Skip to content
2000
image of Essential Role of Non-Conserved α4-His178 in Stabilizing the α4-α5 Hairpin and Biotoxicity of the Cry4Aa Mosquitocidal Protein

Abstract

Background

Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective

This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

Methods

Ten His178-substituted Cry4Aa mutants (H178D, H178E, H178K, H178R, H178G, H178F, H178Y, H178S, H178C, and H178Q) were generated site-directed mutagenesis and expressed in . Toxin solubility was assessed in carbonate buffer (pH 10.0), and biotoxicity was tested against larvae. Trypsin-treated toxins were evaluated using fluorescent dye-release assays. Ion channel formation was studied in planar lipid bilayers (PLBs), and structural analysis was performed MD simulations and sequence alignments with known Cry toxins.

Results

All His178-substituted mutants were overexpressed as 130-kDa protoxin inclusions at levels comparable to the wild-type (WT). Replacing His178 with nonpolar or bulky polar residues reduced Cry4Aa biotoxicity to less than 10%, while substitutions with small, moderately polar, or negatively charged residues retained 50-85% activity, consistent with their solubility. Selected bioactive mutants, H178C and H178D, retained membrane-perturbing ability, like trypsin-activated WT, while the bioinactive H178Y mutant exhibited decreased membrane permeability. All tested mutants, including WT, induced cation-selective channels in PLBs with ~130-pS conductance. Sequence-structure analysis indicated that Cry4Aa-His178 likely forms a hydrogen bond with His217, a conserved His residue in helix 5.

Discussion

Specific physicochemical properties of residue 178 are critical for optimal larvicidal activity, making it a promising target for engineering more potent mosquito-control toxins.

Conclusion

His178 in Cry4Aa-α4 potentially forms a stabilizing hydrogen bond with α5-His217, which maintains the structural integrity of the α4-α5 hairpin. This structural stability is essential for efficient membrane insertion and optimal larvicidal activity.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665393672250715000125
2025-09-05
2025-09-11
Loading full text...

Full text loading...

