Skip to content
2000
image of F18 Promiscuous Epitope of Acr1 Protein of Mycobacterium tuberculosis Induces the Secretion of IL-10 and Tregs but Not IL-6

Abstract

Introduction

italic>Mycobacterium tuberculosis (Mtb) is a Gram-positive bacterium that causes tuberculosis (TB). It remains viable for extended periods within host macrophages by entering a dormant state. Alpha crystallin 1 (Acr1) is a 16 kDa protein of and is reported to be highly upregulated in latent TB. Acr1 suppresses the host’s immune system by impairing the differentiation and maturation of dendritic cells and macrophages. We hypothesize that judiciously utilizes its Acr1 protein to paralyse the immune system of the host by inducing the release of IL-10 and generating an immunosuppressive environment.

Methods

We employed tools to identify highly promiscuous, IL-10-inducing and IL-6-non-inducing epitopes of . Moreover, the selected epitope was synthesized and tested for its suppressive activity and generation of Tregs.

Results

We identified the presence of a specific epitope in Acr1 (F18) that is responsible for bolstering the release of IL-10 and Tregs through tools and verified the activity by assays. In hPBMCs, the F18 epitope could suppress the proliferation of CD4 T cells stimulated with PHA and expand the pool of Tregs in a dose-dependent manner.

Discussion

The F18 epitope from ’s Acr1 protein promotes IL-10 and Treg responses without triggering pro-inflammatory IL-6, suggesting its probable immunoregulatory role. While it holds potential for treating autoimmune diseases, its impact on infection in tuberculosis should be further investigated.

