Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Osteolytic bone metastasis is a common complication of Non-Small Cell Lung Cancer (NSCLC), resulting in bone pain, hypercalcemia, and fractures that severely reduce the quality of life and survival time of patients. Semaphorins 3A (Sema3A) is one of the isoforms of the Semaphorins family, which is important in a variety of physiological and pathological processes, such as angiogenesis, immune regulation, and tumorigenesis. However, the role of Sema3A in the development of osteolytic bone metastasis in NSCLC is unknown.

Methods

In this study, we established models simulating NSCLC cells in regulating the differentiation and maturation of osteoblast and osteoclast precursors and observed the differentiation of osteoblasts and osteoclasts.

Results

The results demonstrated that the expression of Sema3A promoted the proliferation, migration, and invasion of NSCLC cells, as well as promoted the differentiation of osteoblasts and inhibited the differentiation of osteoclasts, suggesting that Sema3A can inhibit the occurrence and development of osteolytic bone metastasis of NSCLC.

Conclusion

This study provides a new idea for the clinical treatment of osteolytic bone metastasis in NSCLC.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928295263240402085411
2025-04-15
2025-12-25
Loading full text...

Full text loading...

References

  1. LiuJ.C. NarvaS. ZhouK. ZhangW. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors.Mini Rev. Med. Chem.201919181517153010.2174/138955751966619031215235830864519
    [Google Scholar]
  2. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  3. ColemanR.E. Skeletal complications of malignancy.Cancer199780S81588159410.1002/(SICI)1097‑0142(19971015)80:8+<1588::AID‑CNCR9>3.0.CO;2‑G9362426
    [Google Scholar]
  4. YangX. FengZ. ZhangN. The role of TGF-β upregulated Notch3 by inducing EMT on bone metastasis in non-small lung cancer.Modern Oncology.2016241828512857
    [Google Scholar]
  5. SantiniD. BarniS. IntagliataS. FalconeA. FerraùF. GalettaD. MoscettiL. La VerdeN. IbrahimT. PetrelliF. VasileE. GinocchiL. OttavianiD. LongoF. OrtegaC. RussoA. BadalamentiG. CollovàE. LanzettaG. MansuetoG. AdamoV. De MarinisF. SatolliM.A. CantileF. MancusoA. TancaF.M. AddeoR. RussanoM. SterpiM. PantanoF. VincenziB. ToniniG. Natural history of non-small cell lung cancer with bone metastases.Sci. Rep.2015511867010.1038/srep1867026690845
    [Google Scholar]
  6. WeilbaecherK.N. GuiseT.A. McCauleyL.K. Cancer to bone: A fatal attraction.Nat. Rev. Cancer201111641142510.1038/nrc305521593787
    [Google Scholar]
  7. SugiuraH. YamadaK. SugiuraT. HidaT. MitsudomiT. Predictors of survival in patients with bone metastasis of lung cancer.Clin. Orthop. Relat. Res.2008466372973610.1007/s11999‑007‑0051‑018196360
    [Google Scholar]
  8. ArbourK.C. RielyG.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer.JAMA2019322876477410.1001/jama.2019.1105831454018
    [Google Scholar]
  9. SuvaL.J. GriffinR.J. MakhoulI. Mechanisms of bone metastases of breast cancer.Endocr. Relat. Cancer200916370371310.1677/ERC‑09‑001219443538
    [Google Scholar]
  10. EspositoM. KangY. Targeting tumor–stromal interactions in bone metastasis.Pharmacol. Ther.2014141222223310.1016/j.pharmthera.2013.10.00624140083
    [Google Scholar]
  11. ColemanR.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies.Cancer Treat. Rev.200127316517610.1053/ctrv.2000.021011417967
    [Google Scholar]
  12. AditiS. LalitS. RohitG. Molecular signaling pathways and essential metabolic elements in bone remodeling: An implication of therapeutic targets for bone diseases.Curr. Drug Targets2021221
    [Google Scholar]
  13. KushlinskiĭN.E. TimofeevIuS. GershteĭnE.S. Solov’evIuN. Clinical perspectives of the study of RANK/RANKL/OPG system components in primary and metastatic bone tumor.Vopr. Onkol.201460441342125552059
    [Google Scholar]
