Skip to content
2000
image of Precision Enzyme: Targeted Drug Discovery in Neurodegenerative Disorders

Abstract

Introduction

Neurodegenerative disorders such as Alzheimer's, Parkinson's, and ALS are characterized by progressive neuronal dysfunction with limited therapeutic options. Recent advances in molecular biology and drug development have highlighted the therapeutic promise of precision enzyme targeting, offering novel strategies for disease modulation and symptom management.

Methods

A comprehensive literature review spanning recent/current was conducted using PubMed, Scopus, and ScienceDirect. Studies focusing on enzyme-based targets, high-throughput screening, and molecular docking in neurodegeneration were included. Thematic synthesis was employed to categorize findings based on enzyme class, disease relevance, and therapeutic outcomes.

Results

Key enzyme families such as kinases, proteases, and oxidoreductases were identified as pivotal modulators in disease progression. Emerging enzyme-targeted compounds demonstrated enhanced bioavailability, blood-brain barrier permeability, and disease-specific efficacy. Novel screening platforms and computational modeling enabled the precise selection of inhibitors, significantly improving the therapeutic index and reducing off-target effects.

Discussion

Targeting enzymes implicated in neuroinflammation, oxidative stress, and protein misfolding has shown disease-modifying potential. Integrating precision drug discovery tools, such as AI-assisted modeling and enzyme kinetics, supports rational drug design. However, translational challenges persist due to variability in enzyme expression and disease heterogeneity.

Conclusion

Future research should focus on refining enzyme inhibitors and integrating biomarkers to facilitate personalized treatment strategies for neurodegenerative disorders. As the understanding of enzymatic roles in neurodegeneration deepens, precision enzyme-targeted drug discovery holds significant promise in transforming neurotherapeutic approaches.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665391103250825102319
2025-09-01
2025-10-03
Loading full text...

Full text loading...

References

  1. Kovacs G.G. Concepts and classification of neurodegenerative diseases. Handbook of Clinical Neurology. Elsevier 2018 145 301 307 10.1016/B978‑0‑12‑802395‑2.00021‑3
    [Google Scholar]
  2. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  3. Koroshetz W. Mucke L. Neurodegenerative diseases: Where are we not looking for answers? Translational Neuroscience: Toward New Therapies MIT Press Cambridge (MA) 2015 5 33886206
    [Google Scholar]
  4. Spires-Jones T.L. Attems J. Thal D.R. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017 134 2 187 205 10.1007/s00401‑017‑1709‑7 28401333
    [Google Scholar]
  5. Over 1 in 3 people affected by neurological conditions, the leading cause of illness and disability worldwide. 2024 Available from: https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide
  6. Passeri E. Elkhoury K. Morsink M. Broersen K. Linder M. Tamayol A. Malaplate C. Yen F.T. Arab-Tehrany E. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  7. Yiannopoulou K.G. Papageorgiou S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020 12 10.1177/1179573520907397 32165850
    [Google Scholar]
  8. Ebrahimi Z. Talaei S. Aghamiri S. Goradel N.H. Jafarpour A. Negahdari B. Overcoming the blood–brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol. 2020 14 6 441 448 10.1049/iet‑nbt.2019.0351 32755952
    [Google Scholar]
  9. Young A.L. Marinescu R.V. Oxtoby N.P. Bocchetta M. Yong K. Firth N.C. Cash D.M. Thomas D.L. Dick K.M. Cardoso J. van Swieten J. Borroni B. Galimberti D. Masellis M. Tartaglia M.C. Rowe J.B. Graff C. Tagliavini F. Frisoni G.B. Laforce R. Jr Finger E. de Mendonça A. Sorbi S. Warren J.D. Crutch S. Fox N.C. Ourselin S. Schott J.M. Rohrer J.D. Alexander D.C. Andersson C. Archetti S. Arighi A. Benussi L. Binetti G. Black S. Cosseddu M. Fallström M. Ferreira C. Fenoglio C. Freedman M. Fumagalli G.G. Gazzina S. Ghidoni R. Grisoli M. Jelic V. Jiskoot L. Keren R. Lombardi G. Maruta C. Meeter L. Mead S. van Minkelen R. Nacmias B. Öijerstedt L. Padovani A. Panman J. Pievani M. Polito C. Premi E. Prioni S. Rademakers R. Redaelli V. Rogaeva E. Rossi G. Rossor M. Scarpini E. Tang-Wai D. Thonberg H. Tiraboschi P. Verdelho A. Weiner M.W. Aisen P. Petersen R. Jack C.R. Jagust W. Trojanowki J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Khachaturian Z. Sorensen G. Kuller L. Raichle M. Paul S. Davies P. Fillit H. Hefti F. Holtzman D. Mesulam M.M. Potter W. Snyder P. Schwartz A. