Skip to content
2000
image of Recombinant Proteins: Evolution to their Therapeutic Potential

Abstract

Recombinant proteins, which are produced using recombinant DNA technology, have transformed the domains of biotechnology and biomedicine by allowing the production of proteins that are often expensive or difficult to obtain from natural sources. More than 130 recombinant proteins are currently in clinical use by the US FDA, demonstrating the importance of these proteins in both research and therapeutic applications. Bacterial, yeast, mammalian cell cultures, and hybridoma technology are examples of recombinant protein production systems that have enabled the large-scale production of therapeutic proteins, including monoclonal antibodies, which are now essential tools in disease treatment. From their origins with human insulin in the 1980s to the most recent developments in third-generation proteins, this brief review examines the development of recombinant protein therapies. The first generation concentrated on natural structures; the second generation focused on enhancing safety, pharmacokinetics, and specificity; and the third generation is ready to present innovative formulations and delivery systems. This review also covers the use of recombinant proteins in cancer treatment, different protein production systems, and design techniques that keep improving the safety and effectiveness profiles of protein therapies.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665387985250710041016
2025-08-01
2025-09-06
Loading full text...

Full text loading...

References

  1. Grillberger L. Kreil T.R. Nasr S. Reiter M. Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol. J. 2009 4 2 186 201 10.1002/biot.200800241 19226552
    [Google Scholar]
  2. Davami F. Barkhordari F. Alebouyeh M. Adeli A. Mahboudi F. Combined TGE-SGE expression of novel PAI-1-resistant t-PA in CHO DG44 cells using orbitally shaking disposable bioreactors. J. Microbiol. Biotechnol. 2011 21 12 1299 1305 10.4014/jmb.1106.05060 22210617
    [Google Scholar]
  3. Ma J.K.C. Drake P.M.W. Christou P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 2003 4 10 794 805 10.1038/nrg1177 14526375
    [Google Scholar]
  4. Ojima-Kato T. Advances in recombinant protein production in microorganisms and functional peptide tags. Biosci. Biotechnol. Biochem. 2024 89 1 1 10 10.1093/bbb/zbae147 39479788
    [Google Scholar]
  5. Lico C. Chen Q. Santi L. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 2008 216 2 366 377 10.1002/jcp.21423 18330886
    [Google Scholar]
  6. Khan S. Ullah M.W. Siddique R. Nabi G. Manan S. Yousaf M. Hou H. Role of recombinant DNA technology to improve life. Int. J. Genomics 2016 2016 1 14 10.1155/2016/2405954 28053975
    [Google Scholar]
  7. Alyas E.J. Rafiq A. Amir H. Khan S.U. Sultana T. Ali A. Hameed A. Ahmad I. Kazmi A. Sajid T. Ahmad A. Human insulin: History, recent advances, and expression systems for mass production. Biomed. Res. Ther. 2021 8 9 4540 4561 10.15419/bmrat.v8i9.692
    [Google Scholar]
  8. Sanchez-Garcia L. Martín L. Mangues R. Ferrer-Miralles N. Vázquez E. Villaverde A. Recombinant pharmaceuticals from microbial cells: A 2015 update. Microb. Cell Fact. 2016 15 1 33 10.1186/s12934‑016‑0437‑3 26861699
    [Google Scholar]
  9. Ferrer-Miralles N. Domingo-Espín J. Corchero J.L. Vázquez E. Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 2009 8 1 17 10.1186/1475‑2859‑8‑17 19317892
    [Google Scholar]
  10. Goff S.P. Shenk T. Paul Berg: Recombinant DNA trailblazer. Proc. Natl. Acad. Sci. USA 2023 120 47 2318196120 10.1073/pnas.2318196120
    [Google Scholar]
  11. Mustafa A. Nasir M.F. Aziz I. Hussain T. A revolution by recombinant DNA technology to improve the quality of life. Biom. Lett. 2021 7 1 12 25 10.47262/BL/7.1.20201223
    [Google Scholar]
  12. Mitra S. Tomar P.C. Hybridoma technology; advancements, clinical significance, and future aspects. J. Genet. Eng. Biotechnol. 2021 19 1 159 10.1186/s43141‑021‑00264‑6 34661773
    [Google Scholar]