Conclusion

Our findings suggest that the F18 epitope induces IL-10 production and Treg differentiation while inhibiting CD4+ T cell proliferation and IL-6 secretion, thereby promoting an immunosuppressive environment. Furthermore, this study highlights the possible role of Acr1 and its immunosuppressive epitope F18 as therapeutic agents for inducing suppressive Tregs, which may help in the management of autoimmune diseases.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665398349250728195645
2025-08-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Cecil D.L. Holt G.E. Park K.H. Gad E. Rastetter L. Childs J. Higgins D. Disis M.L. Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity. Cancer Res. 2014 74 10 2710 2718 10.1158/0008‑5472.CAN‑13‑3286 24778415
    [Google Scholar]
  2. Yasamut U. Wisitponchai T. Lee V.S. Yamabhai M. Rangnoi K. Thongkum W. Chupradit K. Tayapiwatana C. Determination of a distinguished interferon gamma epitope recognized by monoclonal antibody relating to autoantibody associated immunodeficiency. Sci. Rep. 2022 12 1 7608 10.1038/s41598‑022‑11774‑9 35534543
    [Google Scholar]
  3. Su Y. Rossi R. De Groot A.S. Scott D.W. Regulatory T cell epitopes (Tregitopes) in IgG induce tolerance in vivo and lack immunogenicity per se. J. Leukoc. Biol. 2013 94 2 377 383 10.1189/jlb.0912441 23729499
    [Google Scholar]
  4. Ivanyi J. Function and potentials of M. tuberculosis epitopes. Front. Immunol. 2014 5 107 10.3389/fimmu.2014.00107 24715888
    [Google Scholar]
  5. Youssef A.R. Elson C.J. Induction of IL-10 cytokine and the suppression of T cell proliferation by specific peptides from red cell band 3 and in vivo effects of these peptides on autoimmune hemolytic anemia in NZB mice. Auto Immun. Highlights 2017 8 1 7 10.1007/s13317‑017‑0095‑4 28455817
    [Google Scholar]
  6. Couper K.N. Blount D.G. Riley E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008 180 9 5771 5777 10.4049/jimmunol.180.9.5771 18424693
    [Google Scholar]
  7. Iyer S.S. Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012 32 1 23 63 10.1615/CritRevImmunol.v32.i1.30 22428854
    [Google Scholar]
  8. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021 33 3 127 148 10.1093/intimm/dxaa078 33337480
    [Google Scholar]
  9. Aliyu M. Zohora F.T. Anka A.U. Ali K. Maleknia S. Saffarioun M. Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int. Immunopharmacol. 2022 111 109130 10.1016/j.intimp.2022.109130 35969896
    [Google Scholar]
  10. Afzali B. Lombardi G. Lechler R.I. Lord G.M. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin. Exp. Immunol. 2007 148 1 32 46 10.1111/j.1365‑2249.2007.03356.x 17328715
    [Google Scholar]
  11. Dominguez-Villar M. Hafler D.A. Regulatory T cells in autoimmune disease. Nat. Immunol. 2018 19 7 665 673 10.1038/s41590‑018‑0120‑4 29925983
    [Google Scholar]
  12. Burkhart C. Liu G.Y. Anderton S.M. Metzler B. Wraith D.C. Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: A role for IL-10. Int. Immunol. 1999 11 10 1625 1634 10.1093/intimm/11.10.1625 10508180
    [Google Scholar]
  13. Bettelli E. Prabhu Das M. Howard E.D. Weiner H.L. Sobel R.A. Kuchroo V.K. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 1998 161 7 3299 3306 10.4049/jimmunol.161.7.3299 9759845
    [Google Scholar]
  14. Gu Y. Yang J. Ouyang X. Liu W. Li H. Yang J. Bromberg J. Chen S.H. Mayer L. Unkeless J.C. Xiong H. Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur. J. Immunol. 2008 38 7 1807 1813 10.1002/eji.200838331 18506885
    [Google Scholar]
  15. Passeri L. Andolfi G. Bassi V. Russo F. Giacomini G. Laudisa C. Marrocco I. Cesana L. Di Stefano M. Fanti L. Sgaramella P. Vitale S. Ziparo C. Auricchio R. Barera G. Di Nardo G. Troncone R. Gianfrani C. Annoni A. Passerini L. Gregori S. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J. Autoimmun. 2023 138 103051 10.1016/j.jaut.2023.103051 37224733
    [Google Scholar]
  16. Keravala A. Lechman E.R. Nash J. Mi Z. Robbins P.D. Human, viral or mutant human IL-10 expressed after local adenovirus-mediated gene transfer are equally effective in ameliorating disease pathology in a rabbit knee model of antigen-induced arthritis. Arthritis Res. Ther. 2006 8 4 R91 10.1186/ar1960 16704745
