Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Peak-shouldering elution behavior was a common and unexpected result in bind-and-elute mode Cation Exchange Chromatography (CEX), which may be due to the pH transition during the elution step and the aggregation tendency of target proteins.

Methods

Improving the concentration of acid-base pairs in the wash buffers or elution buffers without changing pH or conductivity effectively resolved the peak-shouldering issue in CEX.

Results

In the case of molecule A, the shoulder peak was eliminated in the CEX run by increasing the NaAc-HAc concentration from 50 mM to 100 mM in the elution buffer or from 50 mM to 75 mM in the wash buffer. Higher NaAc-HAc concentrations affect the pH transition in the early stages of the elution step, which may explain the elimination of the shoulder peak. A similar result was observed for molecule B, where increasing the Tris-HCl concentration in the elution buffer from 50 mM to 80 mM also removed the shoulder peak during elution.

Discussion

The successful elimination of peak-shouldering behavior by increasing acid-base pair concentrations highlights the critical role of buffer capacity in modulating pH transitions during CEX. While this strategy offers a simple and effective solution, further investigation is needed to assess its applicability across diverse protein types and buffer systems.

Conclusion

These results demonstrate that increasing the concentration of acid-base pairs in the elution buffer or wash buffer of CEX using NaAc-HAc or Tris-HCl buffers is an effective strategy for eliminating the shoulder-peak.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665394172250926073117
2025-10-03
2026-02-20
Loading full text...

Full text loading...

