Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Globally, colorectal cancer (CRC) is known as the primary cause of mortality. Recent studies have reported that long non-coding RNAs (lncRNAs) are essential in assessing the survival of CRC patients. However, the function of the novel lncRNA MLLT4-AS1 in CRC is still unknown.

Objective

This study aimed to identify the expression and the clinical significance of lncRNA MLLT4-AS1 in CRC.

Methods

The level of MLLT4-AS1 in CRC was evaluated the TCGA database. The relative level of MLLT4-AS1 in CRC cell lines was assessed by RT qPCR analysis. In cell culture, HT29 cells were transfected with MLLT4-AS1 siRNA, negative control, overexpressed MLLT4-AS1, or PTEN plasmids. Flow cytometry, CCK 8 assay, wound healing analysis, and transwell assay were used to quantify apoptosis, cell propagation, migration, and invasion, respectively. A nude mouse xenograft model was developed to evaluate the impact of MLLT4-AS1 plasmids on tumor growth. RNA pull-down analysis was used to search for possible targets of MLLT4-AS1.

Results

MLLT4-AS1 was substantially increased in CRC cell lines and patients. It inhibited CRC cell apoptosis and accelerated their proliferative, migration, and invasive properties. In analysis, MLLT4-AS1 also enhanced the metastasis and proliferation of CRC cells. It was found that PTEN was substantially enriched by biotin-labeled PTEN, as identified an RNA pull-down analysis. The expression of phosphatase and PTEN was suppressed by MLLT4-AS1 by ubiquitination proteasome-dependent RNA degradation. Thus, PTEN is considered a potential target of MLLT4-AS1. By targeting PTEN, MLLT4-AS1 intensified the biological behavior of malignant CRC.

Conclusion

The study concluded that the MLLT4-AS1/PTEN axis may represent an innovative therapeutic intervention for CRC patients.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928299796240523075219
2024-06-03
2025-12-22
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. SungH FerlayJ SiegelR L Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin202071320924910.3322/caac.21660
    [Google Scholar]
  4. ShinA.E. GiancottiF.G. RustgiA.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics.Trends Pharmacol. Sci.202344422223610.1016/j.tips.2023.01.00336828759
    [Google Scholar]
  5. WuC. SunG. WangF. ChenJ. ZhanF. LianX. WangJ. WengF. LiB. TangW. QuanJ. XiangD. DYRK2 downregulation in colorectal cancer leads to epithelial–mesenchymal transition induction and chemoresistance.Sci. Rep.20221212249610.1038/s41598‑022‑25053‑036577753
    [Google Scholar]
  6. KimC.W. ChonH.J. KimC. Combination immunotherapies to overcome intrinsic resistance to checkpoint blockade in microsatellite stable colorectal cancer.Cancers20211319490610.3390/cancers1319490634638390
    [Google Scholar]
  7. YangY. YanX. LiX. MaY. GoelA. Long non-coding RNAs in colorectal cancer: Novel oncogenic mechanisms and promising clinical applications.Cancer Lett.2021504678010.1016/j.canlet.2021.01.00933577977
    [Google Scholar]
  8. ArraianoC.M. Regulatory noncoding RNAs: Functions and applications in health and disease.FEBS J.2021288226308630910.1111/febs.1602734153158
    [Google Scholar]
  9. WangL. ChoK.B. LiY. TaoG. XieZ. GuoB. Long Noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer.Int. J. Mol. Sci.20192022575810.3390/ijms2022575831744051
