Protein and Peptide Letters - Volume 26, Issue 9, 2019
Volume 26, Issue 9, 2019
-
-
Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function
MOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field. The activity of enzyme, reusability, storage, chemical and thermal stability, affinity with substrate can be greatly improved by immobilizing of enzyme on MOFs. Along with improvement in enzymes properties, the high loading of enzyme is also observed while using MOFs as immobilization support. In this review a detail study of immobilization on/in Metalorganic Frameworks (MOFs) have been described. Furthermore, strategies for the enzyme immobilization on MOFs and resulting in improved catalytic performance of immobilized enzymes have been reported.
-
-
-
Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review
Authors: Jian-Ping Hu, Zhi-Xiang Wu, Tao Xie, Xin-Yu Liu, Xiao Yan, Xin Sun, Wei Liu, Li Liang, Gang He, Ya Gan, Xiao-Jun Gou, Zheng Shi, Qiang Zou, Hua Wan, Hu-Bing Shi and Shan ChangAfter decades of efforts, tuberculosis has been well controlled in most places. The existing drugs are no longer sufficient for the treatment of drug-resistant Mycobacterium tuberculosis due to significant toxicity and selective pressure, especially for XDR-TB. In order to accelerate the development of high-efficiency, low-toxic antituberculosis drugs, it is particularly important to use Computer Aided Drug Design (CADD) for rational drug design. Here, we systematically reviewed the specific role of molecular simulation in the discovery of new antituberculosis drugs. The purpose of this review is to overview current applications of molecular simulation methods in the discovery of antituberculosis drugs. Furthermore, the unique advantages of molecular simulation was discussed in revealing the mechanism of drug resistance. The comprehensive use of different molecular simulation methods will help reveal the mechanism of drug resistance and improve the efficiency of rational drug design. With the help of molecular simulation methods such as QM/MM method, the mechanisms of biochemical reactions catalyzed by enzymes at atomic level in Mycobacterium tuberculosis has been deeply analyzed. QSAR and virtual screening both accelerate the development of highefficiency, low-toxic potential antituberculosis drugs. Improving the accuracy of existing algorithms and developing more efficient new methods for CADD will always be a hot topic in the future. It is of great value to utilize molecular dynamics simulation to investigate complex systems that cannot be studied in experiments, especially for drug resistance of Mycobacterium tuberculosis.
-
-
-
Therapeutic Perspectives of Food Bioactive Peptides: A Mini Review
More LessBioactive peptides are short chain of amino acids (usually 2-20) that are linked by amide bond in a specific sequence which have some biological effects in animals or humans. These can be of diverse origin like plant, animal, fish, microbe, marine organism or even synthetic. They are successfully used in the management of many diseases. In recent years increased attention has been raised for its effects and mechanism of action in various disease conditions like cancer, immunity, cardiovascular disease, hypertension, inflammation, diabetes, microbial infections etc. Bioactive peptides are more bioavailable and less allergenic when compared to total proteins. Food derived bioactive peptides have health benefits and its demand has increased tremendously over the past decade. This review gives a view on last two years research on potential bioactive peptides derived from food which have significant therapeutic effects.
-
-
-
Expression, Purification, and in vivo Evaluation of GFP-Fused M Cell Targeting Receptor Binding Domain of Protein FimH
Background: The number of oral vaccines is still limited due to many difficulties suffered in the intestinal environment, such as mucosal clearance, vast area, harsh conditions, deteriorative enzymes, impermeability, tolerance, etc. Numerous strategies have focused on directing antigen to the receptors of M cells, which is the main gateway to acquire and initiate specific responses to antigens in intestine. FimHrb is a receptor binding domain of type 1 of fimbriae from E. coli and Salmonella that can bind to GP2 receptor expressed exclusively on M cells. Objective: In this study, we evaluated the potential of FimHrb for oral vaccine development via its ability to adhere M cells. Methods: The coding gene of FimHrb fused Green Fluorescent Protein (GFP) was cloned and expressed intracellularly in E. coli host strain. The recombinant protein FimHrb-GFP was then purified by IMAC method through 6x His tag designed downstream of GFP. Finally, the purified protein was monitored its binding on murine M cells in Payer Patch region. Results: Following the methods mentioned above, the coding gene FimHrb-GFP was successfully cloned into vector pET22b and intracellularly expressed in soluble form at low temperature induction. The purity and the recovered yield of this protein were 90% and 20%, respectively. After that, the adhesion of FimHrb-GFP was monitored in murine small intestine, which showed that the protein bound to Peyer Patch region and did not restrict on M cells. Conclusion: With the present data, we revealed a candidate protein FimHrb targeted receptor on M cells for oral vaccine development and other factors in E. coli would supplement FimH to provide the specific invasion of these bacteria via M cells.