  13. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  14. Viegas C. Seck F. Fonte P. An insight on lipid nanoparticles for therapeutic proteins delivery. J. Drug Deliv. Sci. Technol. 2022 77 103839 10.1016/j.jddst.2022.103839
    [Google Scholar]
  15. Yin L. Yuvienco C. Montclare J.K. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017 134 91 116 10.1016/j.biomaterials.2017.04.036 28458031
    [Google Scholar]
  16. Alexander E. Leong K.W. Discovery of nanobodies: A comprehensive review of their applications and potential over the past five years. J. Nanobiotechnology 2024 22 1 661 10.1186/s12951‑024‑02900‑y 39455963
    [Google Scholar]
  17. Tripathi N.K. Shrivastava A. Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front. Bioeng. Biotechnol. 2019 7 420 10.3389/fbioe.2019.00420 31921823
    [Google Scholar]
  18. Francis D.M. Page R. Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 2010 Chapter 5 1 5.24.1 5.24.29 10.1002/0471140864.ps0524s61 20814932
    [Google Scholar]
  19. Niazi S.K. Magoola M. Advances in Escherichia coli-based therapeutic protein expression: Mammalian conversion, continuous manufacturing, and cell-free production. Biologics 2023 3 4 380 401 10.3390/biologics3040021
    [Google Scholar]
  20. Pouresmaeil M. Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch. Microbiol. 2023 205 5 212 10.1007/s00203‑023‑03541‑9 37120438
    [Google Scholar]
  21. Dyson M.R. Shadbolt S.P. Vincent K.J. Perera R.L. McCafferty J. Production of soluble mammalian proteins in Escherichia coli: Identification of protein features that correlate with successful expression. BMC Biotechnol. 2004 4 1 32 10.1186/1472‑6750‑4‑32 15598350
    [Google Scholar]
  22. Zhang L. Lin X. Wang T. Guo W. Lu Y. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis. Bioresour. Bioprocess. 2021 8 1 58 10.1186/s40643‑021‑00413‑2 34249606
    [Google Scholar]
  23. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 2013 14 10 630 642 10.1038/nrm3658 24026055
    [Google Scholar]
  24. Kolaj O. Spada S. Robin S. Wall J.G. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 2009 8 1 9 10.1186/1475‑2859‑8‑9 19173718
    [Google Scholar]
  25. Liberek K. Lewandowska A. Ziętkiewicz S. Chaperones in control of protein disaggregation. EMBO J. 2008 27 2 328 335 10.1038/sj.emboj.7601970 18216875
    [Google Scholar]
  26. Karlaftis V. Perera S. Monagle P. Ignjatovic V. Importance of post-translational modifications on the function of key haemostatic proteins. Blood Coagul. Fibrinolysis 2016 27 1 1 4 10.1097/MBC.0000000000000301 26484638
    [Google Scholar]
  27. Zhong Q. Xiao X. Qiu Y. Xu Z. Chen C. Chong B. Zhao X. Hai S. Li S. An Z. Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm 2023 4 3 261 10.1002/mco2.261 37143582
    [Google Scholar]
  28. Burnett M.J.B. Burnett A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet 2020 2 2 121 132 10.1002/ppp3.10073
    [Google Scholar]
  29. Sookhoo J.R.V. Schiffman Z. Ambagala A. Kobasa D. Pardee K. Babiuk S. Protein expression platforms and the challenges of viral antigen production. Vaccines 2024 12 12 1344 10.3390/vaccines12121344 39772006
    [Google Scholar]
  30. Lee Y.J. Jeong K.J. Challenges to production of antibodies in bacteria and yeast. J. Biosci. Bioeng. 2015 120 5 483 490 10.1016/j.jbiosc.2015.03.009 25912450
    [Google Scholar]
  31. Schindler D. Genetic engineering and synthetic genomics in yeast to understand life and boost biotechnology. Bioengineering 2020 7 4 137 10.3390/bioengineering7040137 33138080
    [Google Scholar]
  32. Yang P. Condrich A. Lu L. Scranton S. Hebner C. Sheykhhasan M. Ali M.A. Genetic engineering in bacteria, fungi, and oomycetes, taking advantage of CRISPR. DNA 2024 4 4 427 454 10.3390/dna4040030
    [Google Scholar]
  33. Boodhoo K.V.K. Flickinger M.C. Woodley J.M. Emanuelsson E.A.C. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chem. Eng. Process. 2022 172 108793 10.1016/j.cep.2022.108793
    [Google Scholar]
