Skip to content
2000
image of Holographic Proteomics: A Review of Digital Holographic Microscopy Applications in Spatial Proteomics

Abstract

Holoproteomics is a state-of-the-art advancement in spatial proteomics, enabling comprehensive spatial analysis of proteins in tissue microenvironments by combining Digital Holographic Microscopy (DHM) imaging and high-precision laser capture microdissection (LCM) techniques. DHM is an advanced technology that utilizes optical interference principles for non-invasive imaging, providing high-resolution three-dimensional visualization of cells and macromolecules without requiring markers. In proteomics, DHM provides crucial technical support for investigating protein interactions and enables high-precision tracking and analysis of dynamic protein changes. In this review, we systematically survey peer-reviewed literature published in the past five years, with a focus on experimental and clinical studies applying DHM to proteomic analyses. Based on the significant advantages of this technology, we introduce the concept of “Holographic proteomics” as an emerging research field with promising future directions.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665404512251021101809
2025-11-14
2025-11-29
Loading full text...

Full text loading...

References

  1. Thiele J.C. Pfitzner E. Kukura P. Single-protein optical holography. Nat. Photonics 2024 18 4 388 395 10.1038/s41566‑024‑01405‑2
    [Google Scholar]
  2. Hutchinson T.M. Righi G. Celliers P.M. Ali S.J. McGuire C.P. Perez T. Rasmus A.M. Interframe-tunable ultrafast differential-displacement holography. Rev. Sci. Instrum. 2024 95 9 093704 10.1063/5.0215907 39292160
    [Google Scholar]
  3. Molani A. Pálhalmi J. Mihalik B. Claassen P. Langerak E. Mohammadian S. Linden B. Withaar T. Mező A. Ferrari M. Rahi P. Bela G. Pennati F. Aliverti A. Advancing bio-threat detection with digital holographic microscopy: The HoloZcan project. Optica Digital Holography and Three-Dimensional Imaging Optica Publishing Group 2024 10.1364/DH.2024.Tu5A.3
    [Google Scholar]
  4. Muniraj I. Falldorf C. Editorial: Advances in digital holographic microscopy and applications. Sec. Optic. Inform. Process. Holograph 2024 5 1502043 10.3389/fphot.2024.1502043
    [Google Scholar]
  5. Lopera M.J. Trusiak M. Doblas A. Ottevaere H. Trujillo C. Mueller-gabor holographic microscopy. Opt. Lasers Eng. 2023 178 10.2139/ssrn.4633474
    [Google Scholar]
  6. Xiong Z. Yu L. An S. Zheng J. Ma Y. Micó V. Gao P. Automatic identification and analysis of cells using digital holographic microscopy and Sobel segmentation. Front Photonics 2024 5 1359595 10.3389/fphot.2024.1359595
    [Google Scholar]
  7. Zhuang Z. Bertheau P. Emmert-Buck M.R. Liotta L.A. Gnarra J. Linehan W.M. Lubensky I.A. A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. Am. J. Pathol. 1995 146 3 620 625 7887444
    [Google Scholar]
  8. Yun J. Spatial proteomic analysis of single amyloid plaques in brain tissue using laser capture microdissection and mass spectrometry. Alzheimers Dement. 2024 20 S8 e095674 10.1002/alz.095674
    [Google Scholar]
  9. Rizzo F. Optical immunoassays methods in protein analysis: An overview. Chemosensors 2022 10 8 326 10.3390/chemosensors10080326
    [Google Scholar]
  10. Bressan D. Battistoni G. Hannon G.J. The dawn of spatial omics. Science 2023 381 6657 eabq4964 10.1126/science.abq4964 37535749
    [Google Scholar]
  11. Marx V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 2021 18 1 9 14 10.1038/s41592‑020‑01033‑y 33408395
