Skip to content
2000
Volume 20, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Protein methylation is an important and reversible post-translational modification which regulates diverse protein properties. Many methylation sites on arginine and lysine have been identification through experiments. However, experimental identification without prior knowledge is laborious and costly. Hence, there is interest in the development of computational methods for reliable prediction of methylation sites. Prediction of methylation sites may provide researches with useful information for further productivity in methylation candidate sites discovery. This work proposes Methcrf, a computational predictor based on conditional random field (CRF) for predicting protein methylation sites limit to lysine and arginine residues due to the absence of enough experimentally verified data for other residues. The approach is developed to consider combining protein sequence features with structural information such as solvent accessibility of amino acids that surround the methylation sites. In 10-fold cross validation Methcrf can achieve the area under receiver operating characteristic curve (AUC) of 0.85 and 0.80 for arginine and lysine, respectively. The proposed method has comparable performance with previous methods for accurately predicting methylation sites.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986613804096865
2013-01-01
2025-12-09
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986613804096865
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test