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Bernstein M. Thompson P. Schuff N. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Taylor-Reinwald L. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S. Shen L. Faber K. Kim S. Nho K. Thal L. Buckholtz N. Albert M. Frank R. Hsiao J. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Villanueva-Meyer J. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Carroll M. Leon S. Mintun M.A. Schneider S. Oliver A. Marson D. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. de Toledo-Morrell L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Albert M. Onyike C. D’Agostino D. Kielb S. Galvin J.E. Cerbone B. Michel C.A. Rusinek H. de Leon M.J. Glodzik L. De Santi S. Doraiswamy P.M. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Ismail M.S. Brand C. Mulnard R.A. Thai G. Mc-Adams-Ortiz C. Womack K. Mathews D. Quiceno M. Diaz-Arrastia R. King R. Weiner M. Martin-Cook K. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H. Lu P.H. Bartzokis G. Graff-Radford N.R. Parfitt F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. van Dyck C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Stefanovic B. Caldwell C. Hsiung G-Y.R. Feldman H. Mudge B. Assaly M. Kertesz A. Rogers J. Bernick C. Munic D. Kerwin D. Mesulam M-M. Lipowski K. Wu C-K. Johnson N. Sadowsky C. Martinez W. Villena T. Turner R.S. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T-Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Potkin S.G. Preda A. Nguyen D. Tariot P. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. Sink K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Pasternak S. Rachinsky I. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Ponto L.L.B. Shim H. Smith K.E. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Raj B.A. Neylan T. Grafman J. Davis M. Morrison R. Hayes J. Finley S. Friedl K. Fleischman D. Arfanakis K. James O. Massoglia D. Fruehling J.J. Harding S. Peskind E.R. Petrie E.C. Li G. Yesavage J.A. Taylor J.L. Furst A.J. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat. Commun. 2018 9 1 4273 10.1038/s41467‑018‑05892‑0 30323170
    [Google Scholar]
  10. Strafella C. Caputo V. Galota M.R. Zampatti S. Marella G. Mauriello S. Cascella R. Giardina E. Application of precision medicine in neurodegenerative diseases. Front. Neurol. 2018 9 701 10.3389/fneur.2018.00701 30190701
    [Google Scholar]
  11. Toader C. Dobrin N. Brehar F.M. Popa C. Covache-Busuioc R.A. Glavan L.A. Costin H.P. Bratu B.G. Corlatescu A.D. Popa A.A. Ciurea A.V. From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. Int. J. Mol. Sci. 2023 24 22 16119 10.3390/ijms242216119 38003309
    [Google Scholar]
  12. Liu N. Lin M.M. Wang Y. The emerging roles of E3 ligases and DUBs in neurodegenerative diseases. Mol. Neurobiol. 2023 60 1 247 263 10.1007/s12035‑022‑03063‑3 36260224
    [Google Scholar]
  13. Shukla S. Tekwani B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol. 2020 11 537 10.3389/fphar.2020.00537 32390854
    [Google Scholar]
  14. Pan C. Mao S. Xiong Z. Chen Z. Xu N. Glutamate dehydrogenase: Potential therapeutic targets for neurodegenerative disease. Eur. J. Pharmacol. 2023 950 175733 10.1016/j.ejphar.2023.175733 37116563
    [Google Scholar]
  15. Kim N. Lee H.J. Target enzymes considered for the treatment of Alzheimer’s disease and Parkinson’s disease. BioMed Res. Int. 2020 2020 1 2010728 10.1155/2020/2010728 33224974
    [Google Scholar]
  16. Lei P. Ayton S. Bush A.I. Adlard P.A. GSK-3 in neurodegenerative diseases. Int. J. Alzheimers Dis. 2011 2011 1 189246 10.4061/2011/189246 21629738
    [Google Scholar]
  17. Yuan X.Z. Sun S. Tan C.C. Yu J.T. Tan L. The role of ADAM10 in Alzheimer’s disease. J. Alzheimers Dis. 2017 58 2 303 322 10.3233/JAD‑170061 28409746
    [Google Scholar]
  18. Kim M. Suh J. Romano D. Truong M.H. Mullin K. Hooli B. Norton D. Tesco G. Elliott K. Wagner S.L. Moir R.D. Becker K.D. Tanzi R.E. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum. Mol. Genet. 2009 18 20 3987 3996 10.1093/hmg/ddp323 19608551
    [Google Scholar]
  19. Zhou M. Lin Y. Lu L. Zhang Z. Guo W. Peng G. Zhang W. Zhu Z. Wu Z. Mo M. Yang X. Zhu X. Chen C. Chen X. Xu P. Association of ADAM10 gene variants with sporadic Parkinson’s disease in Chinese Han population. J. Gene Med. 2021 23 3 e3319 10.1002/jgm.3319 33527480
    [Google Scholar]
  20. Cozzolino F. Vezzoli E. Cheroni C. Besusso D. Conforti P. Valenza M. Iacobucci I. Monaco V. Birolini G. Bombaci M. Falqui A. Saftig P. Rossi R.L. Monti M. Cattaneo E. Zuccato C. ADAM10 hyperactivation acts on piccolo to deplete synaptic vesicle stores in Huntington’s disease. Hum. Mol. Genet. 2021 30 13 1175 1187 10.1093/hmg/ddab047 33601422
    [Google Scholar]