    [Google Scholar]
  12. Eisenstein M. Seven technologies to watch in 2022. Nature 2022 601 7894 658 661 10.1038/d41586‑022‑00163‑x 35079149
    [Google Scholar]
  13. Hu B. Zhu J. Zhao F. The evolving landscape of spatial proteomics technologies in the AI age. Fundamental Res. 2024 In Press. 10.1016/j.fmre.2024.11.023
    [Google Scholar]
  14. Daucke R. Rift C.V. Bager N.S. Saxena K. Koffeldt P.R. Woessmann J. Petrosius V. Santoni-Rugiu E. Kristensen B.W. Klausen P. Schoof E.M. Refining spatial proteomics by mass spectrometry: An efficient workflow tailored for archival tissue. bioRxiv 2025 2024.01.25.577263 10.1101/2024.01.25.577263
    [Google Scholar]
  15. Gabor D. A new microscopic principle. Nature 1948 161 4098 777 778 10.1038/161777a0 18860291
    [Google Scholar]
  16. Bragg W.L. Microscopy by reconstructed wave-fronts. Nature 1950 166 4218 399 400 10.1038/166399b0 14775684
    [Google Scholar]
  17. Leith E.N. Upatnieks J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 1962 52 10 1123 1130
    [Google Scholar]
  18. Goodman J. Lawrence R. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967 11 3 77 79 10.1063/1.1755043
    [Google Scholar]
  19. Makhmut A. Qin D. Hartlmayr D. Seth A. Coscia F. An automated and fast sample preparation workflow for laser microdissection guided ultrasensitive proteomics. Mol. Cell. Proteomics 2024 23 5 100750 10.1016/j.mcpro.2024.100750 38513891
    [Google Scholar]
  20. Schäfer F. Tomar A. Sato S. Teperino R. Imhof A. Lahiri S. Enhanced in situ spatial proteomics by effective combination of MALDI imaging and LC-MS/MS. Mol. Cell. Proteomics 2024 23 8 100811 10.1016/j.mcpro.2024.100811 38996918
    [Google Scholar]
  21. Rosenberger F.A. Thielert M. Strauss M.T. Schweizer L. Ammar C. Mädler S.C. Metousis A. Skowronek P. Wahle M. Madden K. Gote-Schniering J. Semenova A. Schiller H.B. Rodriguez E. Nordmann T.M. Mund A. Mann M. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 2023 20 10 1530 1536 10.1038/s41592‑023‑02007‑6 37783884
    [Google Scholar]
  22. Kim H.W. Cho M. Lee M.C. Image processing techniques for improving quality of 3D profile in digital holographic microscopy using deep learning algorithm. Sensors 2024 24 6 1950 10.3390/s24061950 38544214
    [Google Scholar]
  23. Jing S. Liu D. Feng N. Dong H. Wang H. Yan X. Chen X. Qu M. Lin P. Yi B. Feng F. Chen L. Wang H. Li H. He Y. Spatial multiomics reveals a subpopulation of fibroblasts associated with cancer stemness in human hepatocellular carcinoma. Genome Med. 2024 16 1 98 10.1186/s13073‑024‑01367‑8 39138551
    [Google Scholar]
  24. Lyu P. Gu X. Wang F. Sun H. Zhou Q. Yang S. Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark. Res. 2024 12 1 73 10.1186/s40364‑024‑00622‑9 39075612
    [Google Scholar]
  25. Baker A.S. Deiters A. Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches. ACS Chem. Biol. 2014 9 7 1398 1407 10.1021/cb500176x 24819585
    [Google Scholar]
  26. Cheng Y. Chen X. Feng L. Yang Z. Xiao L. Xiang B. Wang X. Liu D. Lin P. Shi J. Song G. Qian W. Zhang B. Xu Y. Gao Z. Chen L. Wu Y. Ma J. Lin Y. Zhao H. Peng L. Mao X. Liu Y. Hou H. Yang M. Ji Y. Wang X. Zhou J. Xu X. Liu X. Wei W. Zhang X. Gao Q. Zhou H. Sun Y. Wu K. Fan J. Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma. Cell Discov. 2025 11 1 1 10.1038/s41421‑024‑00747‑z 39870619
    [Google Scholar]
  27. Doblas A. Bogue-Jimenez B. Obando-Vasquez S. Castañeda R. Trujillo C. Overview of computational advances in quantitative phase imaging using digital holographic microscopy. ProcSPIE 2024, 13041. 10.1117/12.3011999