  34. Gao M.J. Zheng Z.Y. Wu J.R. Dong S.J. Li Z. Jin H. Zhan X.B. Lin C.C. Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model-based glycerol feeding strategy. Appl. Microbiol. Biotechnol. 2012 93 4 1437 1445 10.1007/s00253‑011‑3605‑8 21983708
    [Google Scholar]
  35. Kou T.C. Fan L. Zhou Y. Ye Z.Y. Zhao L. Tan W.S. Increasing the productivity of TNFR-Fc in GS-CHO cells at reduced culture temperatures. Biotechnol. Bioprocess Eng.; BBE 2011 16 1 136 143 10.1007/s12257‑010‑0157‑1
    [Google Scholar]
  36. Hiller E. Off M. Hermann A. Vahidinasab M. Benatto Perino E.H. Lilge L. Hausmann R. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Microb. Cell Fact. 2024 23 1 260 10.1186/s12934‑024‑02531‑w 39343903
    [Google Scholar]
  37. David F. Davis A.M. Gossing M. Hayes M.A. Romero E. Scott L.H. Wigglesworth M.J. A perspective on synthetic biology in drug discovery and development—current impact and future opportunities. SLAS Discov. 2021 26 5 581 603 10.1177/24725552211000669 33834873
    [Google Scholar]
  38. Chen L. Li Q. Nasif K.F.A. Xie Y. Deng B. Niu S. Pouriyeh S. Dai Z. Chen J. Xie C.Y. AI-driven deep learning techniques in protein structure prediction. Int. J. Mol. Sci. 2024 25 15 8426 10.3390/ijms25158426 39125995
    [Google Scholar]
  39. Jeong S.H. Lee H.J. Lee S.J. Recent advances in CRISPR-Cas technologies for synthetic biology. J. Microbiol. 2023 61 1 13 36 10.1007/s12275‑022‑00005‑5 36723794
    [Google Scholar]
  40. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  41. Qin S. Tang X. Chen Y. Chen K. Fan N. Xiao W. Zheng Q. Li G. Teng Y. Wu M. Song X. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 2022 7 1 166 10.1038/s41392‑022‑01007‑w 35597779
    [Google Scholar]
  42. Duarte T. Spencer C. Personalized proteomics: The future of precision medicine. Proteomes 2016 4 4 29 10.3390/proteomes4040029 27882306
    [Google Scholar]
  43. Son A. Park J. Kim W. Lee W. Yoon Y. Ji J. Kim H. Integrating computational design and experimental approaches for next-generation biologics. Biomolecules 2024 14 9 1073 10.3390/biom14091073 39334841
    [Google Scholar]
  44. Kintzing J.R. Filsinger Interrante M.V. Cochran J.R. Emerging strategies for developing next-generation protein therapeutics for cancer treatment. Trends Pharmacol. Sci. 2016 37 12 993 1008 10.1016/j.tips.2016.10.005 27836202
    [Google Scholar]
  45. Gifre L. Arís A. Bach À. Garcia-Fruitós E. Trends in recombinant protein use in animal production. Microb. Cell Fact. 2017 16 1 40 10.1186/s12934‑017‑0654‑4 28259156
    [Google Scholar]
  46. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  47. Landgraf W. Recombinant human insulins - Clinical efficacy and safety in diabetes therapy. Eur. Endocrinol. 2016 12 1 12 10.17925/EE.2016.12.01.12 29632581
    [Google Scholar]
  48. Pham P.V. Medical biotechnology: Techniques and applications. Omics Technologies and Bio-Engineering. Elsevier 449 469 10.1016/B978‑0‑12‑804659‑3.00019‑1
    [Google Scholar]
  49. Chen J. Borra S. Huang A. Fan L. Pollom R.D. Hood R.C. Treatment patterns and outcomes before and after humulin R U-500 initiation among us patients with type 2 diabetes previously prescribed ≤ 200 Units/day of U-100 insulin. Diabetes Ther. 2022 13 3 465 479 10.1007/s13300‑022‑01209‑z 35190970
    [Google Scholar]
  50. Weise K.L. Nahata M.C. Growth hormone use in children with idiopathic short stature. Ann. Pharmacother. 2004 38 9 1460 1468 10.1345/aph.1D548 15266039
    [Google Scholar]
  51. Loftus J. Heatley R. Walsh C. Dimitri P. Systematic review of the clinical effectiveness of Genotropin (somatropin) in children with short stature. J. Pediatr. Endocrinol. Metab. 2010 23 6 535 551 10.1515/jpem.2010.092 20662327
    [Google Scholar]
  52. Bercu B.B. Murray F.T. Frasier S.D. Rudlin C. O’Dea L.S. Brentzel J. Long-term therapy with recombinant human growth hormone (Saizen) in children with idiopathic and organic growth hormone deficiency. Endocrine 2001 15 1 43 49 10.1385/endo:15:1:043 11572324
    [Google Scholar]