    [Google Scholar]
  10. ZhouB. YangH. YangC. BaoY. YangS. LiuJ. XiaoY. Translation of noncoding RNAs and cancer.Cancer Lett.2021497899910.1016/j.canlet.2020.10.00233038492
    [Google Scholar]
  11. SongP. YangF. JinH. WangX. The regulation of protein translation and its implications for cancer.Signal Transduct. Target. Ther.2021616810.1038/s41392‑020‑00444‑933597534
    [Google Scholar]
  12. ChenM. ZhangC. LiuW. DuX. LiuX. XingB. Long noncoding RNA LINC01234 promotes hepatocellular carcinoma progression through orchestrating aspartate metabolic reprogramming.Mol. Ther.20223062354236910.1016/j.ymthe.2022.02.02035192933
    [Google Scholar]
  13. AshrafizadehM. RabieeN. KumarA.P. SethiG. ZarrabiA. WangY. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression.Drug Discov. Today20222782181219810.1016/j.drudis.2022.05.01235589014
    [Google Scholar]
  14. HashemiM. MoosaviM.S. AbedH.M. DehghaniM. AalipourM. HeydariE.A. BehroozaghdamM. EntezariM. SalimimoghadamS. GunduzE.S. TaheriazamA. MirzaeiS. SamarghandianS. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy.Pharmacol. Res.202218410641810.1016/j.phrs.2022.10641836038043
    [Google Scholar]
  15. Al-ShehriA. BakhashabS. Oncogenic long noncoding RNAs in prostate cancer, osteosarcoma, and metastasis.Biomedicines202311263310.3390/biomedicines1102063336831169
    [Google Scholar]
  16. XuB. WeiY. LiuF. LiL. ZhouS. PengY. LiB. Long noncoding RNA CERS6-AS1 modulates glucose metabolism and tumor progression in hepatocellular carcinoma by promoting the MDM2/p53 signaling pathway.Cell Death Discov.20228134810.1038/s41420‑022‑01150‑x35927226
    [Google Scholar]
  17. LiaoW. DuJ. WangZ. FengQ. LiaoM. LiuH. YuanK. ZengY. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma.Int. J. Cancer2022151333734710.1002/ijc.3404035460073
    [Google Scholar]
  18. TangJ. YanT. BaoY. ShenC. YuC. ZhuX. TianX. GuoF. LiangQ. LiuQ. ZhongM. ChenJ. GeZ. LiX. ChenX. CuiY. ChenY. ZouW. ChenH. HongJ. FangJ.Y. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc.Nat. Commun.2019101349910.1038/s41467‑019‑11447‑831375671
    [Google Scholar]
  19. HashemiM. AraniH.Z. OroueiS. FallahS. GhorbaniA. KhaledabadiM. KakavandA. TavakolpournegariA. SaebfarH. HeidariH. SalimimoghadamS. EntezariM. TaheriazamA. HushmandiK. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions.Biomed. Pharmacother.202215511377410.1016/j.biopha.2022.11377436271556
    [Google Scholar]
  20. BureI.V. NemtsovaM.V. ZaletaevD.V. Roles of E-cadherin and Noncoding RNAs in the Epithelial–mesenchymal Transition and Progression in Gastric Cancer.Int. J. Mol. Sci.20192012287010.3390/ijms2012287031212809
    [Google Scholar]
  21. VishnubalajiR. ShaathH. ElangoR. AlajezN.M. Noncoding RNAs as potential mediators of resistance to cancer immunotherapy.Semin. Cancer Biol.202065657910.1016/j.semcancer.2019.11.00631733291
    [Google Scholar]
  22. ZhangL. XuX. SuX. Noncoding RNAs in cancer immunity: Functions, regulatory mechanisms, and clinical application.Mol. Cancer20201914810.1186/s12943‑020‑01154‑032122338
    [Google Scholar]
  23. WangY. LuG. XueX. XieM. WangZ. MaZ. FengY. ShaoC. DuanH. PanM. DingP. LiX. HanJ. YanX. Characterization and validation of a ferroptosis-related LncRNA signature as a novel prognostic model for lung adenocarcinoma in tumor microenvironment.Front. Immunol.20221390375810.3389/fimmu.2022.90375836016939