    [Google Scholar]
  28. Li S Luo J Liu J He D Pan-cancer single cell and spatial transcriptomics analysis deciphers the molecular landscapes of senescence related cancer-associated fibroblasts and reveals its predictive value in neuroblastoma via integrated multi-omics analysis and machine learning. Front. Immunol. 2024 15 1506256 10.3389/fimmu.2024.1506256
    [Google Scholar]
  29. Sun Y.A.J. Liu Z. Sun R. Qian L. Payne S. Bittremieux W. Ralser M. Li C. Chen Y. Dong Z. Perez-Riverol Y. Khan A. Sander C. Aebersold R. Vizcaino J. Krieger J. Yao J. Wen H. Guo T. Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence. arXiv 2025
    [Google Scholar]
  30. Vickovic S. Lötstedt B. Klughammer J. Mages S. Segerstolpe Å. Rozenblatt-Rosen O. Regev A. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 2022 13 1 795 10.1038/s41467‑022‑28445‑y 35145087
    [Google Scholar]
  31. Gholami A. Shirmohammadi S. Advanced in protein-ligand interaction studies optical-based spectroscopic insights and simulation perspectives. J. Biomed. Res. Environ. Sci. 2024 5 6 614 629 10.37871/jbres1934
    [Google Scholar]
  32. Luker G.D. Luker K.E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008 49 1 1 4 10.2967/jnumed.107.045799 18077528
    [Google Scholar]
  33. Kemper B. von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 2008 47 4 A52 A61 10.1364/AO.47.000A52 18239699
    [Google Scholar]
  34. Quan X Kato D Daria V Matoba O Wake H Holographic microscope and its biological application. Neurosci. Res. 2022 179 57 64 10.1016/j.neures.2021.10.012 34740727
    [Google Scholar]
  35. Kim B.M. Park S.J. Kim E.S. Single-shot digital holographic microscopy with a modified lateral-shearing interferometer based on computational telecentricity. Opt. Express 2017 25 6 6151 6168 10.1364/OE.25.006151 28380970
    [Google Scholar]
  36. Schubert R. Vollmer A. Ketelhut S. Kemper B. Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Biomed. Opt. Express 2014 5 12 4213 4222 10.1364/BOE.5.004213 25574433
    [Google Scholar]
  37. Minegishi Y. Haga Y. Ueda K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy. Cancer Sci. 2024 115 4 1048 1059 10.1111/cas.16118 38382459
    [Google Scholar]
  38. Chaudhari H. Kulkarni R. Kumar S.P. Thummer R.P. Bhuyan M.K. Digital hologram reconstruction algorithm based on the fractional Fourier transform in non-telecentric digital holographic microscopy. Opt. Lett. 2024 49 2 182 185 10.1364/OL.504723 38194523
    [Google Scholar]
  39. Hoenisch Gravel N. Nelde A. Bauer J. Mühlenbruch L. Schroeder S.M. Neidert M.C. Scheid J. Lemke S. Dubbelaar M.L. Wacker M. Dengler A. Klein R. Mauz P.S. Löwenheim H. Hauri-Hohl M. Martin R. Hennenlotter J. Stenzl A. Heitmann J.S. Salih H.R. Rammensee H.G. Walz J.S. TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification. Nat. Commun. 2023 14 1 7472 10.1038/s41467‑023‑42692‑7 37978195
    [Google Scholar]
  40. Faria D. Eugénio P. Contreiras Silva M. Balbi L. Bedran G. Kallor A.A. Nunes S. Palkowski A. Waleron M. Alfaro J.A. Pesquita C. The immunopeptidomics ontology (ImPO). Database (Oxford) 2024 2024 baae014 10.1093/database/baae014
    [Google Scholar]
  41. Flender D. Vilenne F. Adams C. Boonen K. Valkenborg D. Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. Mass Spectrom. Rev. 2024 10.1002/mas.21905 39152539
    [Google Scholar]
  42. Huang X. Gan Z. Cui H. Lan T. Liu Y. Caron E. Shao W. The SysteMHC Atlas v2.0, an updated resource for mass spectrometry-based immunopeptidomics. Nucleic Acids Res. 2024 52 D1 D1062 D1071 10.1093/nar/gkad1068 38000392