  21. Firdosh N. Yadav B.S. Rahman S. Kumar H. PDE-5 restore cognitive and metabolic function in patients with Alzheimer’s disease (AD). Int J Pharm Sci Med 2024 9 7 11 23 10.47760/ijpsm.2024.v09i07.002
    [Google Scholar]
  22. Russell D.S. Barret O. Jennings D.L. Friedman J.H. Tamagnan G.D. Thomae D. Alagille D. Morley T.J. Papin C. Papapetropoulos S. Waterhouse R.N. Seibyl J.P. Marek K.L. The phosphodiesterase 10 positron emission tomography tracer, [18F]MNI-659, as a novel biomarker for early Huntington disease. JAMA Neurol. 2014 71 12 1520 1528 10.1001/jamaneurol.2014.1954 25322077
    [Google Scholar]
  23. Obergasteiger J. Frapporti G. Lamonaca G. Pizzi S. Picard A. Pischedda F. Kinase inhibition of G2019S-LRRK2 restores autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. bioRix 2019 10.1101/707273
    [Google Scholar]
  24. Steger M. Tonelli F. Ito G. Davies P. Trost M. Vetter M. Wachter S. Lorentzen E. Duddy G. Wilson S. Baptista M.A.S. Fiske B.K. Fell M.J. Morrow J.A. Reith A.D. Alessi D.R. Mann M. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 2016 5 e12813 10.7554/eLife.12813 26824392
    [Google Scholar]
  25. Zhang Q. Hu C. Huang J. Liu W. Lai W. Leng F. Tang Q. Liu Y. Wang Q. Zhou M. Sheng F. Li G. Zhang R. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp. Mol. Med. 2019 51 10 1 13 10.1038/s12276‑019‑0318‑z 31578315
    [Google Scholar]
  26. Wang G. Huang Y. Wang L.L. Zhang Y.F. Xu J. Zhou Y. Lourenco G.F. Zhang B. Wang Y. Ren R.J. Halliday G.M. Chen S.D. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci. Rep. 2016 6 1 26697 10.1038/srep26697 27221467
    [Google Scholar]
  27. Thapa K. Khan H. Sharma U. Grewal A.K. Singh T.G. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci. 2021 267 118975 10.1016/j.lfs.2020.118975 33387580
    [Google Scholar]
  28. Mao K. Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J. 2022 289 8 2013 2024 10.1111/febs.15716 33460497
    [Google Scholar]
  29. Trist B.G. Genoud S. Roudeau S. Rookyard A. Abdeen A. Cottam V. Hare D.J. White M. Altvater J. Fifita J.A. Hogan A. Grima N. Blair I.P. Kysenius K. Crouch P.J. Carmona A. Rufin Y. Claverol S. Van Malderen S. Falkenberg G. Paterson D.J. Smith B. Troakes C. Vance C. Shaw C.E. Al-Sarraj S. Cordwell S. Halliday G. Ortega R. Double K.L. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain 2022 145 9 3108 3130 10.1093/brain/awac165 35512359
    [Google Scholar]
  30. Mielke J.K. Klingeborn M. Schultz E.P. Markham E.L. Reese E.D. Alam P. Mackenzie I.R. Ly C.V. Caughey B. Cashman N.R. Leavens M.J. Seeding activity of human superoxide dismutase 1 aggregates in familial and sporadic amyotrophic lateral sclerosis postmortem neural tissues by real-time quaking-induced conversion. Acta Neuropathol. 2024 147 1 100 10.1007/s00401‑024‑02752‑8 38884646
    [Google Scholar]
  31. Norambuena A. Sun X. Wallrabe H. Cao R. Sun N. Pardo E. SOD1 mediates lysosome-to-mitochondria communication and its dysregulation by amyloid-β oligomers. bioRix 2021 10.1101/2021.06.14.448281
    [Google Scholar]
  32. Bellinger F.P. Bellinger M.T. Seale L.A. Takemoto A.S. Raman A.V. Miki T. Manning-Boğ A.B. Berry M.J. White L.R. Ross G. Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain. Mol. Neurodegener. 2011 6 1 8 10.1186/1750‑1326‑6‑8 21255396
    [Google Scholar]
  33. Barkats M. Millecamps S. Abrioux P. Geoffroy M.C. Mallet J. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J. Neurochem. 2000 75 4 1438 1446 10.1046/j.1471‑4159.2000.0751438.x 10987823
    [Google Scholar]
  34. Jiang W. YanYu Yao D. Fei X. Ai L. Di Y. Zhang J. Yue X. Zhao S. He R. Lyu J. Tong Z. Single point mutation from E22-to-K in A β initiates early-onset Alzheimer’s Disease by binding with catalase. Oxid. Med. Cell. Longev. 2020 2020 1 21 10.1155/2020/4981204 33425208
    [Google Scholar]
  35. Nandi A. Yan L.J. Jana C.K. Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019 2019 1 19 10.1155/2019/9613090 31827713
    [Google Scholar]
  36. Bellia F. Lanza V. García-Viñuales S. Ahmed I.M.M. Pietropaolo A. Iacobucci C. Malgieri G. D’Abrosca G. Fattorusso R. Nicoletti V.G. Sbardella D. Tundo G.R. Coletta M. Pirone L. Pedone E. Calcagno D. Grasso G. Milardi D. Ubiquitin binds the amyloid β peptide and interferes with its clearance pathways. Chem. Sci. 2019 10 9 2732 2742 10.1039/C8SC03394C 30996991
    [Google Scholar]
  37. Lim K.L. Tan J.M.M. Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007 8 Suppl 1 Suppl. 1 S13 10.1186/1471‑2091‑8‑S1‑S13 18047737
    [Google Scholar]
  38. Thi Phuong Thao D. Ubiquitin carboxyl-terminal hydrolase L1 in Parkinson’s disease. IntechOpen 2019 10.5772/intechopen.85273
    [Google Scholar]
