Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods

Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Non-negative matrix factorization (NMF) was used to cluster mevalonate metabolism-related genes into distinct metabolic subtypes (C1 and C2). Associations between mevalonate metabolism, clinical characteristics, immune infiltration, and cisplatin resistance were analyzed using Gene Set Variation Analysis (GSVA), Kaplan-Meier survival analysis, single-sample Gene Set Enrichment Analysis (ssGSEA), and experiments.

Results

NMF clustering classified bladder cancer patients into two metabolic subtypes (C1/C2). The C1, characterized by higher mevalonate metabolism (MVAscore), was associated with a poorer prognosis, shorter overall survival (OS), and higher T-stage and pathological grades. Immune analysis showed lower immune cell infiltration in C1. Immune infiltration analysis revealed significantly lower immune infiltration levels in the C1. Further analysis revealed a positive correlation between mevalonate metabolism and platinum resistance, with a notable increase in mevalonate metabolism observed in cisplatin-resistant bladder cancer cells. , simvastatin inhibited the proliferation of bladder cancer cells and enhanced their sensitivity to cisplatin.

Discussion

Mevalonate metabolism drives BCa heterogeneity and chemoresistance while suppressing anti-tumor immunity. Its dysregulation serves as both a prognostic biomarker and a target for therapeutic intervention.