    [Google Scholar]
  43. Weitzen M. Shahbazy M. Kapoor S. Caron E. Deciphering the HLA-E immunopeptidome with mass spectrometry: An opportunity for universal mRNA vaccines and T-cell-directed immunotherapies. Front. Immunol. 2024 15 1442783 10.3389/fimmu.2024.1442783 39301027
    [Google Scholar]
  44. Hornburg D. Mueller T. Foser S. Leveraging proteomics for precision cancer research, diagnosis, and treatment. Genet. Eng. Biotechnol. News 2024 44 9 48 50 10.1089/gen.44.09.17
    [Google Scholar]
  45. Bravo-Frank N. Zende R. Feng L. Mesyngier N. Pachpute A. Hong J. Realtime bacteria detection and analysis in sterile liquid products using deep learning holographic imaging. NPJ Biosensing 2024 1 8 10.1038/s44328‑024‑00008‑9
    [Google Scholar]
  46. Marquet P. Depeursinge C. Magistretti P.J. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 2014 1 2 020901 10.1117/1.NPh.1.2.020901 26157976
    [Google Scholar]
  47. Zhang J. Liu Y. Cui W. Jiang Z. Fractional fourier-transform off-axis digital holographic imaging. Appl. Opt. 2024 63 14 3922 3928 10.1364/AO.520086 38856356
    [Google Scholar]
  48. Shamshiripour P. Rahnama M. Nikoobakht M Hajiahmadi F. Moradi A.R. Ahmadvand D. A dynamic study of VEGF-A siDOX-EVs trafficking through the in-vitro insert co-culture blood-brain barrier model by digital holographic microscopy. Front. Oncol. 2024 14 1292083 10.3389/fonc.2024.1292083 38529380
    [Google Scholar]
  49. Bilal H. Khan M.N. Khan S. Shafiq M. Fang W. Khan R.U. Rahman M.U. Li X. Lv Q-L. Xu B. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Comput. Struct. Biotechnol. J. 2025 27 423 439 10.1016/j.csbj.2025.01.006 39906157
    [Google Scholar]
  50. Zhang J. Sun J. Chen Q. Zuo C. Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans. Comput. Imaging 2020 6 697 710 10.1109/TCI.2020.2964247
    [Google Scholar]
  51. Kieber R. Froehly L. Jacquot M. Physics-driven learning for digital holographic microscopy. EPJ Web Conf 2024 309 15005
    [Google Scholar]
  52. Wu Y. Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 2018 136 4 16 10.1016/j.ymeth.2017.08.013 28864356
    [Google Scholar]
  53. Guan Y. Cui Z. Zhou W. Reconstruction in off-axis digital holography based on hybrid clustering and the fractional Fourier transform. Opt. Laser Technol. 2025 186 112622 10.1016/j.optlastec.2025.112622
    [Google Scholar]
  54. Takeda M. Ina H. Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 1982 72 1 156 160 10.1364/JOSA.72.000156
    [Google Scholar]
  55. Yamaguchi I. Zhang T. Phase-shifting digital holography. Opt. Lett. 1997 22 16 1268 1270 10.1364/OL.22.001268 18185816
    [Google Scholar]
  56. Yu L. Mohanty S. Zhang J. Genc S. Kim M.K. Berns M.W. Chen Z. Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery. Opt. Express 2009 17 14 12031 12038 10.1364/OE.17.012031 19582118
    [Google Scholar]
  57. Zhang T. Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 1998 23 15 1221 1223 10.1364/OL.23.001221 18087480
    [Google Scholar]
  58. Hughes J.W. Sisley E.K. Hale O.J. Cooper H.J. Laser capture microdissection and native mass spectrometry for spatially-resolved analysis of intact protein assemblies in tissue. Chem. Sci. (Camb.) 2024 15 15 5723 5729 10.1039/D3SC04933G 38638209
    [Google Scholar]
  59. Daviter T. Fronzes R. Protein sample characterization. Methods Mol. Biol. 2013 1008 35 62 10.1007/978‑1‑62703‑398‑5_2 23729248
    [Google Scholar]