References

  1. YuL. ZhangL. SunY. Protein behavior at surfaces: Orientation, conformational transitions and transport.J. Chromatogr. A2015138211813410.1016/j.chroma.2014.12.08725601319
    [Google Scholar]
  2. ShuklaA.A. ThömmesJ. Recent advances in large-scale production of monoclonal antibodies and related proteins.Trends Biotechnol.201028525326110.1016/j.tibtech.2010.02.00120304511
    [Google Scholar]
  3. LuoH. CaoM. NewellK. AfdahlC. WangJ. WangW.K. LiY. Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants.J. Chromatogr. A201514249210110.1016/j.chroma.2015.11.00826596869
    [Google Scholar]
  4. GuoJ. CreasyA.D. BarkerG. CartaG. Surface induced three-peak elution behavior of a monoclonal antibody during cation exchange chromatography.J. Chromatogr. A20161474859410.1016/j.chroma.2016.10.06127802880
    [Google Scholar]
  5. HuangC. WangY. XuX. MillsJ. JinW. GhoseS. LiZ.J. Hydrophobic property of cation-exchange resins affects monoclonal antibody aggregation.J. Chromatogr. A2020163146157310.1016/j.chroma.2020.46157333010710
    [Google Scholar]
  6. GuoJ. CartaG. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: Effects of resin type, load buffer, and protein stability.J. Chromatogr. A2015138818419410.1016/j.chroma.2015.02.04725739785
    [Google Scholar]
  7. GuoJ. ZhangS. CartaG. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.J. Chromatogr. A2014135611712810.1016/j.chroma.2014.06.03725015241
    [Google Scholar]
  8. GuoJ. CartaG. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part II. Protein structure effects by hydrogen deuterium exchange mass spectrometry.J. Chromatogr. A2014135612913710.1016/j.chroma.2014.06.03825011681
    [Google Scholar]
  9. GuoJ. XuX. Conformational changes of biomolecules in ion-exchange chromatography.Ion-Exchange Chromatography and Related TechniquesAmsterdam, NetherlandsElsevier202452153410.1016/B978‑0‑443‑15369‑3.00020‑1
    [Google Scholar]
  10. KimererL.K. PabstT.M. HunterA.K. CartaG. Chromatographic behavior of bivalent bispecific antibodies on cation exchange columns. I. Experimental observations and phenomenological model.J. Chromatogr. A2019160112113210.1016/j.chroma.2019.04.01231056270
    [Google Scholar]
  11. LuoH. MacapagalN. NewellK. ManA. ParupudiA. LiY. LiY. Effects of salt-induced reversible self-association on the elution behavior of a monoclonal antibody in cation exchange chromatography.J. Chromatogr. A2014136218619310.1016/j.chroma.2014.08.04825182858
    [Google Scholar]
  12. EsfandiaryR. HayesD.B. ParupudiA. Casas-finetJ. BaiS. SamraH.S. ShahA.U. SathishH.A. A systematic multitechnique approach for detection and characterization of reversible self-association during formulation development of therapeutic antibodies.J. Pharm. Sci.20131021627210.1002/jps.2336923150484
    [Google Scholar]
  13. PoplewskaI. PiątkowskiW. AntosD. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography.J. Chromatogr. A2021163646168710.1016/j.chroma.2020.46168733246679
    [Google Scholar]
  14. PabstT.M. CartaG. pH transitions in cation exchange chromatographic columns containing weak acid groups.J. Chromatogr. A200711421193110.1016/j.chroma.2006.08.06616978635
    [Google Scholar]
  15. PabstT.M. AntosD. CartaG. RamasubramanyanN. HunterA.K. Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups.J. Chromatogr. A200811811-2839410.1016/j.chroma.2007.12.05418194806
    [Google Scholar]
  16. GhoseS. McNerneyT.M. HubbardB. pH transitions in ion-exchange systems: Role in the development of a cation-exchange process for a recombinant protein.Biotechnol. Prog.200218353053710.1021/bp020002i
    [Google Scholar]
  17. BankstonT.E. DattoloL. CartaG. pH Transients in hydroxyapatite chromatography columns—Experimental evidence and phenomenological modeling.J. Chromatogr. A20101217142123213110.1016/j.chroma.2010.02.00420193952
    [Google Scholar]
  18. Soto PérezJ. FreyD.D. Behavior of the inadvertent pH transient formed by a salt gradient in the ion-exchange chromatography of proteins.Biotechnol. Prog.200521390291010.1021/bp040025s15932272
    [Google Scholar]
  19. GillespieR. NguyenT. MacneilS. JonesL. CramptonS. VunnumS. Cation exchange surface-mediated denaturation of an aglycosylated immunoglobulin (IgG1).J. Chromatogr. A2012125110111010.1016/j.chroma.2012.06.03722771262
    [Google Scholar]
  20. ChenZ. HuangC. ChennamsettyN. XuX. LiZ.J. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.J. Chromatogr. A2016146011012210.1016/j.chroma.2016.07.02327452990
    [Google Scholar]
  21. HiranoA. ShirakiK. KamedaT. Effects of arginine on multimodal chromatography: Experiments and simulations.Curr. Protein Pept. Sci.2018201404810.2174/138920371866617102411540729065827
    [Google Scholar]
  22. LangeC. RudolphR. Suppression of protein aggregation by L-arginine.Curr. Pharm. Biotechnol.200910440841410.2174/13892010978848885119519416
    [Google Scholar]
  23. FuY. XuY. ZhangM. LvF. Removal of signal peptide variants by cation exchange chromatography: A case study.Protein Expr. Purif.202522510658110.1016/j.pep.2024.10658139168393
    [Google Scholar]
  24. HuL. TangJ. ZhangX. LiY. Sodium caprylate wash during Protein A chromatography as an effective means for removing protease(s) responsible for target antibody fragmentation.Protein Expr. Purif.202118610590710.1016/j.pep.2021.10590734022391
    [Google Scholar]
  25. LiuC. TianM. DongW. LuW. ZhangT. WanY. ZhangX. LiY. SEC-HPLC analysis of column load and flow-through provides critical understanding of low Protein A step yield.Protein Expr. Purif.202421610641810.1016/j.pep.2023.10641838141898
    [Google Scholar]
  26. HardinA.M. IvoryC.F. Buffer salt effect on pH in the interior of an anion exchange resin.J. Colloid Interface Sci.2006302256056710.1016/j.jcis.2006.06.05516870202
    [Google Scholar]
  27. TsumotoK. EjimaD. SenczukA.M. KitaY. ArakawaT. Effects of salts on protein–surface interactions: Applications for column chromatography.J. Pharm. Sci.20079671677169010.1002/jps.2082117221853
    [Google Scholar]
  28. CumminsP.M. RochfortK.D. O’ConnorB.F. Ion-exchange chromatography: Basic principles and application.Methods Mol. Biol.2017148520922310.1007/978‑1‑4939‑6412‑3_1127730555
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665394172250926073117
Loading
/content/journals/ppl/10.2174/0109298665394172250926073117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test