  39. Sap K.A. Geijtenbeek K.W. Schipper-Krom S. Guler A.T. Reits E.A. Ubiquitin-modifying enzymes in Huntington’s disease. Front. Mol. Biosci. 2023 10 1107323 10.3389/fmolb.2023.1107323 36926679
    [Google Scholar]
  40. Rastegar S. Nouri A. Masoudi R. Tavakoli R. Role of cathepsins in Alzheimer’s disease: A systematic review. J. Med. Biomed. Sci. 2018 7 1 1 10 10.4314/jmbs.v7i1.1
    [Google Scholar]
  41. Xie Z. Meng J. Kong W. Wu Z. Lan F. Narengaowa Hayashi Y. Yang Q. Bai Z. Nakanishi H. Qing H. Ni J. Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimer’s disease. Aging Cell 2022 21 3 e13565 10.1111/acel.13565 35181976
    [Google Scholar]
  42. Yusufujiang A. Zeng S. Li H. Cathepsins and Parkinson’s disease: Insights from Mendelian randomization analyses. Front. Aging Neurosci. 2024 16 1380483 10.3389/fnagi.2024.1380483 38903897
    [Google Scholar]
  43. Lin L. Wu Z. Luo H. Huang Y. Cathepsin-mediated regulation of alpha-synuclein in Parkinson’s disease: A Mendelian randomization study. Front. Aging Neurosci. 2024 16 1394807 10.3389/fnagi.2024.1394807 38872630
    [Google Scholar]
  44. Wang P. Guan P.P. Wang T. Yu X. Guo J.J. Wang Z.Y. Aggravation of A lzheimer’s disease due to the COX -2-mediated reciprocal regulation of IL -1β and A β between glial and neuron cells. Aging Cell 2014 13 4 605 615 10.1111/acel.12209 24621265
    [Google Scholar]
  45. Hsieh Y.C. Mounsey R.B. Teismann P. MPP+-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 2011 384 2 157 167 10.1007/s00210‑011‑0660‑8 21667279
    [Google Scholar]
  46. Doot R.K. Young A.J. Nasrallah I.M. Wetherill R.R. Siderowf A. Mach R.H. Dubroff J.G. [ 18 F]NOS PET brain imaging suggests elevated neuroinflammation in idiopathic Parkinson’s disease. Cells 2022 11 19 3081 10.3390/cells11193081 36231041
    [Google Scholar]
  47. Nathan C. Calingasan N. Nezezon J. Ding A. Lucia M.S. La Perle K. Fuortes M. Lin M. Ehrt S. Kwon N.S. Chen J. Vodovotz Y. Kipiani K. Beal M.F. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J. Exp. Med. 2005 202 9 1163 1169 10.1084/jem.20051529 16260491
    [Google Scholar]
  48. Berndt N. Holzhütter H.G. Bulik S. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson’s disease: A model-based analysis. FEBS J. 2013 280 20 5080 5093 10.1111/febs.12480 23937586
    [Google Scholar]
  49. González-Mingot C. Miana-Mena F.J. Iñarrea P.J. Iñiguez C. Capablo J.L. Osta R. Gil-Sánchez A. Brieva L. Larrodé P. Mitochondrial aconitase enzymatic activity: A potential long-term survival biomarker in the blood of ALS patients. J. Clin. Med. 2023 12 10 3560 10.3390/jcm12103560 37240666
    [Google Scholar]
  50. Lanznaster D. Bruno C. Bourgeais J. Emond P. Zemmoura I. Lefèvre A. Reynier P. Eymieux S. Blanchard E. Vourc’h P. Andres C.R. Bakkouche S.E. Herault O. Favard L. Corcia P. Blasco H. Metabolic profile and pathological alterations in the muscle of patients with early-stage amyotrophic lateral sclerosis. Biomedicines 2022 10 6 1307 10.3390/biomedicines10061307 35740329
    [Google Scholar]
  51. Nunan J. Small D.H. Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett. 2000 483 1 6 10 10.1016/S0014‑5793(00)02076‑7 11033346
    [Google Scholar]
  52. Zhang Y. Thompson R. Zhang H. Xu H. APP processing in Alzheimer’s disease. Mol. Brain 2011 4 1 3 10.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  53. García-González L. Pilat D. Baranger K. Rivera S. Emerging alternative proteinases in APP metabolism and Alzheimer’s disease pathogenesis: A focus on MT1-MMP and MT5-MMP. Front. Aging Neurosci. 2019 11 244 10.3389/fnagi.2019.00244 31607898
    [Google Scholar]
  54. Becker-Pauly C. Pietrzik C.U. The metalloprotease meprin β Is an Alternative β-secretase of APP. Front. Mol. Neurosci. 2017 9 159 10.3389/fnmol.2016.00159 28105004
    [Google Scholar]
  55. Song M. The asparaginyl endopeptidase legumain: An emerging therapeutic target and potential biomarker for Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 18 10223 10.3390/ijms231810223 36142134
    [Google Scholar]
  56. Troy C.M. Akpan N. Jean Y.Y. Regulation of caspases in the nervous system: Implications for functions in health and disease. Progress in Molecular Biology and Translational Science. Elsevier 2011 265 305 10.1016/B978‑0‑12‑385504‑6.00007‑5
    [Google Scholar]
  57. Guo T. Zhang D. Zeng Y. Huang T.Y. Xu H. Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 40 10.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  58. Jiawen Y. Sen-Fang S. Zheng L. Brain structure and structural basis of neurodegenerative diseases. Biophys. Rep. 2022 8 3 170 181 10.52601/bpr.2022.220013 37288246
    [Google Scholar]