  60. Depeursinge C.D. Cuche E. Colomb T. Dahlgren P. Marian A.M. Monfort F. Marquet P. Magistretti P.J. Cells and tissue imaging with digital holographic microscopy. Novel Optic. Instrument. Biomed. Appl. 2003, 5143. 10.1117/12.500899
    [Google Scholar]
  61. Kou S.S. Sheppard C.J. Imaging in digital holographic microscopy. Opt. Express 2007 15 21 13640 13648 10.1364/OE.15.013640 19550632
    [Google Scholar]
  62. Depeursinge C. Marian A. Montfort F. Colomb T. Charrière F. Kühn J. Etienne C. Emery Y. Marquet P. Digital Holographic Microscopy (DHM) applied to Optical Metrology: A resolution enhanced imaging technology applied to inspection of microscopic devices with subwavelength resolution. Fringe Springer 2006 308 314 10.1007/3‑540‑29303‑5_41
    [Google Scholar]
  63. Lei Y. Zhang Q. Guo Y. Pu M. Zou F. Li X. Ma X. Luo X. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser. Photon. Res. 2023 11 3 B111 B24 10.1364/PRJ.476317
    [Google Scholar]
  64. Tahara T. Quan X. Otani R. Takaki Y. Matoba O. Digital holography and its multidimensional imaging applications: a review. Microscopy (Oxf.) 2018 67 2 55 67 10.1093/jmicro/dfy007 29471371
    [Google Scholar]
  65. Marquet P. Rappaz B. Magistretti P.J. Cuche E. Emery Y. Colomb T. Depeursinge C. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005 30 5 468 470 10.1364/OL.30.000468 15789705
    [Google Scholar]
  66. Popescu G. Ikeda T. Dasari R.R. Feld M.S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 2006 31 6 775 777 10.1364/OL.31.000775 16544620
    [Google Scholar]
  67. Rappaz B. Marquet P. Cuche E. Emery Y. Depeursinge C. Magistretti P.J. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 2005 13 23 9361 9373 10.1364/OPEX.13.009361 19503137
    [Google Scholar]
  68. Shaked N.T. Quantitative phase microscopy of biological samples using a portable interferometer. Opt. Lett. 2012 37 11 2016 2018 10.1364/OL.37.002016 22660106
    [Google Scholar]
  69. Colomb T. Charrière F. Kühn J. Marquet P. Depeursinge C. Advantages of digital holographic microscopy for real-time full field absolute phase imaging. Proc SPIE 2008 6861 10.1117/12.763284
    [Google Scholar]
  70. Zhu L. Wang Y. Wu X. Wu G. Zhang G. Liu C. Zhang S. Protein design accelerates the development and application of optogenetic tools. Computat Struct Biotechnol 2025 27 717 10.1016/j.csbj.2025.02.014
    [Google Scholar]
  71. Charette M. Rosenblum C. Shade O. Deiters A. Optogenetics with atomic precision: A comprehensive review of optical control of protein function through genetic code expansion. Chem. Rev. 2025 125 4 1663 1717 10.1021/acs.chemrev.4c00224 39928721
    [Google Scholar]
  72. Courtney T. Deiters A. Recent advances in the optical control of protein function through genetic code expansion. Curr. Opin. Chem. Biol. 2018 46 99 107 10.1016/j.cbpa.2018.07.011 30056281
    [Google Scholar]
  73. Aebersold R. Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016 537 7620 347 355 10.1038/nature19949 27629641
    [Google Scholar]
  74. Lundberg E. Borner G.H.H. Spatial proteomics: A powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 2019 20 5 285 302 10.1038/s41580‑018‑0094‑y 30659282
    [Google Scholar]
  75. Method of the Year 2024: Spatial proteomics. Nat. Methods 2024 21 12 2195 2196 10.1038/s41592‑024‑02565‑3 39643689
    [Google Scholar]