  53. Coutant R. Bosch Muñoz J. Dumitrescu C.P. Schnabel D. Sert C. Perrot V. Dattani M. Effectiveness and overall safety of NutropinAq® for growth hormone deficiency and other paediatric growth hormone disorders: Completion of the International cooperative growth study, NutropinAq® European Registry (iNCGS). Front. Endocrinol. 2021 12 676083 10.3389/fendo.2021.676083 34113318
    [Google Scholar]
  54. Spiegel R.J. Intron A (interferon alfa-2b): Clinical overview and future directions. Semin. Oncol. 1986 13 3 Suppl 2 89 101 3532338
    [Google Scholar]
  55. Kleinschnitz C. Niemczyk G. Rehberg-Weber K. Wernsdörfer C. Interferon Beta-1a (AVONEX®) as a treatment option for untreated patients with multiple sclerosis (AXIOM): A prospective, observational study. Int. J. Mol. Sci. 2015 16 7 15271 15286 10.3390/ijms160715271 26154767
    [Google Scholar]
  56. Gottesman M.H. Friedman-Urevich S. Interferon beta-1b (Betaseron®/Betaferon®) is well tolerated at a dose of 500 mg: Interferon dose escalation assessment of safety (IDEAS). Mult. Scler. 2006 12 3 271 280 10.1191/135248506ms1261oa 16764339
    [Google Scholar]
  57. Glaspy J. Bukowski R. Steinberg D. Taylor C. Tchekmedyian S. Vadhan-Raj S. Impact of therapy with epoetin alfa on clinical outcomes in patients with nonmyeloid malignancies during cancer chemotherapy in community oncology practice. J. Clin. Oncol. 1997 15 3 1218 1234 10.1200/JCO.1997.15.3.1218 9060566
    [Google Scholar]
  58. Erlich L. Use of EPOGEN for treatment of anemia associated with chronic renal failure. Crit. Care Nurs. Clin. North Am. 1990 2 1 101 113 10.1016/S0899‑5885(18)30847‑5 2357306
    [Google Scholar]
  59. Boogaerts M. Oberhoff C. Ten Bokkel Huinink W. Nowrousian M.R. Hayward C.R.W. Burger H.U. Epoetin beta (NeoRecormon) therapy in patients with solid tumours receiving platinum and non-platinum chemotherapy: A meta-analysis. Anticancer Res. 2006 26 1B 479 484 16739308
    [Google Scholar]
  60. Giangrande P.L.F. Safety and efficacy of KOGENATE ® Bayer in previously untreated patients (PUPs) and minimally treated patients (MTPs). Haemophilia 2002 8 Suppl 2 19 22 10.1046/j.1351‑8216.2001.00133.x 11966848
    [Google Scholar]
  61. Shima M. Current status and future prospects of activated recombinant coagulation factor VIIa, NovoSeven®, in the treatment of haemophilia and rare bleeding disorders. Ann. Hematol. 2024 103 8 2647 2658 10.1007/s00277‑023‑05287‑2 37391649
    [Google Scholar]
  62. Swiech K. Picanço-Castro V. Covas D.T. Production of recombinant coagulation factors: Are humans the best host cells? Bioengineered 2017 8 5 462 470 10.1080/21655979.2017.1279767 28277160
    [Google Scholar]
  63. DuBuske I. Schmidlin K. Bernstein J.A. Successful desensitization of a patient with Fabry disease with agalsidase beta (Fabrazyme) anaphylaxis after omalizumab pretreatment. Ann. Allergy Asthma Immunol. 2021 126 1 96 98 10.1016/j.anai.2020.08.026 32866621
    [Google Scholar]
  64. Pastores G.M. Agalsidase alfa (Replagal) in the treatment of Anderson-Fabry disease. Biologics 2007 1 3 291 300 19707338
    [Google Scholar]
  65. Alekseeva L.A. Sen’kova A.V. Sounbuli K. Savin I.A. Zenkova M.A. Mironova N.L. Pulmozyme ameliorates LPS-induced lung fibrosis but provokes residual inflammation by modulating cell-Free DNA composition and controlling neutrophil phenotype. Biomolecules 2025 15 2 298 10.3390/biom15020298 40001601
    [Google Scholar]
  66. Juluri K.R. Siu C. Cassaday R.D. Asparaginase in the treatment of acute lymphoblastic leukemia in adults: Current evidence and place in therapy. Blood Lymphat. Cancer 2022 12 55 79 10.2147/BLCTT.S342052 35669980
    [Google Scholar]
  67. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  68. Shah D.K. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J. Pharmacokinet. Pharmacodyn. 2015 42 5 553 571 10.1007/s10928‑015‑9447‑8 26373957
    [Google Scholar]
  69. Ebrahimi S.B. Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat. Commun. 2023 14 1 2411 10.1038/s41467‑023‑38039‑x 37105998
    [Google Scholar]
  70. Bashir S. Fitaihi R. Abdelhakim H.E. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur. J. Pharm. Sci. 2023 182 106374 10.1016/j.ejps.2023.106374 36623699
