Skip to content
2000
Volume 20, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Kidney cells of animals including human and marine invertebrates contain high amount of the protein denaturant, urea. Methylamine osmolytes are generally believed to offset the harmful effects of urea on proteins in vitro and in vivo. In this study we have investigated the possibility of glycine to counteract the effects of urea on three proteins by measuring thermodynamic stability, ΔGD o and functional activity parameters (Km and kcat). We discovered that glycine does not counteract the effects of urea in terms of both protein stability and functional activity. We also observed that the glycine alone is compatible with enzymes function and increases protein stability in terms of Tm (midpoint of thermal denaturation) to a great extent. Our study indicates that a most probable reason for the absence of a stabilizing osmolyte, glycine in the urea-rich cells is due to the fact that this osmolyte is non-protective to macromolecules against the hostile effects of urea, and hence is not chosen by evolutionary selection pressure.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986613804096874
2013-01-01
2025-12-09
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986613804096874
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test