Skip to content
2000
image of Mevalonate Metabolic Reprogramming Drives Cisplatin Resistance in Bladder Cancer: Mechanisms and Therapeutic Targeting

Abstract

Introduction

Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods

Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Non-negative matrix factorization (NMF) was used to cluster mevalonate metabolism-related genes into distinct metabolic subtypes (C1 and C2). Associations between mevalonate metabolism, clinical characteristics, immune infiltration, and cisplatin resistance were analyzed using Gene Set Variation Analysis (GSVA), Kaplan-Meier survival analysis, single-sample Gene Set Enrichment Analysis (ssGSEA), and experiments.

Results

NMF clustering classified bladder cancer patients into two metabolic subtypes (C1/C2). The C1, characterized by higher mevalonate metabolism (MVAscore), was associated with a poorer prognosis, shorter overall survival (OS), and higher T-stage and pathological grades. Immune analysis showed lower immune cell infiltration in C1. Immune infiltration analysis revealed significantly lower immune infiltration levels in the C1. Further analysis revealed a positive correlation between mevalonate metabolism and platinum resistance, with a notable increase in mevalonate metabolism observed in cisplatin-resistant bladder cancer cells. , simvastatin inhibited the proliferation of bladder cancer cells and enhanced their sensitivity to cisplatin.

Discussion

Mevalonate metabolism drives BCa heterogeneity and chemoresistance while suppressing anti-tumor immunity. Its dysregulation serves as both a prognostic biomarker and a target for therapeutic intervention.