    [Google Scholar]
  24. LimL.J. WongS.Y.S. HuangF. LimS. ChongS.S. OoiL.L. KonO.L. LeeC.G. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma.Cancer Res.201979205131513910.1158/0008‑5472.CAN‑19‑025531337653
    [Google Scholar]
  25. WangB. TanB. Noncoding RNAs: Regulating the crosstalk between tumor-associated macrophages and gastrointestinal cancer.Biomed. Pharmacother.202215311337010.1016/j.biopha.2022.11337035792392
    [Google Scholar]
  26. WangQ. ChenC. XuX. ShuC. CaoC. WangZ. FuY. XuL. XuK. XuJ. XiaA. WangB. XuG. ZouX. SuR. KangW. XueY. MoR. SunB. WangS. APAF1-binding long noncoding rna promotes tumor growth and multidrug resistance in gastric cancer by blocking apoptosome assembly.Adv. Sci.2022928220188910.1002/advs.20220188935975461
    [Google Scholar]
  27. WeiL. SunJ. ZhangN. ZhengY. WangX. LvL. LiuJ. XuY. ShenY. YangM. Noncoding RNAs in gastric cancer: Implications for drug resistance.Mol. Cancer20201916210.1186/s12943‑020‑01185‑732192494
    [Google Scholar]
  28. WeiL. WangX. LvL. LiuJ. XingH. SongY. XieM. LeiT. ZhangN. YangM. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma.Mol. Cancer201918114710.1186/s12943‑019‑1086‑z31651347
    [Google Scholar]
  29. LaiY. XuP. LiuJ. LiQ. RenD. ZhangJ. WangJ. Decreased expression of the long non-coding RNA MLLT4 antisense RNA 1 is a potential biomarker and an indicator of a poor prognosis for gastric cancer.Oncol. Lett.20171432629263410.3892/ol.2017.647828927028
    [Google Scholar]
  30. WuS. GuoB. ZhangL. ZhuX. ZhaoP. DengJ. ZhengJ. LiF. WangY. ZhangS. ZhangZ. LuJ. ZhouY. A micropeptide XBP1SBM encoded by lncRNA promotes angiogenesis and metastasis of TNBC via XBP1s pathway.Oncogene202241152163217210.1038/s41388‑022‑02229‑635197570
    [Google Scholar]
  31. YangX. ZhangS. HeC. XueP. ZhangL. HeZ. ZangL. FengB. SunJ. ZhengM. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST.Mol. Cancer20201914610.1186/s12943‑020‑1146‑432111213
    [Google Scholar]
  32. WuC. LiuX. LiB. SunG. PengC. XiangD. miR-451 suppresses the malignant characteristics of colorectal cancer via targeting SAMD4B.Mol. Med. Rep.202124255710.3892/mmr.2021.1219634109425
    [Google Scholar]
  33. WangY. XuH. JiaoH. WangS. XiaoZ. ZhaoY. BiJ. WeiW. LiuS. QiuJ. LiT. LiangL. YeY. LiaoW. DingY. STX2 promotes colorectal cancer metastasis through a positive feedback loop that activates the NF-κB pathway.Cell Death Dis.20189666410.1038/s41419‑018‑0675‑x29855462
    [Google Scholar]
  34. Pillai-KastooriL. Schutz-GeschwenderA.R. HarfordJ.A. A systematic approach to quantitative Western blot analysis.Anal. Biochem.202059311360810.1016/j.ab.2020.11360832007473
    [Google Scholar]
  35. ZhuD. FangC. HeW. WuC. LiX. WuJ. MicroRNA-181a inhibits activated b-cell-like diffuse large b-cell lymphoma progression by repressing CARD11.J. Oncol.201920191910.1155/2019/983295631662757
    [Google Scholar]
  36. LiangL. HuanL. WangJ. WuY. HuangS. HeX. LncRNA RP11-295G20.2 regulates hepatocellular carcinoma cell growth and autophagy by targeting PTEN to lysosomal degradation.Cell Discov.20217111810.1038/s41421‑021‑00339‑134903728
    [Google Scholar]