Conclusion

Mevalonate metabolism contributes to cisplatin resistance in bladder cancer and represents a potential therapeutic target. Simvastatin targeting this pathway enhances the efficacy of cisplatin, providing a novel personalized chemotherapy strategy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665403178250806111943
2025-09-03
2026-02-20
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. CumberbatchM.G. RotaM. CattoJ.W.F. La VecchiaC. The role of tobacco smoke in bladder and kidney carcinogenesis: A comparison of exposures and meta-analysis of incidence and mortality risks.Eur. Urol.201670345846610.1016/j.eururo.2015.06.04226149669
    [Google Scholar]
  3. FlaigT.W. SpiessP.E. AgarwalN. BangsR. BoorjianS.A. BuyyounouskiM.K. ChangS. DownsT.M. EfstathiouJ.A. FriedlanderT. GreenbergR.E. GuruK.A. GuzzoT. HerrH.W. Hoffman-CensitsJ HoimesC. InmanB.A. JimboM KaderAK LeleS.M. MichalskiJ. MontgomeryJ.S. NandagopalL PagliaroLC PalS.K. PattersonA. PlimackE.R. PoharK.S. PrestonM.A. SextonW.J. Siefker-RadtkeA.O. TwardJ. WrightJ.L. GurskiL.A. Johnson-ChillaA. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202018332935410.6004/jnccn.2020.001132135513
    [Google Scholar]
  4. LeydermanM. ChandrasekarT. GrivasP. LiR. BhatS BasnetA. ShapiroO. JacobJ. DaneshvarM.A. KordE. BratslavskyG. GoldbergH. Metastasis development in non-muscle-invasive bladder cancer.Nat. Rev. Urol.202522637538610.1038/s41585‑024‑00963‑y39567681
    [Google Scholar]
  5. VlachostergiosP.J. FaltasB.M. Treatment resistance in urothelial carcinoma: An evolutionary perspective.Nat. Rev. Clin. Oncol.201815849550910.1038/s41571‑018‑0026‑y29720713
    [Google Scholar]
  6. LiZ. ZhangH. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression.Cell. Mol. Life Sci.201673237739210.1007/s00018‑015‑2070‑426499846
    [Google Scholar]
  7. Martin-PerezM. Urdiroz-UrricelquiU. BigasC. BenitahS.A. The role of lipids in cancer progression and metastasis.Cell. Metab.202234111675169910.1016/j.cmet.2022.09.02336261043
    [Google Scholar]
  8. LiJ. PingP. LiY. XuX. Fatty acid metabolism: A new target for nasopharyngeal carcinoma therapy.Chin. J. Cancer Res.202436665266810.21147/j.issn.1000‑9604.2024.06.0539802901
    [Google Scholar]
  9. KhanW. AugustineD. RaoR.S. PatilS. AwanK.H. SowmyaS.V. HaragannavarV.C. PrasadK. Lipid metabolism in cancer: A systematic review.J. Carcinog.202120410.4103/jcar.JCar_15_2034321955
    [Google Scholar]
  10. WangT. SeahS. LohX. ChanC.W. HartmanM. GohB.C. LeeS.C. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway.Oncotarget2016732532254410.18632/oncotarget.630426565813
    [Google Scholar]
  11. WangJ. YuanY. ZhouY. GuoL. ZhangL. KuaiX. DengB. PanZ. LiD. HeF. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways.J. Proteome Res.2008793879388910.1021/pr800164518624398
    [Google Scholar]
  12. HuangX. WeiX. QiaoS. ZhangX. LiR. HuS. MaoH. LiuP. Low density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression are associated with platinum-resistance and prognosis in ovarian carcinoma patients.Cancer Manag. Res.2021139015902410.2147/CMAR.S33787334908877
    [Google Scholar]
  13. GuerraB. RecioC. Aranda-TavíoH. Guerra-RodríguezM. García-CastellanoJ.M. Fernández-PérezL. The mevalonate pathway, a metabolic target in cancer therapy.Front. Oncol.20211162697110.3389/fonc.2021.62697133718197
    [Google Scholar]
  14. SorrentinoG. RuggeriN. SpecchiaV. CordenonsiM. ManoM. DupontS. ManfrinA. IngallinaE. SommaggioR. PiazzaS. RosatoA. PiccoloS. Del SalG. Metabolic control of YAP and TAZ by the mevalonate pathway.Nat. Cell Biol.201416435736610.1038/ncb293624658687
    [Google Scholar]
  15. ClendeningJ.W. PandyraA. BoutrosP.C. GhamrasniS.E. KhosraviF. TrentinG.A. MartirosyanA. HakemA. HakemR. JurisicaI. PennL.Z. Dysregulation of the mevalonate pathway promotes transformation.Proc. Natl. Acad. Sci. USA201010734150511505610.1073/pnas.091025810720696928
    [Google Scholar]
  16. GöbelA. ThieleS. BrowneA.J. RaunerM. ZinnaV.M. HofbauerL.C. RachnerT.D. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells.Cancer Lett.2016375116217110.1016/j.canlet.2016.03.00426968247
    [Google Scholar]
  17. WeiH. LiZ. QianK. DuW. JuL. ShanD. YuM. FangY. ZhangY. XiaoY. WangG. WangX. Unveiling the association between HMG-CoA reductase inhibitors and bladder cancer: A comprehensive analysis using Mendelian randomization, animal models, and transcriptomics.Pharmacogenomics J.20242452410.1038/s41397‑024‑00346‑x39112450
    [Google Scholar]
  18. MaX. BiE. LuY. SuP. HuangC. LiuL. WangQ. YangM. KaladyM.F. QianJ. ZhangA. GupteA.A. HamiltonD.J. ZhengC. YiQ. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment.Cell Metab.2019301143156.e510.1016/j.cmet.2019.04.00231031094
    [Google Scholar]
  19. ZhangR. HohlR. NeighborsJ.D. KoubekE.J. JoelR.M. ReedJ.L. The role of the mevalonate pathway in post-translational modifications of PD-L1.J. Pharmacol. Experim. Ther.2024389pp.57-5810.1124/jpet.057.129185
    [Google Scholar]
