-induced nephrotoxicity on a chip.Sci. Transl. Med.202113582eabd629910.1126/scitranslmed.abd629933627489
    [Google Scholar]
  41. AlbanyC. DockterT. WolfeE. Le-RademacherJ. Wagner-JohnstonN. EinhornL. LafkyJ.M. SmithE. PachmanD. StaffN. MaC. LoprinziC.L. CostelloB.A. Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724).Support. Care Cancer202129283384010.1007/s00520‑020‑05543‑532500206
    [Google Scholar]
  42. HussainY. IslamL. KhanH. FilosaR. AschnerM. JavedS. Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects.Phytother. Res.202135126514652910.1002/ptr.722534347326
    [Google Scholar]
  43. NieZ. GaoW. ZhangY. HouY. LiuJ. LiZ. XueW. YeX. JinA. STAG2 loss-of-function mutation induces PD-L1 expression in U2OS cells.Ann. Transl. Med.20197712710.21037/atm.2019.02.2331157248
    [Google Scholar]
  44. AthansS.R. KrishnanN. RamakrishnanS. Cortes GomezE. Lage-VickersS. RakM. KazmierczakZ.I. OhmJ.E. AttwoodK. WangJ. WoloszynskaA. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer.Cancer Research Communications20222101129114310.1158/2767‑9764.CRC‑22‑015536275363
    [Google Scholar]
  45. ShenC.H. KimS.H. TrousilS. FrederickD.T. PirisA. YuanP. CaiL. GuL. LiM. LeeJ.H. MitraD. FisherD.E. SullivanR.J. FlahertyK.T. ZhengB. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma.Nat. Med.20162291056106110.1038/nm.415527500726
    [Google Scholar]
  46. GanW. WangW. LiT. ZhangR. HouY. LvS. ZengZ. YanZ. YangM. Prognostic values and underlying regulatory network of cohesin subunits in esophageal carcinoma.J. Cancer20221351588160210.7150/jca.6694935371307
    [Google Scholar]
  47. MeisenbergC. PinderS.I. HopkinsS.R. WoollerS.K. Benstead-HumeG. PearlF.M.G. JeggoP.A. DownsJ.A. Repression of transcription at dna breaks requires cohesin throughout interphase and prevents genome instability.Mol. Cell2019732212223.e710.1016/j.molcel.2018.11.00130554942
    [Google Scholar]
  48. CountrymanP. FanY. GorthiA. PanH. StricklandE. KaurP. WangX. LinJ. LeiX. WhiteC. YouC. WirthN. TessmerI. PiehlerJ. RiehnR. BishopA.J.R. TaoY.J. WangH. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates.J. Biol. Chem.201829331054106910.1074/jbc.M117.80640629175904
    [Google Scholar]
/content/journals/pra/10.2174/0115748928305100240613064754
Loading
/content/journals/pra/10.2174/0115748928305100240613064754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test