  76. Thul P.J. Åkesson L. Wiking M. Mahdessian D. Geladaki A. Ait Blal H. Alm T. Asplund A. Björk L. Breckels L.M. Bäckström A. Danielsson F. Fagerberg L. Fall J. Gatto L. Gnann C. Hober S. Hjelmare M. Johansson F. Lee S. Lindskog C. Mulder J. Mulvey C.M. Nilsson P. Oksvold P. Rockberg J. Schutten R. Schwenk J.M. Sivertsson Å. Sjöstedt E. Skogs M. Stadler C. Sullivan D.P. Tegel H. Winsnes C. Zhang C. Zwahlen M. Mardinoglu A. Pontén F. von Feilitzen K. Lilley K.S. Uhlén M. Lundberg E. A subcellular map of the human proteome. Science 2017 356 6340 eaal3321 10.1126/science.aal3321 28495876
    [Google Scholar]
  77. Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. Olsson I. Edlund K. Lundberg E. Navani S. Szigyarto C.A.K. Odeberg J. Djureinovic D. Takanen J.O. Hober S. Alm T. Edqvist P.H. Berling H. Tegel H. Mulder J. Rockberg J. Nilsson P. Schwenk J.M. Hamsten M. von Feilitzen K. Forsberg M. Persson L. Johansson F. Zwahlen M. von Heijne G. Nielsen J. Pontén F. Tissue-based map of the human proteome. Science 2015 347 6220 1260419 10.1126/science.1260419 25613900
    [Google Scholar]
  78. Matthiesen R. Jensen O.N. Analysis of mass spectrometry data in proteomics. Methods Mol. Biol. 2008 453 105 122 10.1007/978‑1‑60327‑429‑6_4 18712299
    [Google Scholar]
  79. Xiang-Wei Yang F. Research progress of JNK in neurological diseases. Chinese Bullet. Life Sci. 2024 36 5 10.13376/j.cbls/2024063
    [Google Scholar]
  80. Hoebe R.A. Van Oven C.H. Gadella T.W.J. Jr Dhonukshe P.B. Van Noorden C.J.F. Manders E.M.M. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 2007 25 2 249 253 10.1038/nbt1278 17237770
    [Google Scholar]
  81. Cuche E. Marquet P. Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 2000 39 23 4070 4075 10.1364/AO.39.004070 18349988
    [Google Scholar]
  82. Popescu G. Park Y. Lue N. Best-Popescu C. Deflores L. Dasari R.R. Feld M.S. Badizadegan K. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 2008 295 2 C538 C544 10.1152/ajpcell.00121.2008 18562484
    [Google Scholar]
  83. Barer R. Interference microscopy and mass determination. Nature 1952 169 4296 366 367 10.1038/169366b0 14919571
    [Google Scholar]
  84. Pavillon N. Benke A. Boss D. Moratal C. Kühn J. Jourdain P. Depeursinge C. Magistretti P.J. Marquet P. Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy. J. Biophotonics 2010 3 7 432 436 10.1002/jbio.201000018 20306502
    [Google Scholar]
  85. Kühn J. Shaffer E. Mena J. Breton B. Parent J. Rappaz B. Chambon M. Emery Y. Magistretti P. Depeursinge C. Marquet P. Turcatti G. Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev. Technol. 2013 11 2 101 107 10.1089/adt.2012.476 23062077
    [Google Scholar]
  86. Rappaz B. Breton B. Shaffer E. Turcatti G. Digital holographic microscopy: A quantitative label-free microscopy technique for phenotypic screening. Comb. Chem. High Throughput Screen. 2014 17 1 80 88 10.2174/13862073113166660062 24152227
    [Google Scholar]
  87. Bettenworth D. Lenz P. Krausewitz P. Brückner M. Ketelhut S. Domagk D. Kemper B. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 2014 9 9 e107317 10.1371/journal.pone.0107317 25251440
    [Google Scholar]
  88. Kemper B. Bauwens A. Vollmer A. Ketelhut S. Langehanenberg P. Müthing J. Karch H. von Bally G. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J. Biomed. Opt. 2010 15 3 1 10.1117/1.3431712 20615011
    [Google Scholar]
  89. Pavillon N. Kühn J. Moratal C. Jourdain P. Depeursinge C. Magistretti P.J. Marquet P. Early cell death detection with digital holographic microscopy. PLoS One 2012 7 1 e30912 10.1371/journal.pone.0030912 22303471
    [Google Scholar]