  59. Mehra S. Sahay S. Maji S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics 2019 1867 10 890 908 10.1016/j.bbapap.2019.03.001 30853581
    [Google Scholar]
  60. Han D. Zheng W. Wang X. Chen Z. Proteostasis of α-synuclein and its role in the pathogenesis of Parkinson’s disease. Front. Cell. Neurosci. 2020 14 45 10.3389/fncel.2020.00045 32210767
    [Google Scholar]
  61. Schulte J. Littleton J.T. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol. 2011 5 65 78 22180703
    [Google Scholar]
  62. Zuccato C. Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol. 2007 81 5-6 294 330 10.1016/j.pneurobio.2007.01.003 17379385
    [Google Scholar]
  63. Li W. Serpell L.C. Carter W.J. Rubinsztein D.C. Huntington J.A. Expression and characterization of full-length human huntingtin, an elongated HEAT repeat protein. J. Biol. Chem. 2006 281 23 15916 15922 10.1074/jbc.M511007200 16595690
    [Google Scholar]
  64. Gafni J. Hermel E. Young J.E. Wellington C.L. Hayden M.R. Ellerby L.M. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J. Biol. Chem. 2004 279 19 20211 20220 10.1074/jbc.M401267200 14981075
    [Google Scholar]
  65. Barron J.C. Hurley E.P. Parsons M.P. Huntingtin and the Synapse. Front. Cell. Neurosci. 2021 15 689332 10.3389/fncel.2021.689332 34211373
    [Google Scholar]
  66. Siddique N. Siddique T. Amyotrophic lateral sclerosis overview. University of Washington. GeneReviews Seattle 2023
    [Google Scholar]
  67. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  68. Blokhuis A.M. Groen E.J.N. Koppers M. van den Berg L.H. Pasterkamp R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013 125 6 777 794 10.1007/s00401‑013‑1125‑6 23673820
    [Google Scholar]
  69. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  70. Zhuang J. Cao Y. Guo G. Li M. Zhang T. He D. Chen J. Zhang K. Zhang Z. Inhibition of BACE1 attenuates microglia-induced neuroinflammation after intracerebral hemorrhage by suppressing STAT3 activation. Aging 2023 15 15 7709 7726 10.18632/aging.204935 37552127
    [Google Scholar]
  71. Reale M. Costantini E. Cholinergic modulation of the immune system in neuroinflammatory diseases. Diseases 2021 9 2 29 10.3390/diseases9020029 33921376
    [Google Scholar]
  72. Montoya A. Elgueta D. Campos J. Chovar O. Falcón P. Matus S. Alfaro I. Bono M.R. Pacheco R. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J. Neuroinflammation 2019 16 1 258 10.1186/s12974‑019‑1652‑8 31810491
    [Google Scholar]
  73. Hung C.C. Lee Y.H. Kuo Y.M. Hsu P.C. Tsay H.J. Hsu Y.T. Lee C.C. Liang J.J. Shie F.S. Soluble epoxide hydrolase modulates immune responses in activated astrocytes involving regulation of STAT3 activity. J. Neuroinflammation 2019 16 1 123 10.1186/s12974‑019‑1508‑2 31176371
    [Google Scholar]
  74. Tan Y.Y. Jenner P. Chen S.D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  75. Naoi M. Maruyama W. Shamoto-Nagai M. Neuroprotective function of rasagiline and selegiline, inhibitors of type B monoamine oxidase, and role of monoamine oxidases in synucleinopathies. Int. J. Mol. Sci. 2022 23 19 11059 10.3390/ijms231911059 36232361
    [Google Scholar]
  76. Siddiqui A.J. Jahan S. Siddiqui M.A. Khan A. Alshahrani M.M. Badraoui R. Adnan M. Targeting monoamine oxidase B for the treatment of Alzheimer’s and Parkinson’s diseases using novel inhibitors identified using an integrated approach of machine learning and computer-aided drug design. Mathematics 2023 11 6 1464 10.3390/math11061464
    [Google Scholar]
  77. K P.M. S Dubey Precision medicine and antipsychotics in Parkinson’s disease: A focus on MAO-B pathway modulation. Curr. Psychopharmacol. 2025 13 10.2174/0122115560349319250330001147
    [Google Scholar]
  78. Borroni E. Bohrmann B. Grueninger F. Prinssen E. Nave S. Loetscher H. Chinta S.J. Rajagopalan S. Rane A. Siddiqui A. Ellenbroek B. Messer J. Pähler A. Andersen J.K. Wyler R. Cesura A.M. Sembragiline: A novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2017 362 3 413 423 10.1124/jpet.117.241653 28642233
    [Google Scholar]
  79. Schepetkin I.A. Nurmaganbetov Z.S. Fazylov S.D. Nurkenov O.A. Khlebnikov A.I. Seilkhanov T.M. Kishkentaeva A.S. Shults E.E. Quinn M.T. Inhibition of acetylcholinesterase by novel lupinine derivatives. Molecules 2023 28 8 3357 10.3390/molecules28083357 37110594
    [Google Scholar]
  80. Liu Y. Uras G. Onuwaje I. Li W. Yao H. Xu S. Li X. Li X. Phillips J. Allen S. Gong Q. Zhang H. Zhu Z. Liu J. Xu J. Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2022 235 114305 10.1016/j.ejmech.2022.114305 35339839
    [Google Scholar]
  81. Bohnen N. Yarnall A. Emerging non-invasive therapeutic approaches targeting hypocholinergic neural systems in Parkinson’s disease. Neural Regen. Res. 2023 18 4 809 810 10.4103/1673‑5374.353490 36204846
