Protein and Peptide Letters - Volume 21, Issue 4, 2014
Volume 21, Issue 4, 2014
-
-
Hydroxyproline Substitutions Stabilize Non-Glycosylated Drosocin Against Serum Proteases Without Challenging its Antibacterial Activity
More LessAuthors: Daniel Knappe, Marco Cassone, Friederike Inga Nollmann, Laszlo Otvos and Ralf HoffmannThe increasing incidence of multi- and pan-resistant pathogens demands novel compounds to fight Grampositive and especially Gram-negative bacteria. Among the currently investigated compound classes, antimicrobial peptides (AMPs) inhibiting specific bacterial targets appear especially promising for systemic therapy of infections, although unmodified linear peptides are typically rapidly degraded by serum proteases. Proline-rich AMPs have been heavily investigated in recent years due to their low toxicity and proven in vivo efficacy. Here, we report novel unglycosylated drosocin analogs with extended half-life in mouse serum and improved activity against Gram-negative pathogens Escherichia coli and Klebsiella pneumoniae. Substituting proline (Pro) residues in positions 3, 5, 10, and 14 with trans-4-hydroxy-Lproline (tHyp) improved the antibacterial activity, whereas substitution of Pro-16 reduced the activity. Drosocin analogs with tHyp in positions 3 and 5 were also four to eight times more stable in mouse serum than the unmodified analog. The new compounds were not toxic against human HeLa, HEK293, and HepG2 cell lines and showed no hemolytic activity against human erythrocytes at peptide concentrations of at least 600 μg/mL.
-
-
-
Antimicrobial Resistance in the 21st Century: A Multifaceted Challenge
More LessBy O. NolteAntimicrobial resistance, the ability of (pathogenic) bacteria to withstand the action of antibiotic drugs, has recently been rated of having an impact on humans similar to that of global climate change. Indeed, during the last years medicine has faced the development of highly resistant bacterial strains, which were, as a consequence of worldwide travel activity, dispersed all over the globe. This is even more astonishing if taking into account that antibiotics were introduced into human medicine not even hundred years ago. Resistance covers different principle aspects, natural resistance, acquired resistance and clinical resistance. In the modern microbiology laboratory, antimicrobial resistance is determined by measuring the susceptibility of micro-organisms in vitro in the presence of antimicrobials. However, since the efficacy of an antibiotic depends on its pharmacokinetic and pharmacodynamics properties, breakpoints are provided to translate minimal inhibitory concentration to categorical efficacy (i.e. susceptible or resistant). Resistance in one microorganism against one particular drug may drive treatment decisions of clinicians, thereby fostering selection pressure to resistance development against another antibiotic. Thereby, bacteria may acquire more and more resistance traits, ending up with multi-resistance. To this end, antimicrobial resistance becomes a public health concern, not only in terms of limited treatment options but also due to its economic burden. The current paper provides a summary of the main topics associated with antimicrobial resistance as an introduction to this special issue.
-
-
-
Dual Mode of Action of Amylolysin: A Type-B Lantibiotic Produced by Bacillus amyloliquefaciens GA1
More LessAuthors: Anthony Arguelles Arias, Bernard Joris and Patrick FickersThe partial genome sequencing of Bacillus amyloliquefaciens GA1 led to the identification of the aml gene cluster involved in the synthesis of the novel lantibiotic named amylolysin. Pure amylolysin was shown to have an antibacterial activity toward Gram-positive bacteria including methicillin resistant Staphylococcus aureus. The lantibiotic was also found efficient to inhibit the growth of Listeria monocytogenes strains on poultry meat upon a long storage at 4°C. In silico analyses of the aml gene cluster revealed the presence of a characteristic motif involved in interaction with peptidoglycan precursor lipid II. In the present work, this interaction was further investigated using the LiaRS based reporter gene that is able to sense specifically antibiotics that interfere with lipid II cycle. Beside this, the pore-forming ability of amylolysin was evidenced by means of membrane depolarization measurements and cell leaking experiments.
-
-
-
Regulation and Function of Antimicrobial Peptides in Immunity and Diseases of the Lung
More LessAuthors: Frederik Seiler, Philipp Moritz Lepper, Robert Bals and Christoph BeisswengerCationic antimicrobial peptides (AMPs) are among the best studied antimicrobial factors expressed in the respiratory tract. AMPs are released by epithelial cells and immune cells into the airway surface liquid covering the epithelial surfaces of the lung where they act as endogenous antibiotics. Plenty of studies showed that AMPs possess additional, often immunomodulatory functions besides their antimicrobial activities. AMPs are chemotactic for immune cells and modulate cellular mechanisms, such as proliferation of epithelial cells, epithelial regeneration, and angiogenesis. The expression and activity of AMPs are impacted by lung diseases and AMPs can have adverse effects in lung diseases. In this review, we discuss the regulation and functions of AMPs in host defense and respiratory tract diseases.