  37. HuY. JinY. WuX. YangY. LiY. LiH. XiangS. SongX. JiangL. ZhangY. HuangW. ChenS. LiuF. ChenC. ZhuQ. ChenH. ShaoR. LiuY. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis.Mol. Cancer201918116710.1186/s12943‑019‑1097‑931752906
    [Google Scholar]
  38. ZhangL.H. LiL.H. ZhangP.F. CaiY.F. HuaD. LINC00957 acted as prognostic marker was associated with fluorouracil resistance in human colorectal cancer.Front. Oncol.2019977610.3389/fonc.2019.0077631497531
    [Google Scholar]
  39. ZhaoP. ZhenH. ZhaoH. HuangY. CaoB. Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets.J. Transl. Med.202321117610.1186/s12967‑023‑04029‑236879254
    [Google Scholar]
  40. WuY. ZhangZ. KouZ. Pentamidine inhibits ovarian cancer cell proliferation and migration by maintaining stability of PTEN in vitro.Drug Des. Devel. Ther.2021152857286810.2147/DDDT.S31118734234416
    [Google Scholar]
  41. JiangZ. ZhouQ. GeC. YangJ. LiH. ChenT. XieH. CuiY. ShaoM. LiJ. TianH. Rpn10 promotes tumor progression by regulating hypoxia-inducible factor 1 alpha through the PTEN/Akt signaling pathway in hepatocellular carcinoma.Cancer Lett.201944711110.1016/j.canlet.2019.01.02030673593
    [Google Scholar]
  42. WangJ. RenD. SunY. XuC. WangC. ChengR. WangL. JiaG. RenJ. MaJ. TuY. JiH. Inhibition of PLK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway.J. Cell. Mol. Med.20202473931394710.1111/jcmm.1499632126150
    [Google Scholar]
  43. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.10744731756363
    [Google Scholar]
  44. van SteinR.M. AalbersA.G.J. SonkeG.S. van DrielW.J. Hyperthermic intraperitoneal chemotherapy for ovarian and colorectal cancer.JAMA Oncol.2021781231123810.1001/jamaoncol.2021.058033956063
    [Google Scholar]
  45. Álvarez-VarelaA. NovellasdemuntL. BarrigaF.M. Hernando-MomblonaX. Cañellas-SociasA. Cano-CrespoS. SevillanoM. CortinaC. StorkD. MorralC. TuronG. SlebeF. Jiménez-GraciaL. CaratùG. JungP. StassiG. HeynH. TaurielloD.V.F. MateoL. TejparS. SanchoE. Stephan-Otto AttoliniC. BatlleE. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy.Nat. Can.2022391052107010.1038/s43018‑022‑00402‑035773527
    [Google Scholar]
  46. WatanabeJ. MuroK. ShitaraK. YamazakiK. ShiozawaM. OhoriH. TakashimaA. YokotaM. MakiyamaA. AkazawaN. OjimaH. YuasaY. MiwaK. YasuiH. OkiE. SatoT. NaitohT. KomatsuY. KatoT. HiharaM. SoedaJ. MisumiT. YamamotoK. AkagiK. OchiaiA. UetakeH. TsuchiharaK. YoshinoT. Panitumumab vs bevacizumab added to standard first-line chemotherapy and overall survival among patients with RAS wild-type, left-sided metastatic colorectal cancer.JAMA2023329151271128210.1001/jama.2023.442837071094
    [Google Scholar]
  47. DasariA. LonardiS. Garcia-CarboneroR. ElezE. YoshinoT. SobreroA. YaoJ. García-AlfonsoP. KocsisJ. Cubillo GracianA. Sartore-BianchiA. SatohT. RandrianV. TomasekJ. ChongG. PaulsonA.S. MasuishiT. JonesJ. CsősziT. CremoliniC. GhiringhelliF. ShergillA. HochsterH.S. KraussJ. BassamA. DucreuxM. ElmeA. FaugerasL. KasperS. Van CutsemE. ArnoldD. NandaS. YangZ. SchelmanW.R. KaniaM. TaberneroJ. EngC. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study.Lancet202340210395415310.1016/S0140‑6736(23)00772‑937331369
    [Google Scholar]
