Skip to content
2000
image of Evaluation of Anti-cancer Potential of Abelmoschus esculentus (Okra)

Abstract

Introduction

italic>Abelmoschus esculentus (okra) from the Malvaceae family is widely used in culinary applications and is reported to have many potential therapeutic effects attributed to the compounds isolated from it. In this work, we set out to explore its seed proteome for the isolation of lectins and characterize them

Methods

A protein of about 21kDa was isolated and purified using chromatography techniques from the ammonium sulphate crude protein extract. It was evaluated for hemagglutination activity on rabbit erythrocyte suspension, trypsin inhibitory activity using chemical assay, and evaluation of anti-cancer activity using cell lines. Mass and transcriptome analysis were done to deduce the complete sequence of the isolated protein.

Results

Using functional, mass, and transcriptome analysis, the protein was identified as AEL ( lectin), which was reported earlier. Only a partial sequence of AEL was known, and in this work, we have deduced its complete sequence. It showed significant anti-cancer activity against HeLa (cervical cancer) and T84 (colon cancer) with MIC (Minimum inhibitory concentration) of 20µg/ml and 40% and 30% reduction in cell viability at 100µg/ml and insignificant effect on ACHN (adenocarcinoma) cell lines. No significant effect was seen with the tested doses on normal control human cell lines HEK293 (human embryonic kidney cells). The purified protein shows specificity for lactose and galactose in the hemagglutination assay and trypsin inhibition activity.

Discussion

Studies of okra seed proteome lead to purification of AEL, a 21 kDa protein with dual hemagglutination activity and trypsin inhibitory activity. It showed potential anticancer activity in cervical, colon cancer cell lines and minimal effects on adenocarcinoma and control cell lines, suggesting specificity. The complete sequence of AEL was elucidated which will aid in its bioinformatics analysis.

Conclusion

There are very few reported dual-acting lectins with potential anticancer activity, and this work will help understand their mechanistic interactions better.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665365981250801110725
2025-08-21
2025-09-10
Loading full text...

Full text loading...

