Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

(okra) from the Malvaceae family is widely used in culinary applications and is reported to have many potential therapeutic effects attributed to the compounds isolated from it. In this work, we set out to explore its seed proteome for the isolation of lectins and characterize them

Methods

A protein of about 21kDa was isolated and purified using chromatography techniques from the ammonium sulphate crude protein extract. It was evaluated for hemagglutination activity on rabbit erythrocyte suspension, trypsin inhibitory activity using chemical assay, and evaluation of anti-cancer activity using cell lines. Mass and transcriptome analysis were done to deduce the complete sequence of the isolated protein.

Results

Using functional, mass, and transcriptome analysis, the protein was identified as AEL ( lectin), which was reported earlier. Only a partial sequence of AEL was known, and in this work, we have deduced its complete sequence. It showed significant anti-cancer activity against HeLa (cervical cancer) and T84 (colon cancer) with MIC (Minimum inhibitory concentration) of 20µg/ml and 40% and 30% reduction in cell viability at 100µg/ml and insignificant effect on ACHN (adenocarcinoma) cell lines. No significant effect was seen with the tested doses on normal control human cell lines HEK293 (human embryonic kidney cells). The purified protein shows specificity for lactose and galactose in the hemagglutination assay and trypsin inhibition activity.

Discussion

Studies of okra seed proteome lead to purification of AEL, a 21 kDa protein with dual hemagglutination activity and trypsin inhibitory activity. It showed potential anticancer activity in cervical, colon cancer cell lines and minimal effects on adenocarcinoma and control cell lines, suggesting specificity. The complete sequence of AEL was elucidated which will aid in its bioinformatics analysis.

Conclusion

There are very few reported dual-acting lectins with potential anticancer activity, and this work will help understand their mechanistic interactions better.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665365981250801110725
2025-08-21
2026-02-20
Loading full text...

Full text loading...