    [Google Scholar]
  82. Fedorova T. Knudsen C.S. Mouridsen K. Nexo E. Borghammer P. Salivary acetylcholinesterase activity is increased in Parkinson’s disease: A potential marker of parasympathetic dysfunction. Parkinsons Dis. 2015 2015 1 7 10.1155/2015/156479 25767737
    [Google Scholar]
  83. Ben-Shaul Y. BenMoyal-Segal L. Ben-Ari S. Bergman H. Soreq H. Adaptive acetylcholinesterase splicing patterns attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Eur. J. Neurosci. 2006 23 11 2915 2922 10.1111/j.1460‑9568.2006.04812.x 16819980
    [Google Scholar]
  84. Patel S Bansoad AV Singh R Khatik GL BACE1: A key regulator in Alzheimer's disease progression and current development of its inhibitors. Curr. Neuropharmacol. 2022 20 6 1174 1193 10.2174/1570159X19666211201094031 34852746
    [Google Scholar]
  85. Boldin R. Zychar B.C. Gonçalves L.R.C. Sciani J.M. Design, in silico and pharmacological evaluation of a peptide inhibitor of BACE-1. Front. Pharmacol. 2023 14 1184006 10.3389/fphar.2023.1184006 37397495
    [Google Scholar]
  86. Li Y. Fang J. Zhou Z. Zhou Q. Sun S. Jin Z. Xi Z. Wei J. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle 2020 19 10 1158 1171 10.1080/15384101.2020.1749447 32308102
    [Google Scholar]
  87. Iqbal J. Emerging therapies in neurodegenerative diseases: Targeting protein aggregates. 2023 Available from: https://www.researchgate.net/publication/376833890_Emerging_Therapies_in_Neurodegenerative_Diseases_Targeting_Protein_Aggregates
  88. Godwa T. Dubey S. Tiwari P. Enzymes and Alzheimer's disease: Pioneering drug development strategies. Curr. Psychopharmacol. 2025 13 1 12 10.2174/0122115560340307250106065419
    [Google Scholar]
  89. Hua J. Wang F. Wei X. Qin Y. Lian J. Wu J. Ma P. Ma X. A nanoenzyme constructed from manganese and strandberg-type phosphomolybdate with versatility in antioxidant and modulating conformation of A β protein misfolding aggregates in vitro . Int. J. Mol. Sci. 2023 24 5 4317 10.3390/ijms24054317 36901748
    [Google Scholar]
  90. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  91. Dias R. de Azevedo W. Jr Molecular docking algorithms. Curr. Drug Targets 2008 9 12 1040 1047 10.2174/138945008786949432 19128213
    [Google Scholar]
  92. Morris G.M. Goodsell D.S. Huey R. Olson A.J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 1996 10 4 293 304 10.1007/BF00124499 8877701
    [Google Scholar]
  93. Jones G. Willett P. Glen R.C. Leach A.R. Taylor R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997 267 3 727 748 10.1006/jmbi.1996.0897
    [Google Scholar]
  94. Frenkel D. Smit B. Molecular dynamics simulations. Understanding Molecular Simulation. Elsevier 2023 97 124 10.1016/B978‑0‑32‑390292‑2.00012‑X
    [Google Scholar]
  95. Cornell W.D. Cieplak P. Bayly C.I. Gould I.R. Merz K.M. Ferguson D.M. Spellmeyer D.C. Fox T. Caldwell J.W. Kollman P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995 117 19 5179 5197 10.1021/ja00124a002
    [Google Scholar]
  96. Brooks B.R. Bruccoleri R.E. Olafson B.D. States D.J. Swaminathan S. Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983 4 2 187 217 10.1002/jcc.540040211
    [Google Scholar]
  97. Christen M. Hünenberger P.H. Bakowies D. Baron R. Bürgi R. Geerke D.P. Heinz T.N. Kastenholz M.A. Kräutler V. Oostenbrink C. Peter C. Trzesniak D. van Gunsteren W.F. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 2005 26 16 1719 1751 10.1002/jcc.20303 16211540
    [Google Scholar]
  98. Linsley J.W. Reisine T. Finkbeiner S. Cell death assays for neurodegenerative disease drug discovery. Expert Opin. Drug Discov. 2019 14 9 901 913 10.1080/17460441.2019.1623784 31179783
    [Google Scholar]
  99. Kondo T. Imamura K. Funayama M. Tsukita K. Miyake M. Ohta A. Woltjen K. Nakagawa M. Asada T. Arai T. Kawakatsu S. Izumi Y. Kaji R. Iwata N. Inoue H. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 2017 21 8 2304 2312 10.1016/j.celrep.2017.10.109 29166618
    [Google Scholar]
  100. Aldewachi H. Al-Zidan R.N. Conner M.T. Salman M.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases. Bioengineering 2021 8 2 30 10.3390/bioengineering8020030 33672148
    [Google Scholar]
  101. Neziri S. Köseoğlu A.E. Deniz Köseoğlu G. Özgültekin B. Özgentürk N.Ö. Animal models in neuroscience with alternative approaches: Evolutionary, biomedical, and ethical perspectives. Animal Model. Exp. Med. 2024 7 6 868 880 10.1002/ame2.12487 39375824
    [Google Scholar]
  102. Patwekar M. Patwekar F. Shaikh D. Fatema S.R. Aher S.J. Sharma R. Receptor-based approaches and therapeutic targets in Alzheimer’s disease along with role of AI in drug designing: Unraveling pathologies and advancing treatment strategies. Appl Chem Eng 2023 6 3 10.24294/ace.v6i3.2338