    [Google Scholar]
  17. Ma Y. Thornton S. Duwel L.E. Boivin G.P. Giannini E.H. Leiden J.M. Bluestone J.A. Hirsch R. Inhibition of collagen-induced arthritis in mice by viral IL-10 gene transfer. J. Immunol. 1998 161 3 1516 1524 10.4049/jimmunol.161.3.1516 9686619
    [Google Scholar]
  18. O’Neill E.J. Day M.J. Wraith D.C. IL-10 is essential for disease protection following intranasal peptide administration in the C57BL/6 model of EAE. J. Neuroimmunol. 2006 178 1-2 1 8 10.1016/j.jneuroim.2006.05.030 16872684
    [Google Scholar]
  19. Desel C. Dorhoi A. Bandermann S. Grode L. Eisele B. Kaufmann S.H.E. Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J. Infect. Dis. 2011 204 10 1573 1584 10.1093/infdis/jir592 21933877
    [Google Scholar]
  20. Mehra A. Zahra A. Thompson V. Sirisaengtaksin N. Wells A. Porto M. Köster S. Penberthy K. Kubota Y. Dricot A. Rogan D. Vidal M. Hill D.E. Bean A.J. Philips J.A. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog. 2013 9 10 e1003734 10.1371/journal.ppat.1003734 24204276
    [Google Scholar]
  21. Cambier C.J. Falkow S. Ramakrishnan L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 2014 159 7 1497 1509 10.1016/j.cell.2014.11.024 25525872
    [Google Scholar]
  22. Singh S. Maurya S.K. Aqdas M. Bashir H. Arora A. Bhalla V. Agrewala J.N. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Cell. Mol. Life Sci. 2022 79 11 567 10.1007/s00018‑022‑04596‑5 36283989
    [Google Scholar]
  23. Jamil B. Shahid F. Hasan Z. Nasir N. Razzaki T. Dawood G. Hussain R. Interferonγ/IL10 ratio defines the disease severity in pulmonary and extra pulmonary tuberculosis. Tuberculosis 2007 87 4 279 287 10.1016/j.tube.2007.03.004 17532265
    [Google Scholar]
  24. Herzmann C. Ernst M. Ehlers S. Stenger S. Maertzdorf J. Sotgiu G. Lange C. Increased frequencies of pulmonary regulatory T-cells in latent Mycobacterium tuberculosis infection. Eur. Respir. J. 2012 40 6 1450 1457 10.1183/09031936.00214611 22441737
    [Google Scholar]
  25. García Jacobo R.E. Serrano C.J. Enciso Moreno J.A. Gaspar Ramírez O. Trujillo Ochoa J.L. Uresti Rivera E.E. Portales Pérez D.P. González-Amaro R. García Hernández M.H. Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts. Cell. Immunol. 2014 289 1-2 167 173 10.1016/j.cellimm.2014.03.010 24841855
    [Google Scholar]
  26. Green A.M. Mattila J.T. Bigbee C.L. Bongers K.S. Lin P.L. Flynn J.L. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J. Infect. Dis. 2010 202 4 533 541 10.1086/654896 20617900
    [Google Scholar]
  27. Stringari L.L. Covre L.P. da Silva F.D.C. de Oliveira V.L. Campana M.C. Hadad D.J. Palaci M. Salgame P. Dietze R. Gomes D.C.O. Ribeiro-Rodrigues R. Increase of CD4+CD25highFoxP3+ cells impairs in vitro human microbicidal activity against Mycobacterium tuberculosis during latent and acute pulmonary tuberculosis. PLoS Negl. Trop. Dis. 2021 15 7 e0009605 10.1371/journal.pntd.0009605 34324509
    [Google Scholar]
  28. Babu S. Bhat S.Q. Kumar N.P. Kumaraswami V. Nutman T.B. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J. Infect. Dis. 2010 201 1 20 31 10.1086/648735 19929695
    [Google Scholar]
  29. Kennaway C.K. Benesch J.L.P. Gohlke U. Wang L. Robinson C.V. Orlova E.V. Saibi H.R. Keep N.H. Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J. Biol. Chem. 2005 280 39 33419 33425 10.1074/jbc.M504263200 16046399
    [Google Scholar]
  30. Healy E.F. Goering L.M. Hauser C.R. King P.J. An immunomodulatory role for the Mycobacterium tuberculosis Acr protein in the formation of the tuberculous granuloma. FEBS Lett. 2021 595 2 284 293 10.1002/1873‑3468.13998 33185291
    [Google Scholar]
  31. Siddiqui K.F. Amir M. Gurram R.K. Khan N. Arora A. Rajagopal K. Agrewala J.N. Latency-associated protein Acr1 impairs dendritic cell maturation and functionality: A possible mechanism of immune evasion by Mycobacterium tuberculosis. J. Infect. Dis. 2014 209 9 1436 1445 10.1093/infdis/jit595 24218502
    [Google Scholar]