  90. Moffat J.G. Rudolph J. Bailey D. Phenotypic screening in cancer drug discovery — past, present and future. Nat. Rev. Drug Discov. 2014 13 8 588 602 10.1038/nrd4366 25033736
    [Google Scholar]
  91. Guangfeng K. Qian J. Hong Z. Kai Y. Yanxiao J. Yingying W. Ziyi C. Jie J. Application progress of Mass Spectrometry Imaging technology in marine biology research. Marine Sci. Bullet. 2023 42 2 216 231 10.11840/j.issn.1001‑6392.2023.02.011
    [Google Scholar]
  92. Marcus D.J. Bruchas M.R. Optical approaches for investigating neuromodulation and G protein–coupled receptor signaling. Pharmacol. Rev. 2023 75 6 1119 1139 10.1124/pharmrev.122.000584 37429736
    [Google Scholar]
  93. van de Ven S.M.W.Y. Bemis K.D. Lau K. Adusumilli R. Kota U. Stolowitz M. Vitek O. Mallick P. Gambhir S.S. Protein biomarkers on tissue as imaged via MALDI mass spectrometry: A systematic approach to study the limits of detection. Proteomics 2016 16 11-12 1660 1669 10.1002/pmic.201500515 26970438
    [Google Scholar]
  94. Rappsilber J. Mann M. What does it mean to identify a protein in proteomics? Trends Biochem. Sci. 2002 27 2 74 78 10.1016/S0968‑0004(01)02021‑7 11852244
    [Google Scholar]
  95. Aebersold R. Agar J.N. Amster I.J. Baker M.S. Bertozzi C.R. Boja E.S. Costello C.E. Cravatt B.F. Fenselau C. Garcia B.A. Ge Y. Gunawardena J. Hendrickson R.C. Hergenrother P.J. Huber C.G. Ivanov A.R. Jensen O.N. Jewett M.C. Kelleher N.L. Kiessling L.L. Krogan N.J. Larsen M.R. Loo J.A. Ogorzalek Loo R.R. Lundberg E. MacCoss M.J. Mallick P. Mootha V.K. Mrksich M. Muir T.W. Patrie S.M. Pesavento J.J. Pitteri S.J. Rodriguez H. Saghatelian A. Sandoval W. Schlüter H. Sechi S. Slavoff S.A. Smith L.M. Snyder M.P. Thomas P.M. Uhlén M. Van Eyk J.E. Vidal M. Walt D.R. White F.M. Williams E.R. Wohlschlager T. Wysocki V.H. Yates N.A. Young N.L. Zhang B. How many human proteoforms are there? Nat. Chem. Biol. 2018 14 3 206 214 10.1038/nchembio.2576 29443976
    [Google Scholar]
  96. Larance M. Lamond A.I. Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 2015 16 5 269 280 10.1038/nrm3970 25857810
    [Google Scholar]
  97. Savitski M.M. Reinhard F.B.M. Franken H. Werner T. Savitski M.F. Eberhard D. Molina D.M. Jafari R. Dovega R.B. Klaeger S. Kuster B. Nordlund P. Bantscheff M. Drewes G. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 2014 346 6205 1255784 10.1126/science.1255784 25278616
    [Google Scholar]
  98. Schubert O.T. Röst H.L. Collins B.C. Rosenberger G. Aebersold R. Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat. Protoc. 2017 12 7 1289 1294 10.1038/nprot.2017.040 28569762
    [Google Scholar]
  99. Thul P.J. Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018 27 1 233 244 10.1002/pro.3307 28940711
    [Google Scholar]
  100. Uhlen M. Bandrowski A. Carr S. Edwards A. Ellenberg J. Lundberg E. Rimm D.L. Rodriguez H. Hiltke T. Snyder M. Yamamoto T. A proposal for validation of antibodies. Nat. Methods 2016 13 10 823 827 10.1038/nmeth.3995 27595404
    [Google Scholar]
  101. Zhang B. Wang J. Wang X. Zhu J. Liu Q. Shi Z. Chambers M.C. Zimmerman L.J. Shaddox K.F. Kim S. Davies S.R. Wang S. Wang P. Kinsinger C.R. Rivers R.C. Rodriguez H. Townsend R.R. Ellis M.J.C. Carr S.A. Tabb D.L. Coffey R.J. Slebos R.J.C. Liebler D.C. NCI CPTAC Proteogenomic characterization of human colon and rectal cancer. Nature 2014 513 7518 382 387 10.1038/nature13438 25043054
    [Google Scholar]
  102. Kverneland A.H. Harking F. Vej-Nielsen J.M. Huusfeldt M. Bekker-Jensen D.B. Svane I.M. Bache N. Olsen J.V. Fully automated workflow for integrated sample digestion and evotip loading enabling high-throughput clinical proteomics. Mol. Cell. Proteomics 2024 23 7 100790 10.1016/j.mcpro.2024.100790 38777088