    [Google Scholar]
  103. Stefano G.B. Artificial intelligence as a tool for the diagnosis and treatment of neurodegenerative diseases. Brain Sci. 2023 13 6 938 10.3390/brainsci13060938 37371416
    [Google Scholar]
  104. Bhachawat S. Shriram E. Srinivasan K. Hu Y.C. Leveraging computational intelligence techniques for diagnosing degenerative nerve diseases: A comprehensive review, open challenges, and future research directions. Diagnostics 2023 13 2 288 10.3390/diagnostics13020288 36673100
    [Google Scholar]
  105. Johnson K.B. Wei W.Q. Weeraratne D. Frisse M.E. Misulis K. Rhee K. Zhao J. Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021 14 1 86 93 10.1111/cts.12884 32961010
    [Google Scholar]
  106. von Linstow C.U. Gan-Or Z. Brundin P. Precision medicine in Parkinson’s disease patients with LRRK2 and GBA risk variants – Let’s get even more personal. Transl. Neurodegener. 2020 9 1 39 10.1186/s40035‑020‑00218‑x 33066808
    [Google Scholar]
  107. Neganova M.E. Aleksandrova Y.R. Nebogatikov V.O. Klochkov S. Ustyugov A.A. Promising molecular targets for pharmacological therapy of neurodegenerative pathologies. Acta Nat. 2020 12 3 60 80 10.32607/actanaturae.10925 33173597
    [Google Scholar]
  108. Park E. Li L.Y. He C. Abbasi A.Z. Ahmed T. Foltz W.D. O’Flaherty R. Zain M. Bonin R.P. Rauth A.M. Fraser P.E. Henderson J.T. Wu X.Y. Brain-penetrating and disease site-targeting manganese dioxide-polymer-lipid hybrid nanoparticles remodel microenvironment of Alzheimer’s disease by regulating multiple pathological pathways. Adv. Sci. 2023 10 12 2207238 10.1002/advs.202207238 36808713
    [Google Scholar]
  109. Toups K. Hathaway A. Gordon D. Chung H. Raji C. Boyd A. Hill B.D. Hausman-Cohen S. Attarha M. Chwa W.J. Jarrett M. Bredesen D.E. Precision medicine approach to Alzheimer’s disease: Successful pilot project. J. Alzheimers Dis. 2022 88 4 1411 1421 10.3233/JAD‑215707 35811518
    [Google Scholar]
  110. Denaro C. Stephenson D. Müller M.L.T.M. Piccoli B. Azer K. Advancing precision medicine therapeutics for Parkinson’s utilizing a shared quantitative systems pharmacology model and framework. Front. Syst. Biol. 2024 4 1351555 10.3389/fsysb.2024.1351555
    [Google Scholar]
  111. Ferguson M.W. Kennedy C.J. Palpagama T.H. Waldvogel H.J. Faull R.L.M. Kwakowsky A. Current and possible future therapeutic options for Huntington’s disease. J. Cent. Nerv. Syst. Dis. 2022 14 11795735221092517 10.1177/11795735221092517 35615642
    [Google Scholar]
  112. Kreiser R.P. Wright A.K. Block N.R. Hollows J.E. Nguyen L.T. LeForte K. Mannini B. Vendruscolo M. Limbocker R. Therapeutic strategies to reduce the toxicity of misfolded protein oligomers. Int. J. Mol. Sci. 2020 21 22 8651 10.3390/ijms21228651 33212787
    [Google Scholar]
  113. Longo F.M. Massa S.M. Neuroprotective strategies in Alzheimer’s disease. NeuroRx 2004 1 1 117 127 10.1602/neurorx.1.1.117 15717012
    [Google Scholar]
  114. Sweeney P. Park H. Baumann M. Dunlop J. Frydman J. Kopito R. McCampbell A. Leblanc G. Venkateswaran A. Nurmi A. Hodgson R. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017 6 1 6 10.1186/s40035‑017‑0077‑5 28293421
    [Google Scholar]
  115. Zheng H. Fridkin M. Youdim M. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 2014 7 2 113 135 10.3390/ph7020113 24463342
    [Google Scholar]
  116. Tng T.J.W. Wong B.W.Y. Sim E.H.Y. Tan E.K. Goh W.W.B. Lim K.L. Systematic analysis of multi-omics data reveals component-specific blood-based biomarkers for Parkinson’s disease. Transl. Med. Commun. 2024 9 1 12 10.1186/s41231‑024‑00169‑9
    [Google Scholar]
  117. Caiado F.L. Morii K.Y. Alves M.L.B. Destefani A.C. Destefani V.C. Precision medicine in geriatric care: Harnessing the power of genetic profiling for personalized therapies in older adults. Ibero-Am. Mag. Humanit. Sci. Educ. 2024 10 8 2730 2740 10.51891/rease.v10i8.15333
    [Google Scholar]
  118. Smies CW Bellfy L Wright DS Bennetts SS Urban MW Brunswick CA Pharmacological HDAC3 inhibition alters memory updating in young and old mice. Front Mol Neurosci 2024 17 1429880 10.3389/fnmol.2024.1429880 38766057
    [Google Scholar]
  119. Hecklau K. Mueller S. Koch S.P. Mehkary M.H. Kilic B. Harms C. Boehm-Sturm P. Yildirim F. The effects of selective inhibition of histone deacetylase 1 and 3 in Huntington’s disease mice. Front. Mol. Neurosci. 2021 14 616886 10.3389/fnmol.2021.616886 33679321
    [Google Scholar]
  120. Rossi S.L. Subramanian P. Bovenkamp D.E. The future is precision medicine-guided diagnoses, preventions and treatments for neurodegenerative diseases. Front. Aging Neurosci. 2023 15 1128619 10.3389/fnagi.2023.1128619 37009453