References

  1. KhanS. RafiZ. BakerA. ShoaibA. AlkhathamiA. AsiriM. AlshahraniM. AhmadI. AlraeyY. HakamyA. SaeedM. MansoorS. Phytochemical screening, nutritional value, anti-diabetic, anti-cancer, and anti-bacterial assessment of aqueous extract from Abelmoschus esculentus pods.Processes202210218310.3390/pr10020183
    [Google Scholar]
  2. XiongB. ZhangW. WuZ. LiuR. YangC. HuiA. HuangX. XianZ. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.).Int. J. Biol. Macromol.202118182483410.1016/j.ijbiomac.2021.03.20233836194
    [Google Scholar]
  3. SaatchiA. AghamohammadzadehN. BeheshtirouyS. JavadzadehY. AfsharF.H. GhaffaryS. Anti-hyperglycemic effect of Abelmoschus culentesus (Okra) on patients with diabetes type 2: A randomized clinical trial.Phytother. Res.20223641644165110.1002/ptr.734135434945
    [Google Scholar]
  4. WahyuningsihS.P.A. SaviraN.I.I. AnggrainiD.W. WinarniD. SuhargoL. KusumaB.W.A. NindyasariF. SetianingsihN. MwendolwaA.A. Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice.Scientifica20202020111010.1155/2020/423720532318309
    [Google Scholar]
  5. OrtaçD. CemekM. KaracaT. BüyükokuroğluM.E. ÖzdemirZ.Ö. KocamanA.T. GöneşS. In vivo anti-ulcerogenic effect of okra (Abelmoschus esculentus) on ethanol-induced acute gastric mucosal lesions.Pharm. Biol.201856116517510.1080/13880209.2018.144248129513129
    [Google Scholar]
  6. NaimZ. BillahM. IbrahimM. DebnathD. MasudR.S. ArefinP. EmdadulH.M.M. Anti-inflammatory, analgesic and anti-nociceptive efficacy of peel of Abelmoschus esculentus fruits in laboratory animal.Curr. Drug Ther.201510211312110.2174/157488551002151222161409
    [Google Scholar]
  7. VijayanM. ChandraN. Lectins.Curr. Opin. Struct. Biol.19999670771410.1016/S0959‑440X(99)00034‑210607664
    [Google Scholar]
  8. Atyka Trianisa TrianisaA. Bioactivity and Benefits of the Okra Plant (Abelmoschus Esculentus (L.) Moench.) : Literature Review.Sci. Get. J.202413304110.69855/science.v1i3.48
    [Google Scholar]
  9. SiriwatW. UngwiwatkulS. UnbanK. LaokuldilokT. KlunklinW. TangjaideeP. PotikanondS. KaurL. PhongthaiS. Extraction, enzymatic modification, and anti-cancer potential of an alternative plant-based protein from Wolffia globosa.Foods20231220381510.3390/foods1220381537893708
    [Google Scholar]
  10. KonozyE.H.E. OsmanM.E.M. Plant lectin: A promising future anti-tumor drug.Biochimie202220213614510.1016/j.biochi.2022.08.00235952948
    [Google Scholar]
  11. TsanevaM. Van DammeE.J.M. 130 years of plant lectin research.Glycoconj. J.202037553355110.1007/s10719‑020‑09942‑y32860551
    [Google Scholar]
  12. de Sousa Ferreira SoaresG. AssreuyA.M.S. de Almeida GadelhaC.A. de Morais GomesV. DelatorreP. da Conceição SimõesR. CavadaB.S. LeiteJ.F. NaganoC.S. PintoN.V. de Luna Freire PessoaH. Santi-GadelhaT. Purification and biological activities of Abelmoschus esculentus seed lectin.Protein J.201231867468010.1007/s10930‑012‑9447‑022965555
    [Google Scholar]
  13. AlvesS.M. FreitasR.S. do ValD.R. VieiraL.V. de AssisE.L. GomesF.I.F. The efficacy of a lectin from Abelmoschus Esculentus depends on central opioid receptor activation to reduce temporomandibular joint hypernociception in rats.Protein J.201231674680
    [Google Scholar]
  14. MonteL.G. Santi-GadelhaT. ReisL.B. BraganholE. PrietschR.F. DellagostinO.A. e LacerdaR.R. GadelhaC.A.A. ConceiçãoF.R. PintoL.S. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells.Biotechnol. Lett.201436346146910.1007/s10529‑013‑1382‑424129958
    [Google Scholar]
  15. de LacerdaJ.T.J.G. e LacerdaR.R. AssunçãoN.A. TashimaA.K. JulianoM.A. dos SantosG.A.Jr dos Santos de SouzaM. de Luna BatistaJ. RossiC.E. de Almeida GadelhaC.A. Santi-GadelhaT. New insights into lectin from Abelmoschus esculentus seeds as a Kunitz-type inhibitor and its toxic effects on Ceratitis capitata and root-knot nematodes Meloidogyne spp.Process Biochem.2017639610410.1016/j.procbio.2017.09.003
    [Google Scholar]
  16. DattaD. PohlentzG. MondalS. DivyaM.B. GuruprasadL. MormannM. SwamyM.J. Macromolecular properties and partial amino acid sequence of a Kunitz-type protease inhibitor from okra (Abelmoschus esculentus) seeds.J. Biosci.20194423510.1007/s12038‑019‑9859‑531180048
    [Google Scholar]
  17. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  18. KrugerN.J. The Bradford method for protein quantitation.Protein ProtocHandb20091724
    [Google Scholar]
  19. SinghR.S. ThakurS. Antimicrobial activity and carbohydrate specificity of new mycelial lectins from Fusarium sp.Biologia201469101295130210.2478/s11756‑014‑0449‑6
    [Google Scholar]
  20. MadaniT.A. AbuelzeinE.T.M.E. Abu-ArakiH. AzharE.I. Al-BarH.M.S. Trypsin-dependent hemagglutination of erythrocytes of a variety of mammalian and avian species by Alkhumra hemorrhagic fever virus.Arch. Virol.201315819710110.1007/s00705‑012‑1469‑622983112
    [Google Scholar]
  21. SharmaS. SinghD.D. Investigations on the biological activity of Allium sativum agglutinin (ASA) isolated from garlic.Protein Pept. Lett.202229655556610.2174/092986652999922050912272035538837
    [Google Scholar]
  22. SmithC. van MegenW. TwaalfhovenL. HitchcockC. The determination of trypsin inhibitor levels in foodstuffs.J. Sci. Food Agric.198031434135010.1002/jsfa.27403104037190200
    [Google Scholar]
  23. BushmanovaE. AntipovD. LapidusA. PrjibelskiA.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data.Gigascience201989giz10010.1093/gigascience/giz10031494669
    [Google Scholar]
  24. RawlingsN.D. BarrettA.J. Evolutionary families of peptidases.Biochem. J.1993290120521810.1042/bj29002058439290
    [Google Scholar]
  25. RawlingsN.D. TolleD.P. BarrettA.J. Evolutionary families of peptidase inhibitors.Biochem. J.2004378370571610.1042/bj2003182514705960
    [Google Scholar]
  26. RawlingsN.D. WallerM. BarrettA.J. BatemanA. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors.Nucl. Acids Res.201446D1D624D63210.1093/nar/gkx1134
    [Google Scholar]
  27. FerreiraR.S. ZhouD. FerreiraJ.G. SilvaM.C.C. Silva-LuccaR.A. MenteleR. Paredes-GameroE.J. BertolinT.C. dos Santos CorreiaM.T. PaivaP.M.G. GustchinaA. WlodawerA. OlivaM.L.V. Crystal structure of Crataeva tapia bark protein (CrataBL) and its effect in human prostate cancer cell lines.PLoS One2013866442610.1371/journal.pone.006442623823708
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665365981250801110725
Loading
/content/journals/ppl/10.2174/0109298665365981250801110725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test