  48. HeinemannV. von WeikersthalL.F. DeckerT. KianiA. KaiserF. Al-BatranS.E. HeintgesT. LerchenmüllerC. KahlC. SeipeltG. KullmannF. MoehlerM. ScheithauerW. HeldS. Miller-PhillipsL. ModestD.P. JungA. KirchnerT. StintzingS. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial.Br. J. Cancer2021124358759410.1038/s41416‑020‑01140‑933154570
    [Google Scholar]
  49. OsumiH. ShinozakiE. OokiA. WakatsukiT. KamiimabeppuD. SatoT. NakayamaI. OguraM. TakahariD. ChinK. YamaguchiK. Early hypertension and neutropenia are predictors of treatment efficacy in metastatic colorectal cancer patients administered FOLFIRI and vascular endothelial growth factor inhibitors as second-line chemotherapy.Cancer Med.202110261562510.1002/cam4.363833347731
    [Google Scholar]
  50. BenavidesM. Díaz-RubioE. CarratoA. AbadA. GuillénC. Garcia-AlfonsoP. GilS. CanoM.T. SafontM.J. GravalosC. ManzanoJ.L. SánchezA. AlcaideJ. LópezR. MassutíB. SastreJ. MartínezE. EscuderoP. MéndezM. ArandaE. Tumour location and efficacy of first-line EGFR inhibitors in KRAS/RAS wild-type metastatic colorectal cancer: Retrospective analyses of two phase II randomised Spanish TTD trials.ESMO Open201946e00059910.1136/esmoopen‑2019‑00059931803504
    [Google Scholar]
  51. Van CutsemE. TaiebJ. YaegerR. YoshinoT. GrotheyA. MaielloE. ElezE. DekervelJ. RossP. Ruiz-CasadoA. GrahamJ. KatoT. RuffinelliJ.C. AndréT. Carrière RousselE. KlauckI. GrocM. VedovatoJ.C. TaberneroJ. ANCHOR CRC: Results from a single-arm, phase II study of encorafenib plus binimetinib and cetuximab in previously untreated BRAF V600E -mutant metastatic colorectal cancer.J. Clin. Oncol.202341142628263710.1200/JCO.22.0169336763936
    [Google Scholar]
  52. StintzingS. HeinrichK. TougeronD. ModestD.P. SchwanerI. EuckerJ. PihuschR. StauchM. KaiserF. KahlC. KarthausM. MüllerC. BurkartC. Reinacher-SchickA. Kasper-VirchowS. Fischer von WeikersthalL. Krammer-SteinerB. PragerG.W. TaiebJ. HeinemannV. FOLFOXIRI plus cetuximab or bevacizumab as first-line treatment of BRAF V600E -mutant metastatic colorectal cancer: The randomized phase II FIRE-4.5 (AIO KRK0116) Study.J. Clin. Oncol.202341254143415310.1200/JCO.22.0142037352476
    [Google Scholar]
  53. StricklerJ.H. CercekA. SienaS. AndréT. NgK. Van CutsemE. WuC. PaulsonA.S. HubbardJ.M. CovelerA.L. FountzilasC. KardoshA. KasiP.M. LenzH.J. CiomborK.K. ElezE. BajorD.L. CremoliniC. SanchezF. StecherM. FengW. Bekaii-SaabT.S. Van CutsemE. PeetersM. Van den EvndeM. AndréT. BorgC. SarabiM. GhiringhelliF. ChibaudelB. SienaS. CremoliniC. ZampinoM.G. ElezE. KeranenS.R. SalazarR. AlfonsoP. StricklerJ.H. CercekA. NgK. WuC. PaulsonA.S. HubbardJ.M. CovelerA.L. FountzilasC. KardoshA. KasiP.M. LenzH-J. CiomborK.K. BajorD.L. Bekaii-SaabT.S. GbolahanO. BolandP. BergD. SanchezF. GogginsT. SaeedA. BurrisH. BendellJ. OutlawD. TafurI. ShergillA. CatenacciD. GongJ. Garrido-LagunaI. FinleyG. WeinbergB. ShieldsA. PhilipP. TurkA. NguyenA. BraitehF. PatelV. HarwinW. AndersonI. KundraA. ChenC. FordJ. KundrandaM. NguyenD. RatnamS. RichardsD. NallapareddyS. BeeramS. McKenneyS. ShaoS. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): A multicentre, open-label, phase 2 study.Lancet Oncol.202324549650810.1016/S1470‑2045(23)00150‑X37142372
    [Google Scholar]
  54. LiF. LinY. LiR. ShenX. XiangM. XiongG. ZhangK. XiaT. GuoJ. MiaoZ. LiaoY. ZhangX. XieL. Molecular targeted therapy for metastatic colorectal cancer: Current and evolving approaches.Front. Pharmacol.202314116566610.3389/fphar.2023.116566637927605