-
-
-
Polyproline II Helix as a Recognition Motif of Plant Peptide Hormones and Flagellin Peptide flg22
Authors: Norio Matsushima, Hiroki Miyashita, Shinsuke Tamaki and Robert H. KretsingerBackground: Plant peptide hormones play a crucial role in plant growth and development. A group of these peptide hormones are signaling peptides with 5 - 23 amino acids. Flagellin peptide (flg22) also elicits an immune response in plants. The functions are expressed through recognition of the peptide hormones and flg22. This recognition relies on membrane localized receptor kinases with extracellular leucine rich repeats (LRR-RKs). The structures of plant peptide hormones - AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22 complexed with LRR domains of corresponding LRR-RKs and co-receptors SERKs have been determined. However, their structures are well not analyzed and characterized in detail. The structures of PIP, CEP, CIF, and HypSys are still unknown. Objective: Our motivation is to clarify structural features of these plant, small peptides and Flg22 in their bound states. Methods: In this article, we performed secondary structure assignments and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic coordinates from the crystal structures of AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22. We also performed sequence analysis of the families of PIP, CEP, CIF, and HypSys in order to predict their secondary structures. Results: Following AtPep1 with 23 residues adopts two left handed polyproline helices (PPIIs) with six and four residues. IDA, IDL1, RGFs 1 - 2, and TDIF/CLE41 with 12 or 13 residues adopt a four residue PPII; RGF3 adopts two PPIIs with four residues. Flg22 with 22 residues also adopts a six residue PPII. The other peptide hormones – PIP, CEP, CIF, and HypSys – that are rich in proline or hydroxyproline presumably prefer PPII. Conclusion: The present analysis indicates that PPII helix in the plant small peptide hormones and in flg22 is crucial for recognition of the LRR domains in receptors.
-
-
-
Hot-melt Preparation of a Non-biodegradable Peptide Implant: A Proof of Principle
Background: Both biodegradable and non-biodegradable peptide-loaded implants are already developed for the long-term treatment of patients, thereby reducing the frequency of drug administration. To further improve peptide formulation, extending the scope of implant-based drug delivery systems towards other polymers and processing techniques is highly interesting. Objective: In this study, as a proof-of-principle, the feasibility of hot-melt processing of a peptide active pharmaceutical ingredient was assessed by developing a non-biodegradable poly(ethylenevinyl acetate) (33% VA) implant loaded with 20% (w/w) buserelin acetate. Methods: Cross-sectional implant characterization was performed by Raman microscopy. The stability of buserelin acetate in the polymeric matrix was evaluated for 3 months under ICH stability conditions and the quantity as well as the degradation products analyzed using LC-UV methods. An in vitro dissolution study was performed as well and buserelin acetate and its degradants analyzed using the same chromatographic methods. Results: No significant quantities of buserelin acetate-related degradation products were formed during the hot-melt preparation as well as during the stability study. Together with the consistent buserelin acetate assay values over time, chemical peptide stability was thus demonstrated. The in vitro buserelin acetate release from the implant was found to be diffusion-controlled after an initial burst release, with stable release profiles in the stability study, demonstrating the functional stability of the peptide implant. Conclusion: These results indicate the feasibility of preparing non-biodegradable peptide-loaded implants using the hot-melt production method and may act as a proof of principle concept for further innovation in peptide medicinal formulations.
-
-
-
Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network
Authors: Qian Xia and Yanrui DingObjective: Dynamic communication caused by mutation affects protein stability. The main objective of this study is to explore how mutations affect communication and to provide further insight into the relationship between heat resistance and signal propagation of Bacillus subtilis lipase (Lip A). Methods: The relationship between dynamic communication and Lip A thermostability is studied by long-time MD simulation and residue interaction network. The Dijkstra algorithm is used to get the shortest path of each residue pair. Subsequently, time-series frequent paths and spatio-temporal frequent paths are mined through an Apriori-like algorithm. Results: Time-series frequent paths show that the communication between residue pairs, both in wild-type lipase (WTL) and mutant 6B, becomes chaotic with an increase in temperature; however, more residues in 6B can maintain stable communication at high temperature, which may be associated with the structural rigidity. Furthermore, spatio-temporal frequent paths reflect the interactions among secondary structures. For WTL at 300K, β7, αC, αB, the longest loop, αA and αF contact frequently. The 310-helix between β3 and αA is penetrated by spatio-temporal frequent paths. At 400K, only αC can be frequently transmitted. For 6B, when at 300K, αA and αF are in more tight contact by spatio-temporal frequent paths though I157M and N166Y. Moreover, the rigidity of the active site His156 and the C-terminal of Lip A are increased, as reflected by the spatio-temporal frequent paths. At 400K, αA and αF, 310-helix between β3 and αA, the longest loop, and the loop where the active site Asp133 is located can still maintain stable communication. Conclusion: From the perspective of residue dynamic communication, it is obviously found that mutations cause changes in interactions between secondary structures and enhance the rigidity of the structure, contributing to the thermal stability and functional activity of 6B.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