    [Google Scholar]
  71. AlRuthia Y. Bahari O.H. Alghnam S. Alrumaih A.M. Asiri H. Alshammari M. Alhowimel M. Al-Abdulkarim H.A. Real-world impact of switching from insulin glargine (Lantus®) to Basaglar® and potential cost saving in a large public healthcare system in Saudi Arabia. Front. Public Health 2022 10 852721 10.3389/fpubh.2022.852721 35769787
    [Google Scholar]
  72. Keating G.M. Insulin detemir: A review of its use in the management of diabetes mellitus. Drugs 2012 72 17 2255 2287 10.2165/11470200‑000000000‑00000 23110609
    [Google Scholar]
  73. Okikiolu J. Woodley C. Cadman-Davies L. O’Sullivan J. Radia D. Garcia N.C. Harrington P. Kordasti S. Asirvatham S. Sriskandarajah P. Saunders J. Saha C. Sanchez I. deLavallade H. McLornan D.P. Harrison C.N. Real world experience with ropeginterferon alpha-2b (Besremi) in essential thrombocythaemia and polycythaemia vera following exposure to pegylated interferon alfa-2a (Pegasys). Leuk. Res. Rep. 2023 19 100360 10.1016/j.lrr.2022.100360 36590864
    [Google Scholar]
  74. Matthews S.J. McCoy C. Peginterferon alfa-2a: A review of approved and investigational uses. Clin. Ther. 2004 26 7 991 1025 10.1016/S0149‑2918(04)90173‑7 15336466
    [Google Scholar]
  75. Powell J. Gurk-Turner C. Darbepoetin alfa (Aranesp). Proc. Bayl. Univ. Med. Cent. 2002 15 3 332 335 10.1080/08998280.2002.11927861 16333460
    [Google Scholar]
  76. Biganzoli L. Untch M. Skacel T. Pico J.L. Neulasta (pegfilgrastim): A once-per-cycle option for the management of chemotherapy-induced neutropenia. Semin. Oncol. 2004 31 3 Suppl 8 27 34 10.1053/j.seminoncol.2004.04.002 15181606
    [Google Scholar]
  77. Stieltjes N. Altisent C. Auerswald G. Négrier C. Pouzol P. Reynaud J. Roussel-Robert V. Savidge G.F. Villar A. Schulman S. Continuous infusion of B-domain deleted recombinant factor VIII (ReFacto) in patients with haemophilia A undergoing surgery: Clinical experience. Haemophilia 2004 10 5 452 458 10.1111/j.1365‑2516.2004.01013.x 15357770
    [Google Scholar]
  78. Yu C. Wu C. Yang Y. Jin H. Systemic monotherapy with acitretin for erythrodermic psoriasis: Results of a retrospective study of 81 patients. Ther. Adv. Chronic Dis. 2023 14 20406223231178412 10.1177/20406223231178412 37360416
    [Google Scholar]
  79. dos Santos J.B.R. Almeida A.M. Acurcio F.A. de Oliveira Junior H.A. Kakehasi A.M. Guerra Junior A.A. Bennie M. Godman B. Alvares J. Comparative effectiveness of adalimumab and etanercept for rheumatoid arthritis in the Brazilian Public Health System. J. Comp. Eff. Res. 2016 5 6 539 549 10.2217/cer‑2016‑0027 27641309
    [Google Scholar]
  80. Baur A.S. Lutz M.B. Schierer S. Beltrame L. Theiner G. Zinser E. Ostalecki C. Heidkamp G. Haendle I. Erdmann M. Wiesinger M. Leisgang W. Gross S. Pommer A.J. Kämpgen E. Dudziak D. Steinkasserer A. Cavalieri D. Schuler-Thurner B. Schuler G. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 2013 122 13 2185 2194 10.1182/blood‑2012‑09‑456988 23958949
    [Google Scholar]
  81. Zaman R. Islam R.A. Ibnat N. Othman I. Zaini A. Lee C.Y. Chowdhury E.H. Current strategies in extending half-lives of therapeutic proteins. J. Control. Release 2019 301 176 189 10.1016/j.jconrel.2019.02.016 30849445
    [Google Scholar]
  82. Mukherjee A.G. Wanjari U.R. Gopalakrishnan A.V. Bradu P. Biswas A. Ganesan R. Renu K. Dey A. Vellingiri B. El Allali A. Alsamman A.M. Zayed H. George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed. Pharmacother. 2023 163 114832 10.1016/j.biopha.2023.114832 37150032
    [Google Scholar]
  83. Wang C. Guo X. Wang W. Li J.X. Wang T.Y. From cell clones to recombinant protein product heterogeneity in chinese hamster ovary cell systems. Int. J. Mol. Sci. 2025 26 3 1324 10.3390/ijms26031324 39941092
    [Google Scholar]
  84. Bai Y. Mercadé I.D. Elgendy R. Lambiase G. Peak-Chew S. Franco C. Wingett S.W. Stevens T.J. Grassi L. Hitchcock N. Ferreira C.S. Hatton D. Miller E.A. Mistry R.K. Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies. Comput. Struct. Biotechnol. J. 2025 27 17 31 10.1016/j.csbj.2024.12.006 39760073