-
-
-
In Vitro and In Vivo Activities of Novel Cyclic Lipopeptides Against Staphylococcal Biofilms
More LessAuthors: Nina Bionda, Irena Pastar, Stephen C. Davis and Predrag CudicA worldwide public health problem has resulted from the alarming spread of multi-drug resistant bacteria combined with the frequent occurrence of biofilm-type infections, creating a growing need for new therapies. In this study, we have demonstrated that novel cyclic lipopeptides, such as 1, cyclo-[D-Ala-(12-guanidinododecanoyl)Thr-D-Val-Val-DaThr-D-Asn], and 2, cyclo-[D-Ala-(12-guanidinododecanoyl)Dap-D-Val-Val-D-aThr-D-Asn], derived from the fusaricidin/ LI-F natural products efficiently inhibit the growth of Staphylococcus aureus biofilm in vitro at their minimum inhibitory concentrations (MICs). Complete S. aureus biofilm eradication was observed at 3 x MIC for 1 and 4 x MIC for 2. Promising in vivo activity was demonstrated by the ability of depsipeptide 1 to reduce the proliferation of methicillinresistant S. aureus US300 in a porcine wound model. Due to their unique structure and potent antibacterial and antibiofilm activities, cyclic lipopeptides that belong to the fusaricidin/LI-F family of antibiotics represent particularly attractive lead structures for the development of new antibacterial agents capable of treating complicated biofilm-associated infections.
-
-
-
Antimicrobial Peptides Incorporating Non-Natural Amino Acids as Agents for Plant Protection
More LessThe control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.
-
-
-
In Vivo Activity of Optimized Apidaecin and Oncocin Peptides Against a Multiresistant, KPC-Producing Klebsiella pneumoniae Strain
More LessAuthors: Eszter Ostorhazi, Eva Nemes-Nikodem, Daniel Knappe and Ralf HoffmannThe peptides Api88 and Onc72 are highly efficient to treat Escherichia coli bacteremia in mice. Here we extended the animal studies to a systemic murine infection model using a multidrug-resistant carbapenemase-producing Klebsiella pneumoniae clinical isolate. When administered intraperitoneally three times at 2.5, 5 and 10 mg/kg bodyweight to CD-1 mice infected with a KPC-producing K. pneumoniae strain, both Api88 and Onc72 reduced the bacterial counts by at least 5 log10 units, indicating that both peptides are active in vivo. Both peptide treatments increased significantly the survival rates and average survival times compared to untreated animals for all doses except for the highest dose of Onc72. This dose reduced the bacterial counts so fast that it most likely induced a sudden release of large amounts of toxic materials from the killed bacteria reducing the survival time even below that of untreated mice. In conclusion, both peptides were efficient in the lethal murine K. pneumoniae infection model, but the treatment protocol (i.e. dose and time points) has to be further optimized based on future pharmacokinetic studies.
-
-
-
The Designer Proline-rich Antibacterial Peptide A3-APO Prevents Bacillus anthracis Mortality by Deactivating Bacterial Toxins
More LessAuthors: Laszlo Otvos, Helen Flick-Smith, Marc Fox, Eszter Ostorhazi, Raymond M. Dawson and John D. WadeProline-rich antibacterial peptides protect experimental animals from bacterial challenge even if they are unable to kill the microorganisms in vitro. Their major in vivo modes of action are inhibition of bacterial protein folding and immunostimulation. Here we investigated whether the proline-rich antibacterial peptide dimer A3-APO was able to inhibit Bacillus cereus enterotoxin production in vitro and restrict the proliferation of lethal toxin-induced Bacillus anthracis replication in mouse macrophages. After 24 h incubation, peptide A3-APO and its single chain metabolite reduced the amount of properly folded B. cereus diarrhoeal enterotoxin production in a concentration-dependent manner leading to only 10-25% of the original amount of toxin detectable by a conformation-sensitive immunoassay. Likewise, after 4 h incubation, A3-APO restricted the proliferation of B. anthracis in infected macrophages by 40-45% compared to untreated cells both intracellularly and in the extracellular cell culture milieu. Although the peptide had a minimal inhibitory concentration of >512 mg/L against B. anthracis in vitro, in systemic mouse challenge models it improved survival by 20- 37%, exhibiting statistically significant cumulative efficacy when administered at 3x5 mg/kg intraperitoneally or intramuscularly. We hypothesize that the activity in isolated murine macrophages and in vivo is due to deactivation of bacterial toxins. Bacterial protein folding inhibition in synergy with other types of antimicrobial modes offers a remarkable novel strategy in combating resistant or life-threatening infections.