Conclusion

Mevalonate metabolism contributes to cisplatin resistance in bladder cancer and represents a potential therapeutic target. Simvastatin targeting this pathway enhances the efficacy of cisplatin, providing a novel personalized chemotherapy strategy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665403178250806111943
2025-09-03
2025-09-10
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Cumberbatch M.G. Rota M. Catto J.W.F. La Vecchia C. The role of tobacco smoke in bladder and kidney carcinogenesis: A comparison of exposures and meta-analysis of incidence and mortality risks. Eur. Urol. 2016 70 3 458 466 10.1016/j.eururo.2015.06.042 26149669
    [Google Scholar]
  3. Flaig T.W. Spiess P.E. Agarwal N. Bangs R. Boorjian S.A. Buyyounouski M.K. Chang S. Downs T.M. Efstathiou J.A. Friedlander T. Greenberg R.E. Guru K.A. Guzzo T. Herr H.W. Hoffman-Censits J Hoimes C. Inman B.A. Jimbo M Kader AK Lele S.M. Michalski J. Montgomery J.S. Nandagopal L Pagliaro LC Pal S.K. Patterson A. Plimack E.R. Pohar K.S. Preston M.A. Sexton W.J. Siefker-Radtke A.O. Tward J. Wright J.L. Gurski L.A. Johnson-Chilla A. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2020 18 3 329 354 10.6004/jnccn.2020.0011 32135513
    [Google Scholar]
  4. Leyderman M. Chandrasekar T. Grivas P. Li R. Bhat S Basnet A. Shapiro O. Jacob J. Daneshvar M.A. Kord E. Bratslavsky G. Goldberg H. Metastasis development in non-muscle-invasive bladder cancer. Nat Rev. Urol. 2025 22 6 375 386 10.1038/s41585‑024‑00963‑y 39567681
    [Google Scholar]
  5. Vlachostergios P.J. Faltas B.M. Treatment resistance in urothelial carcinoma: An evolutionary perspective. Nat. Rev. Clin. Oncol. 2018 15 8 495 509 10.1038/s41571‑018‑0026‑y 29720713
    [Google Scholar]
  6. Li Z. Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell. Mol. Life Sci. 2016 73 2 377 392 10.1007/s00018‑015‑2070‑4 26499846
    [Google Scholar]
  7. Martin-Perez M. Urdiroz-Urricelqui U. Bigas C. Benitah S.A. The role of lipids in cancer progression and metastasis. Cell. Metab. 2022 34 11 1675 1699 10.1016/j.cmet.2022.09.023 36261043
    [Google Scholar]
  8. Li J. Ping P. Li Y. Xu X. Fatty acid metabolism: A new target for nasopharyngeal carcinoma therapy. Chin. J. Cancer Res. 2024 36 6 652 668 10.21147/j.issn.1000‑9604.2024.06.05 39802901
    [Google Scholar]
  9. Khan W. Augustine D. Rao R.S. Patil S. Awan K.H. Sowmya S.V. Haragannavar V.C. Prasad K. Lipid metabolism in cancer: A systematic review. J. Carcinog. 2021 20 4 10.4103/jcar.JCar_15_20 34321955
    [Google Scholar]
  10. Wang T. Seah S. Loh X. Chan C.W. Hartman M. Goh B.C. Lee S.C. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget 2016 7 3 2532 2544 10.18632/oncotarget.6304 26565813
    [Google Scholar]
  11. Wang J. Yuan Y. Zhou Y. Guo L. Zhang L. Kuai X. Deng B. Pan Z. Li D. He F. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways. J. Proteome Res. 2008 7 9 3879 3889 10.1021/pr8001645 18624398
    [Google Scholar]
  12. Huang X. Wei X. Qiao S. Zhang X. Li R. Hu S. Mao H. Liu P. Low density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression are associated with platinum-resistance and prognosis in ovarian carcinoma patients. Cancer Manag. Res. 2021 13 9015 9024 10.2147/CMAR.S337873 34908877
    [Google Scholar]
  13. Guerra B. Recio C. Aranda-Tavío H. Guerra-Rodríguez M. García-Castellano J.M. Fernández-Pérez L. The mevalonate pathway, a metabolic target in cancer therapy. Front. Oncol. 2021 11 626971 10.3389/fonc.2021.626971 33718197
    [Google Scholar]
  14. Sorrentino G. Ruggeri N. Specchia V. Cordenonsi M. Mano M. Dupont S. Manfrin A. Ingallina E. Sommaggio R. Piazza S. Rosato A. Piccolo S. Del Sal G. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 2014 16 4 357 366 10.1038/ncb2936 24658687
    [Google Scholar]
  15. Clendening J.W. Pandyra A. Boutros P.C. Ghamrasni S.E. Khosravi F. Trentin G.A. Martirosyan A. Hakem A. Hakem R. Jurisica I. Penn L.Z. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl. Acad. Sci. USA 2010 107 34 15051 15056 10.1073/pnas.0910258107 20696928
    [Google Scholar]
  16. Göbel A. Thiele S. Browne A.J. Rauner M. Zinna V.M. Hofbauer L.C. Rachner T.D. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells. Cancer Lett. 2016 375 1 162 171 10.1016/j.canlet.2016.03.004 26968247
    [Google Scholar]
  17. Wei H. Li Z. Qian K. Du W. Ju L. Shan D. Yu M. Fang Y. Zhang Y. Xiao Y. Wang G. Wang X. Unveiling the association between HMG-CoA reductase inhibitors and bladder cancer: A comprehensive analysis using Mendelian randomization, animal models, and transcriptomics. Pharmacogenomics J. 2024 24 5 24 10.1038/s41397‑024‑00346‑x 39112450
    [Google Scholar]
  18. Ma X. Bi E. Lu Y. Su P. Huang C. Liu L. Wang Q. Yang M. Kalady M.F. Qian J. Zhang A. Gupte A.A. Hamilton D.J. Zheng C. Yi Q. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 2019 30 1 143 156.e5 10.1016/j.cmet.2019.04.002 31031094
    [Google Scholar]
  19. Zhang R. Hohl R. Neighbors J.D. Koubek E.J. Joel R.M. Reed J.L. The role of the mevalonate pathway in post-translational modifications of PD-L1. J. Pharmacol. Experim. Therap. 2024 389 pp.57-58 10.1124/jpet.057.129185
    [Google Scholar]