    [Google Scholar]
  85. Kim J.Y. Kim Y.G. Lee G.M. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl. Microbiol. Biotechnol. 2012 93 3 917 930 10.1007/s00253‑011‑3758‑5 22159888
    [Google Scholar]
  86. Karbalaei M. Rezaee S.A. Farsiani H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020 235 9 5867 5881 10.1002/jcp.29583 32057111
    [Google Scholar]
  87. Kalkan A.K. Palaz F. Sofija S. Elmousa N. Ledezma Y. Cachat E. Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol. Adv. 2023 64 108115 10.1016/j.biotechadv.2023.108115 36758652
    [Google Scholar]
  88. Al-Salama Z.T. Scott L.J. Lonoctocog Alfa: A review in Haemophilia A. Drugs 2017 77 15 1677 1686 10.1007/s40265‑017‑0815‑0 28900904
    [Google Scholar]
  89. Germain D.P. Linhart A. Pegunigalsidase alfa: A novel, pegylated recombinant alpha-galactosidase enzyme for the treatment of Fabry disease. Front. Genet. 2024 15 1395287 10.3389/fgene.2024.1395287 38680424
    [Google Scholar]
  90. Frampton J.E. Efmoroctocog Alfa: A Review in Haemophilia A. Drugs 2021 81 17 2035 2046 10.1007/s40265‑021‑01615‑w 34743314
    [Google Scholar]
  91. Esaulenko E.V. Yakovlev A.A. Volkov G.A. Sukhoruk A.A. Surkov K.G. Kruglyakov P.V. Diaz-Mitoma F. Efficacy and safety of a 3-Antigen (Pre-S1/Pre-S2/S) Hepatitis B vaccine: Results of a phase 3 randomized clinical trial in the Russian federation. Clin. Infect. Dis. 2021 73 9 e3333 e3339 10.1093/cid/ciaa1649 33119068
    [Google Scholar]
  92. Valentino L.A. Recht M. Dipaola J. Shapiro A.D. Pipe S.W. Ewing N. Urgo J. Bullock T. Simmons M. Deguzman C. Experience with a third generation recombinant factor VIII concentrate (Advate ® ) for immune tolerance induction in patients with haemophilia A. Haemophilia 2009 15 3 718 726 10.1111/j.1365‑2516.2008.01960.x 19298383
    [Google Scholar]
  93. Petrini I. Lucchesi M. Puppo G. Chella A. Medical treatment of malignant pleural mesothelioma relapses. J. Thorac. Dis. 2018 10 Suppl 2 S333 S341 10.21037/jtd.2017.10.159 29507803
    [Google Scholar]
  94. Baskar R. Lee K.A. Yeo R. Yeoh K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012 9 3 193 199 10.7150/ijms.3635 22408567
    [Google Scholar]
  95. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  96. Liauw S.L. Connell P.P. Weichselbaum R.R. New paradigms and future challenges in radiation oncology: An update of biological targets and technology. Sci. Transl. Med. 2013 5 173 173sr2 10.1126/scitranslmed.3005148 23427246
    [Google Scholar]
  97. Zhou Y. Tao L. Qiu J. Xu J. Yang X. Zhang Y. Tian X. Guan X. Cen X. Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024 9 1 132 10.1038/s41392‑024‑01823‑2 38763973
    [Google Scholar]
  98. Briukhovetska D. Dörr J. Endres S. Libby P. Dinarello C.A. Kobold S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021 21 8 481 499 10.1038/s41568‑021‑00363‑z 34083781
    [Google Scholar]
  99. Tsao L.C. Force J. Hartman Z.C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 2021 81 18 4641 4651 10.1158/0008‑5472.CAN‑21‑1109 34145037
    [Google Scholar]
  100. Zhou W. Lu X. Tian F. Luo Q. Zhou W. Yang S. Li W. Yang Y. Shi M. Zhou T. Vaccine therapies for prostate cancer: Current status and future outlook. Vaccines 2024 12 12 1384 10.3390/vaccines12121384 39772046
    [Google Scholar]
  101. Cheung L.S. Fu J. Kumar P. Kumar A. Urbanowski M.E. Ihms E.A. Parveen S. Bullen C.K. Patrick G.J. Harrison R. Murphy J.R. Pardoll D.M. Bishai W.R. Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti–PD-1 in melanoma. Proc. Natl. Acad. Sci. USA 2019 116 8 3100 3105 10.1073/pnas.1815087116 30718426
    [Google Scholar]
  102. Whiteley A.E. Price T.T. Cantelli G. Sipkins D.A. Leukaemia: A model metastatic disease. Nat. Rev. Cancer 2021 21 7 461 475 10.1038/s41568‑021‑00355‑z 33953370
    [Google Scholar]
  103. Lohcharoenkal W. Wang L. Chen Y.C. Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int. 2014 2014 1 12 10.1155/2014/180549 24772414