  20. TakadaK. ShimokawaM. TakamoriS. ShimamatsuS. HiraiF. TagawaT. OkamotoT. HamatakeM. Tsuchiya-KawanoY. OtsuboK. InoueK. YoneshimaY. TanakaK. OkamotoI. NakanishiY. MoriM. A propensity score-matched analysis of the impact of statin therapy on the outcomes of patients with non-small-cell lung cancer receiving anti-PD-1 monotherapy: A multicenter retrospective study.BMC Cancer202222150310.1186/s12885‑022‑09385‑835524214
    [Google Scholar]
  21. PatelV.G. OhW.K. GalskyM.D. Treatment of muscle-invasive and advanced bladder cancer in 2020.CA Cancer J. Clin.202070540442310.3322/caac.2163132767764
    [Google Scholar]
  22. WilczyńskiB. DąbrowskaA. KulbackaJ. BaczyńskaD. Chemoresistance and the tumor microenvironment: The critical role of cell–cell communication.Cell Commun. Signal.202422148610.1186/s12964‑024‑01857‑739390572
    [Google Scholar]
  23. LiF. ZhengZ. ChenW. LiD. ZhangH. ZhuY. MoQ. ZhaoX. FanQ. DengF. HanC. TanW. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms.Drug Resist. Updat.20236810093810.1016/j.drup.2023.10093836774746
    [Google Scholar]
  24. GreifeA. TukovaJ. SteinhoffC. ScottS.D. SchulzW.A. HatinaJ. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation.Tumour Biol.20153653293330010.1007/s13277‑014‑2959‑925566959
    [Google Scholar]
  25. StoehrM. MozetC. BoehmA. AignerA. DietzA. WichmannG. Simvastatin suppresses head and neck squamous cell carcinoma ex vivo and enhances the cytostatic effects of chemotherapeutics.Cancer Chemother. Pharmacol.201473482783710.1007/s00280‑014‑2412‑124562588
    [Google Scholar]
  26. KimS.T. KangJ.H. LeeJ. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. HwangI.G. LeeS.C. ParkK.W. LeeH.R. KangW.K. Simvastatin plus capecitabine–cisplatin versus placebo plus capecitabine–cisplatin in patients with previously untreated advanced gastric cancer: A double-blind randomised phase 3 study.Eur. J. Cancer201450162822283010.1016/j.ejca.2014.08.00525218337
    [Google Scholar]
  27. HanJ.Y. LimKY YuS.Y. YunT. KimH.T. LeeJ.S. A phase 2 study of irinotecan, cisplatin, and simvastatin for untreated extensive-disease small cell lung cancer.Cancer2011117102178218510.1002/cncr.2579021523731
    [Google Scholar]
  28. YeH. LiT. WangH. WuJ. YiC. ShiJ. WangP. SongC. DaiL. JiangG. HuangY. YuY. LiJ. TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: A bioinformatics analysis and experiments validation.Front. Immunol.20211264955110.3389/fimmu.2021.64955133815409
    [Google Scholar]
  29. WildP.J. HerrA. WissmannC. StoehrR. RosenthalA. ZaakD. SimonR. KnuechelR. PilarskyC. HartmannA. Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder.Clin. Cancer Res.200511124415442910.1158/1078‑0432.CCR‑05‑025915958626
    [Google Scholar]
  30. MeddP.G. ChainB.M. Protein degradation in MHC class II antigen presentation: Opportunities for immunomodulation.Semin. Cell Dev. Biol.200011320321010.1006/scdb.2000.016210906277
    [Google Scholar]
  31. LuoX. LiN. ZhaoX. LiaoC. YeR. ChengC. XuZ. QuanJ. LiuJ. CaoY. DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma.J. Exp. Clin. Cancer Res.201938130010.1186/s13046‑019‑1301‑131291971
    [Google Scholar]
  32. LarreaE. Fernández-RubioC. Peña-GuerreroJ. GuruceagaE. NguewaP.A. The BRCT domain from the homologue of the oncogene PES1 in Leishmania major (LmjPES) promotes malignancy and drug resistance in mammalian cells.Int. J. Mol. Sci.202223211320310.3390/ijms23211320336361992
    [Google Scholar]
  33. ZhangZ. WangY. ZhangJ. ZhongJ. YangR. COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway.Mol. Med. Rep.20181745037504210.3892/mmr.2018.853329393423
    [Google Scholar]
  34. LiY. ChengX. YanJ. JiangS. CTHRC1 facilitates bladder cancer cell proliferation and invasion through regulating the PI3K/Akt signaling pathway.Arch. Med. Sci.201918118319410.5114/aoms.2018.7312935154539
    [Google Scholar]
  35. ChenG. WangD. ZhaoX. CaoJ. ZhaoY. WangF. BaiJ. LuoD. LiL. miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling.Cancer Cell. Int.201717111810.1186/s12935‑017‑0469‑829234238
    [Google Scholar]
  36. ZhaoY. GartnerU. SmithF.J.D. McLeanW.H.I. Statins downregulate K6a promoter activity: A possible therapeutic avenue for pachyonychia congenita.J. Invest. Dermatol.201113151045105210.1038/jid.2011.4121390048
    [Google Scholar]
  37. OnoH. HiraokaN. LeeY.S. WooS.M. LeeW.J. ChoiI.J. SaitoA. YanagiharaK. KanaiY OhnamiS. ChiwakiF. SasakiH. SakamotoH. YoshidaT. SaekiN. Prostate stem cell antigen, a presumable organ-dependent tumor suppressor gene, is down-regulated in gallbladder carcinogenesis.Genes Chromosomes Cancer2012511304110.1002/gcc.2092821936014
    [Google Scholar]
  38. BahrenbergG. BrauersA. JoostH.G. JakseG. Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors.Biochem. Biophys. Res. Commun.2000275378378810.1006/bbrc.2000.339310973799
    [Google Scholar]
  39. GakisG. StenzlA. Gender-specific differences in muscle-invasive bladder cancer: The concept of sex steroid sensitivity.World J. Urol.20133151059106410.1007/s00345‑013‑1037‑z23397433
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665403178250806111943
Loading
/content/journals/ppl/10.2174/0109298665403178250806111943
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test