-
-
-
Cellular Internalization and Cytotoxicity of the Antimicrobial Proline-rich Peptide Bac7(1-35) in Monocytes/Macrophages, and its Activity Against Phagocytosed Salmonella typhimurium
More LessAuthors: Chiara Pelillo, Monica Benincasa, Marco Scocchi, Renato Gennaro, Alessandro Tossi and Sabrina PacorBac7(1-35) is an active fragment of the bovine cathelicidin antimicrobial peptide Bac7, which selectively inactivates Gram-negative bacteria both in vitro and in mice infected with Salmonella typhimurium. It has a non-lytic mechanism of action, is rapidly internalized by susceptible bacteria and mammalian cells and likely acts by binding to internal targets. In this study we show that Bac7(1-35) accumulates selectively within primed macrophages with respect to resting monocytes. Confocal microscopy analysis showed that the peptide mainly distributes in the cytoplasm and perinuclear region of macrophages within 3 hours of incubation, without affecting cell viability. Cytotoxicity studies showed that the peptide does not induce necrotic or apoptotic damage up to concentrations 50-100-fold higher than minimal inhibitory concentrations (MIC). Moreover, Bac7(1-35) did not affect the ability of macrophages to engulf S. typhimurium, a species that may proliferate within this cell type. Conversely, when added to macrophages after phagocytosis, Bac7(1-35) caused a significant reduction in the number of recovered bacteria, indicating that it can kill the engulfed microorganisms directly and/or indirectly, via activation of the defense response of the cells.
-
-
-
Cellular Uptake of Apidaecin 1b and Related Analogs in Gram-negative Bacteria Reveals Novel Antibacterial Mechanism for Proline-rich Antimicrobial Peptides
More LessAuthors: Nicole Berthold and Ralf HoffmannProline-rich antimicrobial peptides (PrAMPs) freely penetrate through the outer membrane into the periplasm of Gram-negative bacteria, before they are actively translocated by a permease/transporter-mediated uptake into the cytoplasm where they are reported to inhibit chaperone DnaK. Here we have studied the PrAMP apidaecin 1b, which is produced in honey bees in response to bacterial infections, and optimized apidaecin analogs for their bacterial uptake. The peptides were labeled with 5(6)-carboxyfluorescein and their internalization in Escherichia coli and Klebsiella pneumoniae was visualized by fluorescence microscopy and quantified by flow cytometry for four different time points over an incubation period of 4 h. Apidaecin 1b entered only 40% to 50% of the cells at detectable quantities, whereas designer peptides Api88, Api134 and Api155 entered more than 95% of the bacteria within 30 min at around fourfold higher quantities than the native peptide. Interestingly, a shortened version designated as 1-17Api88, bound DnaK as efficiently as the 18-residue long Api88 and entered the bacteria at similar kinetics as Api88, but was unable to inhibit the bacterial growth. Similar conflicts with currently proposed mechanisms of PrAMPs were also obtained for some Ala-substituted analogs and reverse apidaecin sequences. Although peptides with C-terminal amides enter the cells much more efficiently than homologous C-terminal acids, this improved cell penetration does not improve the antibacterial activities. These studies suggest that PrAMPs utilize additional modes of action to kill sensitive organisms.
-
-
-
Blood-Brain Barrier Transport of Short Proline-Rich Antimicrobial Peptides
More LessInfections by antibiotic-resistant bacteria are becoming a great risk for human health, leading to an urgent need for new efficient antibacterial therapies. The short, proline-rich antimicrobial peptides from insects gained a lot of interest as a potential antibacterial treatment, having a low toxicity profile and being mainly active against Gram-negative bacteria. To know whether these antimicrobial peptides can be used for the treatment of cerebral infections, the blood-brain barrier transport characteristics of these peptides were investigated. This study describes the results of the in vivo bloodbrain barrier experiments in mice, as well as the in vitro metabolic stability in mouse plasma and brain of apidaecin Api137, oncocin, drosocin and drosocin Pro5Hyp. The four investigated peptides showed a significant influx into the brain with a Kin ranging between 0.37 and 0.86 μL/g x min and brain distribution volumes of 19.6 to 25.8 μL/g. Only for drosocin, a significant efflux was determined, with a kout of 0.22 min-1. After entering the brain, oncocin was for approximately 80% trapped in the endothelial cells, while the other peptides reached the brain parenchyma for about 70%. All peptides were stable in plasma and brain during the experiments, with estimated metabolic half-lives ranging between 47 min and 637 min. We conclude that the investigated short, proline-rich antimicrobial peptides show an influx into the brain, which make them a promising antibacterial treatment of cerebral infections.
-
-
-
Structural Identification of DnaK Binding Sites within Bovine and Sheep Bactenecin Bac7
More LessAuthors: Michael Zahn, Bjorn Kieslich, Nicole Berthold, Daniel Knappe, Ralf Hoffmann and Norbert StraterBacterial resistance against common antibiotics is an increasing health problem. New pharmaceuticals for the treatment of infections caused by resistant pathogens are needed. Small proline-rich antimicrobial peptides (PrAMPs) from insects are known to bind intracellularly to the conventional substrate binding cleft of the E. coli Hsp70 chaperone DnaK. Furthermore, bactenecins from mammals, members of the cathelicidin family, also contain potential DnaK binding sites. Crystal structures of bovine and sheep Bac7 in complex with the DnaK substrate binding domain show that the peptides bind in the forward binding mode with a leucine positioned in the central hydrophobic pocket. In most structures, proline and arginine residues preceding leucine occupy the hydrophobic DnaK binding sites -1 and -2. Within bovine Bac7, four potential DnaK binding sites were identified.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month