    [Google Scholar]
  103. Kim J. Lee S.J. Digital in-line holographic microscopy for label-free identification and tracking of biological cells. Mil. Med. Res. 2024 11 1 38 10.1186/s40779‑024‑00541‑8 38867274
    [Google Scholar]
  104. Wu X. Xu W. Deng L. Li Y. Wang Z. Sun L. Gao A. Wang H. Yang X. Wu C. Zou Y. Yan K. Liu Z. Zhang L. Du G. Yang L. Lin D. Yue J. Wang P. Han Y. Fu Z. Dai J. Cao G. Spatial multi-omics at subcellular resolution via high-throughput in situ pairwise sequencing. Nat. Biomed. Eng. 2024 8 7 872 889 10.1038/s41551‑024‑01205‑7 38745110
    [Google Scholar]
  105. Wei J. Dai S. Yan Y. Li S. Yang P. Zhu R. Huang T. Li X. Duan Y. Wang Z. Ji W. Si W. Spatiotemporal proteomic atlas of multiple brain regions across early fetal to neonatal stages in cynomolgus monkey. Nat. Commun. 2023 14 1 3917 10.1038/s41467‑023‑39411‑7 37400444
    [Google Scholar]
  106. Liu Y. Hüttenhain R. Collins B. Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev. Mol. Diagn. 2013 13 8 811 825 10.1586/14737159.2013.845089 24138574
    [Google Scholar]
  107. Bian Y. Zheng R. Bayer F.P. Wong C. Chang Y.C. Meng C. Zolg D.P. Reinecke M. Zecha J. Wiechmann S. Heinzlmeir S. Scherr J. Hemmer B. Baynham M. Gingras A.C. Boychenko O. Kuster B. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 2020 11 1 157 10.1038/s41467‑019‑13973‑x 31919466
    [Google Scholar]
  108. Zubarev R.A. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics 2013 13 5 723 726 10.1002/pmic.201200451 23307342
    [Google Scholar]
  109. Briel S.C. Feuser N. Moldenhauer E.J. Kabisch J. Neubauer P. Junne S. Digital holographic microscopy is suitable for lipid accumulation analysis in single cells of Yarrowia lipolytica. J. Biotechnol. 2025 397 32 43 10.1016/j.jbiotec.2024.11.011 39551244
    [Google Scholar]
  110. Nguyen T. Bui V. Lam V. Raub C.B. Chang L.C. Nehmetallah G. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Opt. Express 2017 25 13 15043 15057 10.1364/OE.25.015043 28788938
    [Google Scholar]
  111. Chen B. Yin Z. Ng B.W.L. Wang D.M. Tuan R.S. Bise R. Ker D.F.E. Label-free live cell recognition and tracking for biological discoveries and translational applications. NPJ Imaging 2024 2 1 41 10.1038/s44303‑024‑00046‑y 40603709
    [Google Scholar]
  112. Meng N. Lam E.Y. Tsia K.K. So H.K.H. Large-scale multi-class image-based cell classification with deep learning. IEEE J. Biomed. Health Inform. 2019 23 5 2091 2098 10.1109/JBHI.2018.2878878 30387753
    [Google Scholar]
  113. Guo W. Hu Y. Qian J. Zhu L. Cheng J. Liao J. Fan X. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J. Genet. Genomics 2023 50 9 641 651 10.1016/j.jgg.2023.07.011 37544594
    [Google Scholar]
  114. Feng Z. Zhang W. Xu J. Gauron C. Ducos B. Vriz S. Volovitch M. Jullien L. Weiss S. Bensimon D. Optical control and study of biological processes at the single-cell level in a live organism. Rep. Prog. Phys. 2013 76 7 072601 10.1088/0034‑4885/76/7/072601 23764902
    [Google Scholar]
  115. Wu M. Tao H. Xu T. Zheng X. Wen C. Wang G. Peng Y. Dai Y. Spatial proteomics: Unveiling the multidimensional landscape of protein localization in human diseases. Proteome Sci. 2024 22 1 7 10.1186/s12953‑024‑00231‑2 39304896
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665404512251021101809
Loading
/content/journals/ppl/10.2174/0109298665404512251021101809
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test