    [Google Scholar]
  121. Xu K. Dai X.L. Huang H.C. Jiang Z.F. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev. 2011 2011 1 5 10.1155/2011/143269 21941604
    [Google Scholar]
  122. Suelves N. Kirkham-McCarthy L. Lahue R.S. Ginés S. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington’s disease mice. Sci. Rep. 2017 7 1 6082 10.1038/s41598‑017‑05125‑2 28729730
    [Google Scholar]
  123. Angelopoulou E. Pyrgelis E.S. Piperi C. Emerging potential of the phosphodiesterase (PDE) inhibitor ibudilast for neurodegenerative diseases: An update on preclinical and clinical evidence. Molecules 2022 27 23 8448 10.3390/molecules27238448 36500540
    [Google Scholar]
  124. Walczak-Nowicka Ł.J. Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int. J. Mol. Sci. 2021 22 17 9290 10.3390/ijms22179290 34502198
    [Google Scholar]
  125. Joubert J. Petzer J.P. Prins L.H.A. Repsold B.P. Malan S.F. Multifunctional enzyme inhibition for neuroprotection - A focus on MAO, NOS, and AChE inhibitors. Drug Design and Discovery in Alzheimer’s Disease. Elsevier 2014 291 365 10.1016/B978‑0‑12‑803959‑5.50005‑2
    [Google Scholar]
  126. Cui S.Y. Yang M.X. Zhang Y.H. Zheng V. Zhang H.T. Gurney M.E. Xu Y. O’Donnell J.M. Protection from amyloid β peptide–induced memory, biochemical, and morphological deficits by a phosphodiesterase-4D Allosteric inhibitor. J. Pharmacol. Exp. Ther. 2019 371 2 250 259 10.1124/jpet.119.259986 31488603
    [Google Scholar]
  127. Killick R. Elliott C. Ribe E. Broadstock M. Ballard C. Aarsland D. Williams G. Neurodegenerative disease associated pathways in the brains of triple transgenic Alzheimer’s model mice are reversed following two weeks of peripheral administration of fasudil. Int. J. Mol. Sci. 2023 24 13 11219 10.3390/ijms241311219 37446396
    [Google Scholar]
  128. Benítez-Fernández R. Gil C. Guaza C. Mestre L. Martínez A. The dual PDE7-GSK3β inhibitor, VP3.15, as neuroprotective disease-modifying treatment in a model of primary progressive multiple sclerosis. Int. J. Mol. Sci. 2022 23 22 14378 10.3390/ijms232214378 36430856
    [Google Scholar]
  129. Green K.N. Steffan J.S. Martinez-Coria H. Sun X. Schreiber S.S. Thompson L.M. LaFerla F.M. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 2008 28 45 11500 11510 10.1523/JNEUROSCI.3203‑08.2008 18987186
    [Google Scholar]
  130. Li E. Choi J. Sim H.R. Kim J. Jun J.H. Kyung J. Ha N. Kim S. Ryu K.H. Chung S.S. Kim H.S. Lee S. Seol W. Song J. A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington’s disease. BMB Rep. 2023 56 3 178 183 10.5483/BMBRep.2022‑0157 36593104
    [Google Scholar]
  131. Li H. Shi G. Zha H. Zheng L. Luo Z. Wang Y. Inhibition of histone deacetylase promotes a neuroprotective mechanism in an experimental model of Parkinson’s disease. Arch. Med. Sci. 2021 20 2 664 674 10.5114/aoms/130287 38757033
    [Google Scholar]
  132. Chen Y. Shi G.W. Liang Z.M. Sheng S.Y. Shi Y.S. Peng L. Wang Y.P. Wang F. Zhang X.M. Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol. Med. Rep. 2019 19 5 3783 3790 10.3892/mmr.2019.10010 30864708
    [Google Scholar]
  133. Moriyama T. Fukushima T. Kokate T. Albala B. [P3–037]: Preclinical studies with elenbecestat, a novel BACE1 inhibitor, show no evidence of hypopigmentation. Alzheimers Dement. 2017 13 P944 P944 10.1016/j.jalz.2017.06.1850
    [Google Scholar]
  134. Zhang S. Sakuma M. Deora G.S. Levy C.W. Klausing A. Breda C. Read K.D. Edlin C.D. Ross B.P. Wright Muelas M. Day P.J. O’Hagan S. Kell D.B. Schwarcz R. Leys D. Heyes D.J. Giorgini F. Scrutton N.S. A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Commun. Biol. 2019 2 1 271 10.1038/s42003‑019‑0520‑5 31372510
    [Google Scholar]
  135. Mendes G.O. Pita S.S.R. Carvalho P.B. Silva M.P. Taranto A.G. Leite F.H.A. Molecular multi-target approach for human acetylcholinesterase, butyrylcholinesterase and β -secretase 1: Next generation for Alzheimer’s disease treatment. Pharmaceuticals 2023 16 6 880 10.3390/ph16060880 37375827
    [Google Scholar]
  136. Umar T. Hoda N. Selective inhibitors of phosphodiesterases: Therapeutic promise for neurodegenerative disorders. Med. Chem. Comm. 2015 6 12 2063 2080 10.1039/C5MD00419E
    [Google Scholar]
  137. Verma G. Bhushan B. Singh G. Singh K. Kumar S. Garg A. Rajput P. Pharmacological strategies for enzyme inhibition in disease therapeutics: A comprehensive review. Curr. Enzym. Inhib. 2024 20 2 96 108 10.2174/0115734080273835231127045336
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665391103250825102319
Loading
/content/journals/ppl/10.2174/0109298665391103250825102319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test