References

  1. Khan S. Rafi Z. Baker A. Shoaib A. Alkhathami A. Asiri M. Alshahrani M. Ahmad I. Alraey Y. Hakamy A. Saeed M. Mansoor S. Phytochemical screening, nutritional value, anti-diabetic, anti-cancer, and anti-bacterial assessment of aqueous extract from Abelmoschus esculentus pods. Processes 2022 10 2 183 10.3390/pr10020183
    [Google Scholar]
  2. Xiong B. Zhang W. Wu Z. Liu R. Yang C. Hui A. Huang X. Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int. J. Biol. Macromol. 2021 181 824 834 10.1016/j.ijbiomac.2021.03.202 33836194
    [Google Scholar]
  3. Saatchi A. Aghamohammadzadeh N. Beheshtirouy S. Javadzadeh Y. Afshar F.H. Ghaffary S. Anti-hyperglycemic effect of Abelmoschus culentesus (Okra) on patients with diabetes type 2: A randomized clinical trial. Phytother. Res. 2022 36 4 1644 1651 10.1002/ptr.7341 35434945
    [Google Scholar]
  4. Wahyuningsih S.P.A. Savira N.I.I. Anggraini D.W. Winarni D. Suhargo L. Kusuma B.W.A. Nindyasari F. Setianingsih N. Mwendolwa A.A. Antioxidant and Nephroprotective Effects of Okra Pods Extract ( Abelmoschus esculentus L.) against Lead Acetate-Induced Toxicity in Mice. Scientifica 2020 2020 1 1 10 10.1155/2020/4237205 32318309
    [Google Scholar]
  5. Ortaç D. Cemek M. Karaca T. Büyükokuroğlu M.E. Özdemir Z.Ö. Kocaman A.T. Göneş S. In vivo anti-ulcerogenic effect of okra ( Abelmoschus esculentus ) on ethanol-induced acute gastric mucosal lesions. Pharm. Biol. 2018 56 1 165 175 10.1080/13880209.2018.1442481 29513129
    [Google Scholar]
  6. Naim Z. Billah M. Ibrahim M. Debnath D. Masud Rana S. Arefin P. Emdadul Hasan Mukul M. Anti-inflammatory, analgesic and anti-nociceptive efficacy of peel of Abelmoschus esculentus fruits in laboratory animal. Curr. Drug Ther. 2015 10 2 113 121 10.2174/157488551002151222161409
    [Google Scholar]
  7. Vijayan M. Chandra N. Lectins. Curr. Opin. Struct. Biol. 1999 9 6 707 714 10.1016/S0959‑440X(99)00034‑2 10607664
    [Google Scholar]
  8. Atyka Trianisa Trianisa A. Bioactivity and Benefits of the Okra Plant (Abelmoschus Esculentus (L.) Moench.) : Literature Review. Science Get Journal 2024 1 3 30 41 10.69855/science.v1i3.48
    [Google Scholar]
  9. Siriwat W. Ungwiwatkul S. Unban K. Laokuldilok T. Klunklin W. Tangjaidee P. Potikanond S. Kaur L. Phongthai S. Extraction, enzymatic modification, and anti-cancer potential of an alternative plant-based protein from Wolffia globosa. Foods 2023 12 20 3815 10.3390/foods12203815 37893708
    [Google Scholar]
  10. Konozy E.H.E. Osman M.E.M. Plant lectin: A promising future anti-tumor drug. Biochimie 2022 202 136 145 10.1016/j.biochi.2022.08.002 35952948
    [Google Scholar]
  11. Tsaneva M. Van Damme E.J.M. 130 years of plant lectin research. Glycoconj. J. 2020 37 5 533 551 10.1007/s10719‑020‑09942‑y 32860551
    [Google Scholar]
  12. de Sousa Ferreira Soares G. Assreuy A.M.S. de Almeida Gadelha C.A. de Morais Gomes V. Delatorre P. da Conceição Simões R. Cavada B.S. Leite J.F. Nagano C.S. Pinto N.V. de Luna Freire Pessoa H. Santi-Gadelha T. Purification and biological activities of Abelmoschus esculentus seed lectin. Protein J. 2012 31 8 674 680 10.1007/s10930‑012‑9447‑0 22965555
    [Google Scholar]
  13. Alves S.M. Freitas R.S. do Val D.R. Vieira L.V. de Assis E.L. Gomes F.I.F. The efficacy of a lectin from Abelmoschus Esculentus depends on central opioid receptor activation to reduce temporomandibular joint hypernociception in rats. Protein J. 2012 31 674 680
    [Google Scholar]
  14. Monte L.G. Santi-Gadelha T. Reis L.B. Braganhol E. Prietsch R.F. Dellagostin O.A. e Lacerda R.R. Gadelha C.A.A. Conceição F.R. Pinto L.S. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells. Biotechnol. Lett. 2014 36 3 461 469 10.1007/s10529‑013‑1382‑4 24129958
    [Google Scholar]
  15. de Lacerda J.T.J.G. e Lacerda R.R. Assunção N.A. Tashima A.K. Juliano M.A. dos Santos G.A. Jr dos Santos de Souza M. de Luna Batista J. Rossi C.E. de Almeida Gadelha C.A. Santi-Gadelha T. New insights into lectin from Abelmoschus esculentus seeds as a Kunitz-type inhibitor and its toxic effects on Ceratitis capitata and root-knot nematodes Meloidogyne spp. Process Biochem. 2017 63 96 104 10.1016/j.procbio.2017.09.003
    [Google Scholar]
  16. Datta D. Pohlentz G. Mondal S. Divya M.B. Guruprasad L. Mormann M. Swamy M.J. Macromolecular properties and partial amino acid sequence of a Kunitz-type protease inhibitor from okra (Abelmoschus esculentus) seeds. J. Biosci. 2019 44 2 35 10.1007/s12038‑019‑9859‑5 31180048
    [Google Scholar]
  17. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  18. Kruger N.J. The Bradford method for protein quantitation. Protein ProtocHandb 2009 17 24
    [Google Scholar]
  19. Singh R.S. Thakur S. Antimicrobial activity and carbohydrate specificity of new mycelial lectins from Fusarium sp. Biologia 2014 69 10 1295 1302 10.2478/s11756‑014‑0449‑6
    [Google Scholar]
  20. Madani T.A. Abuelzein E.T.M.E. Abu-Araki H. Azhar E.I. Al-Bar H.M.S. Trypsin-dependent hemagglutination of erythrocytes of a variety of mammalian and avian species by Alkhumra hemorrhagic fever virus. Arch. Virol. 2013 158 1 97 101 10.1007/s00705‑012‑1469‑6 22983112
    [Google Scholar]
  21. Sharma S. Singh D.D. Investigations on the biological activity of Allium sativum agglutinin (ASA) isolated from garlic. Protein Pept. Lett. 2022 29 6 555 566 10.2174/0929866529999220509122720 35538837
    [Google Scholar]
  22. Smith C. van Megen W. Twaalfhoven L. Hitchcock C. The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 1980 31 4 341 350 10.1002/jsfa.2740310403 7190200
    [Google Scholar]
  23. Bushmanova E. Antipov D. Lapidus A. Prjibelski A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 2019 8 9 giz100 10.1093/gigascience/giz100 31494669
    [Google Scholar]
  24. Rawlings N.D. Barrett A.J. Evolutionary families of peptidases. Biochem. J. 1993 290 1 205 218 10.1042/bj2900205 8439290
    [Google Scholar]
  25. Rawlings N.D. Tolle D.P. Barrett A.J. Evolutionary families of peptidase inhibitors. Biochem. J. 2004 378 3 705 716 10.1042/bj20031825 14705960
    [Google Scholar]
  26. Rawlings N.D. Waller M. Barrett A.J. Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucl. Acids Res. 2014 46 D1 D624 D632 10.1093/nar/gkx1134
    [Google Scholar]
  27. Ferreira R.S. Zhou D. Ferreira J.G. Silva M.C.C. Silva-Lucca R.A. Mentele R. Paredes-Gamero E.J. Bertolin T.C. dos Santos Correia M.T. Paiva P.M.G. Gustchina A. Wlodawer A. Oliva M.L.V. Crystal structure of Crataeva tapia bark protein (CrataBL) and its effect in human prostate cancer cell lines. PLoS One 2013 8 6 64426 10.1371/journal.pone.0064426 23823708
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665365981250801110725
Loading
/content/journals/ppl/10.2174/0109298665365981250801110725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test