  14. WeidleU.H. BirzeleF. KollmorgenG. RügerR. Molecular mechanisms of bone metastasis.Cancer Genom. Proteom.201613111226708594
    [Google Scholar]
  15. LynchC.C. HikosakaA. AcuffH.B. MartinM.D. KawaiN. SinghR.K. Vargo-GogolaT.C. BegtrupJ.L. PetersonT.E. FingletonB. ShiraiT. MatrisianL.M. FutakuchiM. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL.Cancer Cell20057548549610.1016/j.ccr.2005.04.01315894268
    [Google Scholar]
  16. KangS. KumanogohA. Semaphorins in bone development, homeostasis, and disease.Semin. Cell Dev. Biol.201324316317110.1016/j.semcdb.2012.09.00823022498
    [Google Scholar]
  17. NeufeldG. SabagA.D. RabinoviczN. KesslerO. Semaphorins in angiogenesis and tumor progression.Cold Spring Harb. Perspect. Med.201221a00671810.1101/cshperspect.a00671822315716
    [Google Scholar]
  18. ZaidiM. IqbalJ. Double protection for weakened bones.Nature20124857396474810.1038/485047a22552091
    [Google Scholar]
  19. HayashiM. NakashimaT. TaniguchiM. KodamaT. KumanogohA. TakayanagiH. Osteoprotection by semaphorin 3A.Nature20124857396697410.1038/nature1100022522930
    [Google Scholar]
  20. PanW. Arthroplasty femoral implant devices.US Patent 202302884012023
  21. RoddaS.J. McMahonA.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification,differentiation and maintenance of osteoblast progenitors.Development2006133163231324410.1242/dev.0248016854976
    [Google Scholar]
  22. QiangY.W. BarlogieB. RudikoffS. ShaughnessyJ.D.Jr Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma.Bone200842466968010.1016/j.bone.2007.12.00618294945
    [Google Scholar]
  23. KogaT. InuiM. InoueK. KimS. SuematsuA. KobayashiE. IwataT. OhnishiH. MatozakiT. KodamaT. TaniguchiT. TakayanagiH. TakaiT. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis.Nature2004428698475876310.1038/nature0244415085135
    [Google Scholar]
  24. ChenW.G. SunJ. ShenW.W. Sema4D expression and secretion are increased by HIF-1α and inhibit osteogenesis in osteolytic bone metastases of lung cancer. Clinical & experimental metastasis.Clin. Exp. Metastasis2019361395610.1007/s10585‑018‑9951‑530617444
    [Google Scholar]
  25. DelormeB. CharbordP. Culture and characterization of human bone marrow mesenchymal stem cells.Methods Mol. Med.2007140678110.1007/978‑1‑59745‑443‑8_418085203
    [Google Scholar]
  26. FranceschiR.T. XiaoG. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways.J. Cell. Biochem.200388344645410.1002/jcb.1036912532321
    [Google Scholar]
  27. ZhangC. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx.J. Orthop. Surg. Res.2010513710.1186/1749‑799X‑5‑3720550694
    [Google Scholar]
  28. FukudaT. TakedaS. XuR. OchiH. SunamuraS. SatoT. ShibataS. YoshidaY. GuZ. KimuraA. MaC. XuC. BandoW. FujitaK. ShinomiyaK. HiraiT. AsouY. EnomotoM. OkanoH. OkawaA. ItohH. Sema3A regulates bone-mass accrual through sensory innervations.Nature2013497745049049310.1038/nature1211523644455
    [Google Scholar]
  29. HayashiM. NakashimaT. YoshimuraN. OkamotoK. TanakaS. TakayanagiH. Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging.Cell Metab.2019293627637.e510.1016/j.cmet.2018.12.02130661929
    [Google Scholar]
  30. YamashitaY. HayashiM. SaitoM. NakashimaT. Osteoblast lineage cell-derived Sema3A regulates bone homeostasis independently of androgens.Endocrinology202216310bqac12610.1210/endocr/bqac12635931046
    [Google Scholar]
  31. HanY. YouX. XingW. ZhangZ. ZouW. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts.Bone Res.2018611610.1038/s41413‑018‑0019‑629844945
    [Google Scholar]
  32. XieY. ZhouJ. TianL. DongY. YuanH. ZhuE. LiX. WangB. miR-196b-5p regulates osteoblast and osteoclast differentiation and bone homeostasis by targeting SEMA3A.J. Bone Miner. Res.20233881175119110.1002/jbmr.483437221130
    [Google Scholar]