  20. Takada K. Shimokawa M. Takamori S. Shimamatsu S. Hirai F. Tagawa T. Okamoto T. Hamatake M. Tsuchiya-Kawano Y. Otsubo K. Inoue K. Yoneshima Y. Tanaka K. Okamoto I. Nakanishi Y. Mori M. A propensity score-matched analysis of the impact of statin therapy on the outcomes of patients with non-small-cell lung cancer receiving anti-PD-1 monotherapy: A multicenter retrospective study. BMC Cancer 2022 22 1 503 10.1186/s12885‑022‑09385‑8 35524214
    [Google Scholar]
  21. Patel V.G. Oh W.K. Galsky M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 2020 70 5 404 423 10.3322/caac.21631 32767764
    [Google Scholar]
  22. Wilczyński B. Dąbrowska A. Kulbacka J. Baczyńska D. Chemoresistance and the tumor microenvironment: The critical role of cell–cell communication. Cell Commun. Signal. 2024 22 1 486 10.1186/s12964‑024‑01857‑7 39390572
    [Google Scholar]
  23. Li F. Zheng Z. Chen W. Li D. Zhang H. Zhu Y. Mo Q. Zhao X. Fan Q. Deng F. Han C. Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist. Updat. 2023 68 100938 10.1016/j.drup.2023.100938 36774746
    [Google Scholar]
  24. Greife A. Tukova J. Steinhoff C. Scott S.D. Schulz W.A. Hatina J. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumour Biol. 2015 36 5 3293 3300 10.1007/s13277‑014‑2959‑9 25566959
    [Google Scholar]
  25. Stoehr M. Mozet C. Boehm A. Aigner A. Dietz A. Wichmann G. Simvastatin suppresses head and neck squamous cell carcinoma ex vivo and enhances the cytostatic effects of chemotherapeutics. Cancer Chemother. Pharmacol. 2014 73 4 827 837 10.1007/s00280‑014‑2412‑1 24562588
    [Google Scholar]
  26. Kim S.T. Kang J.H. Lee J. Park S.H. Park J.O. Park Y.S. Lim H.Y. Hwang I.G. Lee S.C. Park K.W. Lee H.R. Kang W.K. Simvastatin plus capecitabine–cisplatin versus placebo plus capecitabine–cisplatin in patients with previously untreated advanced gastric cancer: A double-blind randomised phase 3 study. Eur. J. Cancer 2014 50 16 2822 2830 10.1016/j.ejca.2014.08.005 25218337
    [Google Scholar]
  27. Han J.Y. Lim KY Yu S.Y. Yun T. Kim H.T. Lee J.S. A phase 2 study of irinotecan, cisplatin, and simvastatin for untreated extensive-disease small cell lung cancer. Cancer 2011 117 10 2178 2185 10.1002/cncr.25790 21523731
    [Google Scholar]
  28. Ye H. Li T. Wang H. Wu J. Yi C. Shi J. Wang P. Song C. Dai L. Jiang G. Huang Y. Yu Y. Li J. TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: A bioinformatics analysis and experiments validation. Front. Immunol. 2021 12 649551 10.3389/fimmu.2021.649551 33815409
    [Google Scholar]
  29. Wild P.J. Herr A. Wissmann C. Stoehr R. Rosenthal A. Zaak D. Simon R. Knuechel R. Pilarsky C. Hartmann A. Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin. Cancer Res. 2005 11 12 4415 4429 10.1158/1078‑0432.CCR‑05‑0259 15958626
    [Google Scholar]
  30. Medd P.G. Chain B.M. Protein degradation in MHC class II antigen presentation: Opportunities for immunomodulation. Semin. Cell Dev. Biol. 2000 11 3 203 210 10.1006/scdb.2000.0162 10906277
    [Google Scholar]
  31. Luo X. Li N. Zhao X. Liao C. Ye R. Cheng C. Xu Z. Quan J. Liu J. Cao Y. DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res. 2019 38 1 300 10.1186/s13046‑019‑1301‑1 31291971
    [Google Scholar]
  32. Larrea E. Fernández-Rubio C. Peña-Guerrero J. Guruceaga E. Nguewa P.A. The BRCT domain from the homologue of the oncogene PES1 in Leishmania major (LmjPES) promotes malignancy and drug resistance in mammalian cells. Int. J. Mol. Sci. 2022 23 21 13203 10.3390/ijms232113203 36361992
    [Google Scholar]
  33. Zhang Z. Wang Y. Zhang J. Zhong J. Yang R. COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway. Mol. Med. Rep. 2018 17 4 5037 5042 10.3892/mmr.2018.8533 29393423
    [Google Scholar]
  34. Li Y. Cheng X. Yan J. Jiang S. CTHRC1 facilitates bladder cancer cell proliferation and invasion through regulating the PI3K/Akt signaling pathway. Arch. Med. Sci. 2019 18 1 183 194 10.5114/aoms.2018.73129 35154539
    [Google Scholar]
  35. Chen G. Wang D. Zhao X. Cao J. Zhao Y. Wang F. Bai J. Luo D. Li L. miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling. Cancer Cell. Int. 2017 17 1 118 10.1186/s12935‑017‑0469‑8 29234238
    [Google Scholar]
  36. Zhao Y. Gartner U. Smith F.J.D. McLean W.H.I. Statins downregulate K6a promoter activity: A possible therapeutic avenue for pachyonychia congenita. J. Invest. Dermatol. 2011 131 5 1045 1052 10.1038/jid.2011.41 21390048
    [Google Scholar]
  37. Ono H. Hiraoka N. Lee Y.S. Woo S.M. Lee W.J. Choi I.J. Saito A. Yanagihara K. Kanai Y Ohnami S. Chiwaki F. Sasaki H. Sakamoto H. Yoshida T. Saeki N. Prostate stem cell antigen, a presumable organ-dependent tumor suppressor gene, is down-regulated in gallbladder carcinogenesis. Genes Chromosomes Cancer 2012 51 1 30 41 10.1002/gcc.20928 21936014
    [Google Scholar]
  38. Bahrenberg G. Brauers A. Joost H.G. Jakse G. Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem. Biophys. Res. Commun. 2000 275 3 783 788 10.1006/bbrc.2000.3393 10973799
    [Google Scholar]
  39. Gakis G. Stenzl A. Gender-specific differences in muscle-invasive bladder cancer: The concept of sex steroid sensitivity. World J. Urol. 2013 31 5 1059 1064 10.1007/s00345‑013‑1037‑z 23397433
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665403178250806111943
Loading
/content/journals/ppl/10.2174/0109298665403178250806111943
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test