References

  1. Schnepf E. Crickmore N. Van Rie J. Lereclus D. Baum J. Feitelson J. Zeigler D.R. Dean D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998 62 3 775 806 10.1128/MMBR.62.3.775‑806.1998 9729609
    [Google Scholar]
  2. Palma L. Muñoz D. Berry C. Murillo J. Caballero P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014 6 12 3296 3325 10.3390/toxins6123296 25514092
    [Google Scholar]
  3. Zhang Q. Hua G. Adang M.J. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Sci. 2017 24 5 714 729 10.1111/1744‑7917.12401 27628909
    [Google Scholar]
  4. Regis L. Silva-Filha M.H. Nielsen-LeRoux C. Charles J.F. Bacteriological larvicides of dipteran disease vectors. Trends Parasitol. 2001 17 8 377 380 10.1016/S1471‑4922(01)01953‑5 11685898
    [Google Scholar]
  5. Ben-Dov E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 2014 6 4 1222 1243 10.3390/toxins6041222 24686769
    [Google Scholar]
  6. Rausch M.A. Chougule N.P. Deist B.R. Bonning B.C. Modification of Cry4Aa toward improved toxin processing in the gut of the pea aphid, Acyrthosiphon pisum. PLoS One 2016 11 5 0155466 10.1371/journal.pone.0155466 27171411
    [Google Scholar]
  7. Ibuki T. Iwasawa S. Lian A.A. Lye P.Y. Maruta R. Asano S. Kotani E. Mori H. Development of a cypovirus protein microcrystal-encapsulated Bacillus thuringiensis UV-tolerant and mosquitocidal δ-endotoxin. Biol. Open 2022 11 9 bio059363 10.1242/bio.059363 36017723
    [Google Scholar]
  8. Silva-Filha M.H.N.L. Romão T.P. Rezende T.M.T. Carvalho K.S. Gouveia de Menezes H.S. Alexandre do Nascimento N. Soberón M. Bravo A. Bacterial toxins active against mosquitoes: Mode of action and resistance. Toxins 2021 13 8 523 559 10.3390/toxins13080523 34437394
    [Google Scholar]
  9. Pigott C.R. Ellar D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 2007 71 2 255 281 10.1128/MMBR.00034‑06 17554045
    [Google Scholar]
  10. Sato R. Utilization of diverse molecules as receptors by Cry toxin and the promiscuous nature of receptor-binding sites which accounts for the diversity. Biomolecules 2024 14 4 425 10.3390/biom14040425 38672442
    [Google Scholar]
  11. Chen J. Aimanova K.G. Pan S. Gill S.S. Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem. Mol. Biol. 2009 39 10 688 696 10.1016/j.ibmb.2009.08.003 19698787
    [Google Scholar]
  12. Aroonkesorn A. Pootanakit K. Katzenmeier G. Angsuthanasombat C. Two specific membrane-bound aminopeptidase N isoforms from Aedes aegypti larvae serve as functional receptors for the Bacillus thuringiensis Cry4Ba toxin implicating counterpart specificity. Biochem. Biophys. Res. Commun. 2015 461 2 300 306 10.1016/j.bbrc.2015.04.026 25871797
    [Google Scholar]
  13. Hua G. Zhang R. Bayyareddy K. Adang M.J. Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin. Biochemistry 2009 48 41 9785 9793 10.1021/bi9014538 19747003
    [Google Scholar]
  14. Thammasittirong A. Dechklar M. Leetachewa S. Pootanakit K. Angsuthanasombat C. Aedes aegypti membrane-bound alkaline phosphatase expressed in Escherichia coli retains high-affinity binding for Bacillus thuringiensis Cry4Ba toxin. Appl. Environ. Microbiol. 2011 77 19 6836 6840 10.1128/AEM.05775‑11 21856837
    [Google Scholar]
  15. Hua G. Zhang R. Abdullah M.A.F. Adang M.J. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 2008 47 18 5101 5110 10.1021/bi7023578 18407662
    [Google Scholar]
  16. Chen J. Aimanova K.G. Fernandez L.E. Bravo A. Soberon M. Gill S.S. Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem. J. 2009 424 2 191 200 10.1042/BJ20090730 19732034
    [Google Scholar]
  17. Sato R. Adegawa S. Li X. Tanaka S. Endo H. Function and role of ATP-binding cassette transporters as receptors for 3D-Cry toxins. Toxins 2019 11 2 124 10.3390/toxins11020124 30791434
    [Google Scholar]
  18. Pardo-López L. Soberón M. Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013 37 1 3 22 10.1111/j.1574‑6976.2012.00341.x 22540421
    [Google Scholar]
  19. Sriwimol W. Aroonkesorn A. Sakdee S. Kanchanawarin C. Uchihashi T. Ando T. Angsuthanasombat C. Potential prepore trimer formation by the Bacillus thuringiensis mosquito-specific toxin: Molecular insights into a critical prerequisite of membrane-bound momomers. J. Biol. Chem. 2015 290 34 20793 20803 10.1074/jbc.M114.627554 26112409