    [Google Scholar]
  104. Naeimi R. Bahmani A. Afshar S. Investigating the role of peptides in effective therapies against cancer. Cancer Cell Int. 2022 22 1 139 10.1186/s12935‑022‑02553‑7 35346211
    [Google Scholar]
  105. Lamrabet O. Drancourt M. Genetic engineering of Mycobacterium tuberculosis: A review. Tuberculosis 2012 92 5 365 376 10.1016/j.tube.2012.06.002 22789498
    [Google Scholar]
  106. Bachman J. Site-directed mutagenesis. Methods in Enzymology. Elsevier 2013 241 248 10.1016/B978‑0‑12‑418687‑3.00019‑7
    [Google Scholar]
  107. Strohl W.R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 2015 29 4 215 239 10.1007/s40259‑015‑0133‑6 26177629
    [Google Scholar]
  108. Wu K. Kwon S.H. Zhou X. Fuller C. Wang X. Vadgama J. Wu Y. Overcoming challenges in small-molecule drug bioavailability: A review of key factors and approaches. Int. J. Mol. Sci. 2024 25 23 13121 10.3390/ijms252313121 39684832
    [Google Scholar]
  109. Shi Y. Lu A. Wang X. Belhadj Z. Wang J. Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm. Sin. B 2021 11 8 2396 2415 10.1016/j.apsb.2021.05.002 34522592
    [Google Scholar]
  110. Li T. Zhang H.Z. Ge G.F. Yue Z.R. Wang R.Y. Zhang Q. Gu Y. Song M.J. Li W.B. Ma M.Z. Wang M.Z. Yang H. Li Y. Li H.Y. Albumin fusion at the N-Terminus or C-Terminus of HM-3 leads to improved pharmacokinetics and bioactivities. Biomedicines 2021 9 9 1084 10.3390/biomedicines9091084 34572270
    [Google Scholar]
  111. Deng W. Zhao Z. Zou T. Kuang T. Wang J. Research advances in fusion protein-based drugs for diabetes treatment. Diabetes Metab. Syndr. Obes. 2024 17 343 362 10.2147/DMSO.S421527 38288338
    [Google Scholar]
  112. Boune S. Hu P. Epstein A.L. Khawli L.A. Principles of N-linked glycosylation variations of IgG-based therapeutics: Pharmacokinetic and functional considerations. Antibodies 2020 9 2 22 10.3390/antib9020022 32532067
    [Google Scholar]
  113. Li C. Wang L.X. Chemoenzymatic methods for the synthesis of glycoproteins. Chem. Rev. 2018 118 17 8359 8413 10.1021/acs.chemrev.8b00238 30141327
    [Google Scholar]
  114. Thompson D.B. Cronican J.J. Liu D.R. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods in Enzymology. Elsevier 2012 293 319
    [Google Scholar]
  115. Serfling R. Coin I. Incorporation of unnatural amino acids into proteins expressed in mammalian cells. Methods in Enzymology. Elsevier 2016 89 107
    [Google Scholar]
  116. Banga R.J. Krovi S.A. Narayan S.P. Sprangers A.J. Liu G. Mirkin C.A. Nguyen S.T. Drug-loaded polymeric spherical nucleic acids: Enhancing colloidal stability and cellular uptake of polymeric nanoparticles through DNA surface-functionalization. Biomacromolecules 2017 18 2 483 489 10.1021/acs.biomac.6b01563 27931093
    [Google Scholar]
  117. Riccardi F. Dal Bo M. Macor P. Toffoli G. A comprehensive overview on antibody-drug conjugates: From the conceptualization to cancer therapy. Front. Pharmacol. 2023 14 1274088 10.3389/fphar.2023.1274088 37790810
    [Google Scholar]
  118. Marei H.E. Cenciarelli C. Hasan A. Potential of antibody–drug conjugates (ADCs) for cancer therapy. Cancer Cell Int. 2022 22 1 255 10.1186/s12935‑022‑02679‑8 35964048
    [Google Scholar]
  119. Parslow A. Parakh S. Lee F.T. Gan H. Scott A. Antibody–drug conjugates for cancer therapy. Biomedicines 2016 4 3 14 10.3390/biomedicines4030014 28536381
    [Google Scholar]
  120. Nhàn N.T.T. Yamada T. Yamada K.H. Peptide-based agents for cancer treatment: Current applications and future directions. Int. J. Mol. Sci. 2023 24 16 12931 10.3390/ijms241612931 37629112
    [Google Scholar]
  121. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  122. Swierczewska M. Lee K.C. Lee S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs 2015 20 4 531 536 10.1517/14728214.2015.1113254 26583759
    [Google Scholar]
  123. Li C. Li T. Tian X. An W. Wang Z. Han B. Tao H. Wang J. Wang X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Front. Pharmacol. 2024 15 1353626 10.3389/fphar.2024.1353626 38523641
    [Google Scholar]