    [Google Scholar]
  55. FanA. WangB. WangX. NieY. FanD. ZhaoX. LuY. Immunotherapy in colorectal cancer: current achievements and future perspective.Int. J. Biol. Sci.202117143837384910.7150/ijbs.6407734671202
    [Google Scholar]
  56. LeD.T. KimT.W. Van CutsemE. GevaR. JägerD. HaraH. BurgeM. O’NeilB. KavanP. YoshinoT. GuimbaudR. TaniguchiH. ElezE. Al-BatranS.E. BolandP.M. CrocenziT. AtreyaC.E. CuiY. DaiT. MarinelloP. DiazL.A.Jr AndréT. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164.J. Clin. Oncol.2020381111910.1200/JCO.19.0210731725351
    [Google Scholar]
  57. MettuN.B. OuF.S. ZemlaT.J. HalfdanarsonT.R. LenzH.J. BreakstoneR.A. BolandP.M. CryslerO.V. WuC. NixonA.B. BolchE. NiedzwieckiD. ElsingA. HurwitzH.I. FakihM.G. Bekaii-SaabT. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer.JAMA Netw. Open202252e214904010.1001/jamanetworkopen.2021.4904035179586
    [Google Scholar]
  58. ChangL. WangD. HanY. DiaoZ. ChenY. LiJ. ZhangR. External quality assessment for detection of colorectal cancer by Septin9 DNA methylation in clinical laboratories.Clin. Chim. Acta202455211766310.1016/j.cca.2023.11766338008152
    [Google Scholar]
  59. LiY. LiB. JiangR. LiaoL. ZhengC. YuanJ. ZengL. HuK. ZhangY. MeiW. HongZ. XiaoB. KongL. HanK. TangJ. JiangW. PanZ. ZhangS. DingP. A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions.Cancer Med.20231221206262063810.1002/cam4.651137881109
    [Google Scholar]
  60. GaoY. WangJ. ZhouY. ShengS. QianS.Y. HuoX. Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and ferritin as diagnostic markers and factors of clinical parameters for colorectal cancer.Sci. Rep.201881273210.1038/s41598‑018‑21048‑y29426902
    [Google Scholar]
  61. ZhangJ. YangX. WeiL. TanH. ChenJ. LiW. ChanK. SuY. ZhaoL. HuS. ZhongS. XiaoY. LiuH. Improved diagnostic value by combining plasma PON1 level with tumor biomarkers in Colorectal Cancer patients.J. Cancer202011226491649610.7150/jca.4520433046970
    [Google Scholar]
  62. ZhuJ. HaoJ. MaQ. ShiT. WangS. YanJ. ChenR. XuD. JiangY. ZhangJ. LiJ. A novel prognostic model and practical nomogram for predicting the outcomes of colorectal cancer: Based on tumor biomarkers and log odds of positive lymph node scheme.Front. Oncol.20211166104010.3389/fonc.2021.66104033937076
    [Google Scholar]
  63. Łukaszewicz-ZającM. MroczkoB. Circulating biomarkers of colorectal cancer (CRC) their utility in diagnosis and prognosis.J. Clin. Med.20211011239110.3390/jcm1011239134071492
    [Google Scholar]
  64. Łukaszewicz-ZającM. PączekS. MroczkoP. Kulczyńska-PrzybikA. The significance of CXCL1 and CXCL8 as well as their specific receptors in colorectal cancer.Cancer Manag. Res.2020128435844310.2147/CMAR.S26717632982437
    [Google Scholar]
  65. JungJ. HeoY.J. ParkS. High tumor mutational burden predicts favorable response to anti-PD-(L)1 therapy in patients with solid tumor: A real-world pan-tumor analysis.J. Immunother. Cancer2023114e00645410.1136/jitc‑2022‑00645437094985
    [Google Scholar]
  66. GuoG. WangY. ZhouY. QuanQ. ZhangY. WangH. ZhangB. XiaL. Immune cell concentrations among the primary tumor microenvironment in colorectal cancer patients predicted by clinicopathologic characteristics and blood indexes.J. Immunother. Cancer20197117910.1186/s40425‑019‑0656‑331300050