  32. Mubin N. Pahari S. Owais M. Zubair S. Mycobacterium tuberculosis host cell interaction: Role of latency associated protein Acr-1 in differential modulation of macrophages. PLoS One 2018 13 11 e0206459 10.1371/journal.pone.0206459 30395609
    [Google Scholar]
  33. Amir M. Aqdas M. Nadeem S. Siddiqui K.F. Khan N. Sheikh J.A. Agrewala J.N. Diametric role of the latency-associated protein Acr1 of Mycobacterium tuberculosis in modulating the functionality of pre- and post-maturational stages of dendritic cells. Front. Immunol. 2017 8 624 10.3389/fimmu.2017.00624 28611779
    [Google Scholar]
  34. Yuan Y. Crane D.D. Simpson R.M. Zhu Y. Hickey M.J. Sherman D.R. Barry III C.E. The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA 1998 95 16 9578 9583 10.1073/pnas.95.16.9578 9689123
    [Google Scholar]
  35. Jurcevic S. Hills A. Pasvol G. Davidson R.N. Ivanyi J. Wilkinson R.J. T cell responses to a mixture of Mycobacterium tuberculosis peptides with complementary HLA-DR binding profiles. Clin. Exp. Immunol. 2003 105 3 416 421 10.1046/j.1365‑2249.1996.d01‑791.x 8809128
    [Google Scholar]
  36. Caccamo N. Barera A. Di Sano C. Meraviglia S. Ivanyi J. Hudecz F. Bosze S. Dieli F. Salerno A. Cytokine profile, HLA restriction and TCR sequence analysis of human CD4+ T clones specific for an immunodominant epitope of Mycobacterium tuberculosis 16-kDa protein. Clin. Exp. Immunol. 2003 133 2 260 266 10.1046/j.1365‑2249.2003.02201.x 12869033
    [Google Scholar]
  37. Agrewala J.N. Wilkinson R.J. Influence of HLA-DR on the phenotype of CD4+ T lymphocytes specific for an epitope of the 16-kDa α-crystallin antigen of Mycobacterium tuberculosis. Eur. J. Immunol. 1999 29 6 1753 1761 10.1002/(SICI)1521‑4141(199906)29:06<1753::AID‑IMMU1753>3.0.CO;2‑B 10382737
    [Google Scholar]
  38. Agrewala J.N. Wilkinson R.J. Differential regulation of Th1 and Th2 cells by p91–110 and p21–40 peptides of the 16-kD α-crystallin antigen of Mycobacterium tuberculosis . Clin. Exp. Immunol. 2001 114 3 392 397 10.1046/j.1365‑2249.1998.00724.x 9844048
    [Google Scholar]
  39. Shams H. Klucar P. Weis S.E. Lalvani A. Moonan P.K. Safi H. Wizel B. Ewer K. Nepom G.T. Lewinsohn D.M. Andersen P. Barnes P.F. Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J. Immunol. 2004 173 3 1966 1977 10.4049/jimmunol.173.3.1966 15265931
    [Google Scholar]
  40. Valle M.T. Megiovanni A.M. Merlo A. Li Pira G. Bottone L. Angelini G. Bracci L. Lozzi L. Huygen K. Manca F. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin. Exp. Immunol. 2001 123 2 226 232 10.1046/j.1365‑2249.2001.01450.x 11207652
    [Google Scholar]
  41. Nagpal G. Usmani S.S. Dhanda S.K. Kaur H. Singh S. Sharma M. Raghava G.P.S. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 2017 7 1 42851 10.1038/srep42851 28211521
    [Google Scholar]
  42. Dhall A. Patiyal S. Sharma N. Usmani S.S. Raghava G.P.S. Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Brief. Bioinform. 2021 22 2 936 945 10.1093/bib/bbaa259 33034338
    [Google Scholar]
  43. Vita R. Mahajan S. Overton J.A. Dhanda S.K. Martini S. Cantrell J.R. Wheeler D.K. Sette A. Peters B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019 47 D1 D339 D343 10.1093/nar/gky1006 30357391
    [Google Scholar]
  44. Rapin N. Lund O. Castiglione F. Immune system simulation online. Bioinformatics 2011 27 14 2013 2014 10.1093/bioinformatics/btr335 21685045
    [Google Scholar]
  45. Lamiable A. Thévenet P. Rey J. Vavrusa M. Derreumaux P. Tufféry P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016 44 W1 W449 W454 10.1093/nar/gkw329 27131374
    [Google Scholar]
  46. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  47. Behrendt R. White P. Offer J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016 22 1 4 27 10.1002/psc.2836 26785684
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665398349250728195645
Loading
/content/journals/ppl/10.2174/0109298665398349250728195645
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Rapid Communication
Keywords: autoimmunity ; Acr1 ; IL-10 ; Tregs ; immunosuppressive epitopes ; Mycobacterium tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test