  124. Kowalczyk R. Harris P.W.R. Williams G.M. Yang S.H. Brimble M.A. Peptide lipidation - A synthetic strategy to afford peptide based therapeutics. Adv Exp Med Biol 2017 1030 185 227 10.1007/978‑3‑319‑66095‑0_9 29081055
    [Google Scholar]
  125. Menacho-Melgar R. Decker J.S. Hennigan J.N. Lynch M.D. A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Release 2019 295 1 12 10.1016/j.jconrel.2018.12.032 30579981
    [Google Scholar]
  126. Kapadia C.H. Melamed J.R. Day E.S. Spherical nucleic acid nanoparticles: Therapeutic potential. BioDrugs 2018 32 4 297 309 10.1007/s40259‑018‑0290‑5 29959665
    [Google Scholar]
  127. Ambroggio X.I. Kuhlman B. Computational design of a single amino acid sequence that can switch between two distinct protein folds. J. Am. Chem. Soc. 2006 128 4 1154 1161 10.1021/ja054718w 16433531
    [Google Scholar]
  128. Rahban M. Ahmad F. Piatyszek M.A. Haertlé T. Saso L. Saboury A.A. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Advances 2023 13 51 35947 35963 10.1039/D3RA06476J 38090079
    [Google Scholar]
  129. Dingman R. Balu-Iyer S.V. Immunogenicity of protein pharmaceuticals. J. Pharm. Sci. 2019 108 5 1637 1654 10.1016/j.xphs.2018.12.014 30599169
    [Google Scholar]
  130. Gronemeyer P. Ditz R. Strube J. Trends in upstream and downstream process development for antibody manufacturing. Bioengineering 2014 1 4 188 212 10.3390/bioengineering1040188 28955024
    [Google Scholar]
  131. De Jesus M. Wurm F.M. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Comprehensive Biotechnology. Elsevier 2011 396 401 10.1016/B978‑0‑444‑64046‑8.00199‑3
    [Google Scholar]
  132. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  133. Nicze M. Borówka M. Dec A. Niemiec A. Bułdak Ł. Okopień B. The current and promising oral delivery methods for protein- and peptide-based drugs. Int. J. Mol. Sci. 2024 25 2 815 10.3390/ijms25020815 38255888
    [Google Scholar]
  134. Lewis A.L. Richard J. Challenges in the delivery of peptide drugs: An industry perspective. Ther. Deliv. 2015 6 2 149 163 10.4155/tde.14.111 25690084
    [Google Scholar]
  135. Naeem M. Manzoor S. Abid M.U.H. Tareen M.B.K. Asad M. Mushtaq S. Ehsan N. Amna D. Xu B. Hazafa A. Fungal proteases as emerging biocatalysts to meet the current challenges and recent developments in biomedical therapies: An updated review. J. Fungi 2022 8 2 109 10.3390/jof8020109 35205863
    [Google Scholar]
  136. Ntana F. Mortensen U.H. Sarazin C. Figge R. Aspergillus: A powerful protein production platform. Catalysts 2020 10 9 1064 10.3390/catal10091064
    [Google Scholar]
  137. Sun Y. Qian Y. Zhang J. Yao C. Wang Y. Liu H. Zhong Y. Development of a novel expression platform for heterologous protein production via deleting the p53-like regulator Vib1 in Trichoderma reesei. Enzyme Microb. Technol. 2022 155 109993 10.1016/j.enzmictec.2022.109993 35066395
    [Google Scholar]
  138. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  139. Niazi S.K. Magoola M. mRNA and synthesis-based therapeutic proteins: A non-recombinant affordable option. Biologics 2023 3 4 355 379 10.3390/biologics3040020
    [Google Scholar]
  140. Molla G. Bitew M. Revolutionizing personalized medicine: Synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines 2024 12 12 2750 10.3390/biomedicines12122750 39767657
    [Google Scholar]
  141. Su J. Yang L. Sun Z. Zhan X. Personalized drug therapy: Innovative concept guided with proteoformics. Mol. Cell. Proteomics 2024 23 3 100737 10.1016/j.mcpro.2024.100737 38354979
    [Google Scholar]
  142. Kohli A. Verma S. Agarwal N. Kushwaha A. Gupta A. Kumar A. Parikesit A.A. Naderi M. Singh A. Konnur R.G. Mukherjee S. Precision medicine in view of genomic biomarker discovery. Advances in medical technologies and clinical practice IGI Global 2024 185 216 10.4018/979‑8‑3693‑6597‑7.ch007
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665387985250710041016
Loading
/content/journals/ppl/10.2174/0109298665387985250710041016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test