    [Google Scholar]
  67. LiuZ. LiuL. WengS. GuoC. DangQ. XuH. WangL. LuT. ZhangY. SunZ. HanX. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.Nat. Commun.202213181610.1038/s41467‑022‑28421‑635145098
    [Google Scholar]
  68. AndreiP. BattuelloP. GrassoG. RoveraE. TesioN. BardelliA. Integrated approaches for precision oncology in colorectal cancer: The more you know, the better.Semin. Cancer Biol.20228419921310.1016/j.semcancer.2021.04.00733848627
    [Google Scholar]
  69. AhadiA. Functional roles of lncRNAs in the pathogenesis and progression of cancer.Genes Dis.20218442443710.1016/j.gendis.2020.04.00934179307
    [Google Scholar]
  70. ZouH. WuL.X. TanL. ShangF.F. ZhouH.H. Significance of single-nucleotide variants in long intergenic non-protein coding RNAs.Front. Cell Dev. Biol.2020834710.3389/fcell.2020.0034732523949
    [Google Scholar]
  71. AprileM. CostaV. CimminoA. CalinG.A. Emerging role of oncogenic long noncoding RNA as cancer biomarkers.Int. J. Cancer2023152582283410.1002/ijc.3428236082440
    [Google Scholar]
  72. QianY. ShiL. LuoZ. Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy.Front. Med.2020761239310.3389/fmed.2020.61239333330574
    [Google Scholar]
  73. NiW. YaoS. ZhouY. LiuY. HuangP. ZhouA. LiuJ. CheL. LiJ. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3.Mol. Cancer201918114310.1186/s12943‑019‑1079‑y31619268
    [Google Scholar]
  74. ZhouL. JiangJ. HuangZ. JinP. PengL. LuoM. ZhangZ. ChenY. XieN. GaoW. NiceE.C. LiJ.Q. ChenH.N. HuangC. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA.Mol. Cancer202221116810.1186/s12943‑022‑01638‑135986274
    [Google Scholar]
  75. LinX. ZhuangS. ChenX. DuJ. ZhongL. DingJ. WangL. YiJ. HuG. TangG. LuoX. LiuW. YeF. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling.Mol. Ther.202230268870210.1016/j.ymthe.2021.08.01134371180
    [Google Scholar]
  76. GeQ. JiaD. CenD. QiY. ShiC. LiJ. SangL. YangL. HeJ. LinA. ChenS. WangL. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity.J. Clin. Invest.202113122e15291110.1172/JCI15291134591791
    [Google Scholar]
  77. Álvarez-GarciaV. TawilY. WiseH.M. LeslieN.R. Mechanisms of PTEN loss in cancer: It’s all about diversity.Semin. Cancer Biol.201959667910.1016/j.semcancer.2019.02.00130738865
    [Google Scholar]
  78. XieP. PengZ. ChenY. LiH. DuM. TanY. ZhangX. LuZ. CuiC.P. LiuC.H. HeF. ZhangL. Neddylation of PTEN regulates its nuclear import and promotes tumor development.Cell Res.202131329131110.1038/s41422‑020‑00443‑z33299139
    [Google Scholar]
  79. WangJ. XuW. HeY. XiaQ. LiuS. LncRNA MEG3 impacts proliferation, invasion, and migration of ovarian cancer cells through regulating PTEN.Inflamm. Res.20186711-1292793610.1007/s00011‑018‑1186‑z30310931
    [Google Scholar]
  80. GongZ. ZhangY. YangY. YangY. ZhangJ. WangY. ZhaoL. YuN. WuZ. GuoW. LncRNA LINC01094 promotes cells proliferation and metastasis through the PTEN/AKT pathway by targeting AZGP1 in gastric cancer.Cancers2023154126110.3390/cancers1504126136831602
    [Google Scholar]
/content/journals/pra/10.2174/0115748928299796240523075219
Loading
/content/journals/pra/10.2174/0115748928299796240523075219
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Colorectal cancer; metastasis; MLLT4-AS1; proliferation; PTEN; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test