  33. TerminiC.M. PangA. FangT. RoosM. ChangV.Y. ZhangY. SetiawanN.J. SignaevskaiaL. LiM. KimM.M. TabibiO. LinP.K. SasineJ.P. ChatterjeeA. MuraliR. HimburgH.A. ChuteJ.P. Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution.Nat. Commun.2021121699010.1038/s41467‑021‑27263‑y34848712
    [Google Scholar]
  34. de RidderD. MarinoS. BishopR.T. RenemaN. ChenuC. HeymannD. IdrisA.I. Bidirectional regulation of bone formation by exogenous and osteosarcoma-derived Sema3A.Sci. Rep.201881687710.1038/s41598‑018‑25290‑229720701
    [Google Scholar]
  35. XinR. ShenB. JiangY.J. LiuJ.B. LiS. HouL.K. WuW. JiaC.Y. WuC.Y. FuD. MaY.S. JiangG.X. Comprehensive analysis to identify a novel PTEN-associated ceRNA regulatory network as a prognostic biomarker for lung adenocarcinoma.Front. Oncol.20221292302610.3389/fonc.2022.92302636091160
    [Google Scholar]
  36. AdiS.D. EizaN. BejarJ. SheferH. ToledanoS. KesslerO. NeufeldG. ToubiE. VadaszZ. Semaphorin 3A is effective in reducing both inflammation and angiogenesis in a mouse model of bronchial asthma.Front. Immunol.20191055010.3389/fimmu.2019.00550
    [Google Scholar]
  37. ToubiE. VadaszZ. Semaphorin3A is a promising therapeutic tool for bronchial asthma.Allergy202075248148310.1111/all.1402631444800
    [Google Scholar]
  38. DhamdhereM.R. GowdaC.P. SinghV. LiuZ. CarruthersN. GrantC.N. SharmaA. DovatS. SundstromJ.M. WangH.G. SpiegelmanV.S. IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis.Oncogene202342191558157110.1038/s41388‑023‑02671‑036973517
    [Google Scholar]
  39. BicaC. TirpeA. NutuA. CiocanC. ChiraS. GurzauE.S. BraicuC. NeagoeB.I. Emerging roles and mechanisms of semaphorins activity in cancer.Life Sci.202331812149910.1016/j.lfs.2023.121499
    [Google Scholar]
  40. ComoglioP.M. TrusolinoL. Series introduction: Invasive growth: From development to metastasis.J. Clin. Invest.2002109785786210.1172/JCI021539211927611
    [Google Scholar]
  41. WuA.M.L. GossaS. SamalaR. ChungM.A. GrilB. YangH.H. ThorsheimH.R. TranA.D. WeiD. TanerE. IsanogleK. YangY. DolanE.L. RobinsonC. DifilippantonioS. LeeM.P. KhanI. SmithQ.R. McGavernD.B. WakefieldL.M. SteegP.S. Aging and CNS myeloid cell depletion attenuate breast cancer brain metastasis.Clin. Cancer Res.202127154422443410.1158/1078‑0432.CCR‑21‑154934083229
    [Google Scholar]
  42. LuoY. YangZ. YuY. ZhangP. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer.Int J Biol Macromol.2022222Pt B2225224310.1016/j.ijbiomac.2022.10.014
    [Google Scholar]
  43. HungYH HouYC HsuSH Pancreatic cancer cell-derived semaphorin 3A promotes neuron recruitment t accelerate tumor growth and dissemination.Am. J. Cancer Res.20231383417343237693128
    [Google Scholar]
  44. LeclercM. VoilinE. GrosG. CorgnacS. de MontprévilleV. ValidireP. BismuthG. ChouaibM.F. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by neuropilin-1.Nat. Commun.2019101334510.1038/s41467‑019‑11280‑z31350404
    [Google Scholar]
  45. AndryszakN. KurzawaP. KrzyżaniakM. RuchałaM. NowickiM. IżyckiD. CzepczyńskiR. Expression of semaphorin 3A (SEMA3A) in breast cancer subtypes.Sci. Rep.2024141196910.1038/s41598‑024‑51796‑z38263416
    [Google Scholar]
  46. LeeJ. ShinY.J. LeeK. ChoH.J. SaJ.K. LeeS.Y. KimS.H. LeeJ. YoonY. NamD.H. Anti-SEMA3A antibody: A novel therapeutic agent to suppress glioblastoma tumor growth.Cancer Res. Treat.20185031009102210.4143/crt.2017.31529129044
    [Google Scholar]
  47. LotfiR. ZamanimehrN. Semaphorin-3A: A promising therapeutic tool in allergic rhinitis.Immunol. Res.202270213514210.1007/s12026‑022‑09264‑135031951
    [Google Scholar]
  48. YangK. MironR.J. BianZ. ZhangY.F. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice.Bone2018114404910.1016/j.bone.2018.06.00329883786
    [Google Scholar]
  49. OhlssonC. Novel osteoporosis targets.Nat. Rev. Endocrinol.201392727410.1038/nrendo.2012.25223296178
    [Google Scholar]
/content/journals/pra/10.2174/0115748928295263240402085411
Loading
/content/journals/pra/10.2174/0115748928295263240402085411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test