    [Google Scholar]
  20. Grochulski P. Masson L. Borisova S. Pusztai-Carey M. Schwartz J.L. Brousseau R. Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 1995 254 3 447 464 10.1006/jmbi.1995.0630 7490762
    [Google Scholar]
  21. Evdokimov A.G. Moshiri F. Sturman E.J. Rydel T.J. Zheng M. Seale J.W. Franklin S. Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Sci. 2014 23 11 1491 1497 10.1002/pro.2536 25139047
    [Google Scholar]
  22. Morse R.J. Yamamoto T. Stroud R.M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 2001 9 5 409 417 10.1016/S0969‑2126(01)00601‑3 11377201
    [Google Scholar]
  23. Li J. Carroll J. Ellar D.J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 1991 353 6347 815 821 10.1038/353815a0 1658659
    [Google Scholar]
  24. Galitsky N. Cody V. Wojtczak A. Ghosh D. Luft J.R. Pangborn W. English L. Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D Biol. Crystallogr. 2001 57 8 1101 1109 10.1107/S0907444901008186 11468393
    [Google Scholar]
  25. Boonserm P. Mo M. Angsuthanasombat C. Lescar J. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 2006 188 9 3391 3401 10.1128/JB.188.9.3391‑3401.2006 16621834
    [Google Scholar]
  26. Thamwiriyasati N. Kanchanawarin C. Imtong C. Chen C.J. Li H.C. Angsuthanasombat C. Complete structure elucidation of a functional form of the Bacillus thuringiensis Cry4Ba δ-endotoxin: Insights into toxin-induced transmembrane pore architecture. Biochem. Biophys. Res. Commun. 2022 620 158 164 10.1016/j.bbrc.2022.06.065 35797735
    [Google Scholar]
  27. Hui F. Scheib U. Hu Y. Sommer R.J. Aroian R.V. Ghosh P. Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 2012 51 49 9911 9921 10.1021/bi301386q 23150986
    [Google Scholar]
  28. Jing X. Yuan Y. Wu Y. Wu D. Gong P. Gao M. Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis. Protein Sci. 2019 28 3 609 619 10.1002/pro.3561 30506755
    [Google Scholar]
  29. Guo S. Ye S. Liu Y. Wei L. Xue J. Wu H. Song F. Zhang J. Wu X. Huang D. Rao Z. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J. Struct. Biol. 2009 168 2 259 266 10.1016/j.jsb.2009.07.004 19591941
    [Google Scholar]
  30. Tetreau G. Sawaya M.R. De Zitter E. Andreeva E.A. Banneville A.S. Schibrowsky N.A. Coquelle N. Brewster A.S. Grünbein M.L. Kovacs G.N. Hunter M.S. Kloos M. Sierra R.G. Schiro G. Qiao P. Stricker M. Bideshi D. Young I.D. Zala N. Engilberge S. Gorel A. Signor L. Teulon J.M. Hilpert M. Foucar L. Bielecki J. Bean R. de Wijn R. Sato T. Kirkwood H. Letrun R. Batyuk A. Snigireva I. Fenel D. Schubert R. Canfield E.J. Alba M.M. Laporte F. Després L. Bacia M. Roux A. Chapelle C. Riobé F. Maury O. Ling W.L. Boutet S. Mancuso A. Gutsche I. Girard E. Barends T.R.M. Pellequer J.L. Park H.W. Laganowsky A.D. Rodriguez J. Burghammer M. Shoeman R.L. Doak R.B. Weik M. Sauter N.K. Federici B. Cascio D. Schlichting I. Colletier J.P. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat. Commun. 2022 13 1 4376 10.1038/s41467‑022‑31746‑x 35902572
    [Google Scholar]
  31. de Maagd R.A. Weemen-Hendriks M. Stiekema W. Bosch D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl. Environ. Microbiol. 2000 66 4 1559 1563 10.1128/AEM.66.4.1559‑1563.2000 10742242
    [Google Scholar]
  32. Thammasittirong A. Thammasittirong S.N.R. Imtong C. Charoenjotivadhanakul S. Sakdee S. Li H.C. Okonogi S. Angsuthanasombat C. Bacillus thuringiensis Cry4Ba insecticidal toxin exploits Leu615 in its C-terminal domain to interact with a target receptor—Aedes aegypti membrane-bound alkaline phosphatase. Toxins 2021 13 8 553 569 10.3390/toxins13080553 34437424
    [Google Scholar]
  33. Dechkla M. Charoenjotivadhanakul S. Imtong C. Visitsattapongse S. Li H.C. Angsuthanasombat C. Cry4Aa and Cry4Ba mosquito-active toxins utilize different domains in binding to a particular Culex ALP isoform: A functional toxin receptor implicating differential actions on target larvae. Toxins (Basel) 2022 14 10 652 670 10.3390/toxins14100652 36287921
    [Google Scholar]
  34. Von Tersch M.A. Slatin S.L. Kulesza C.A. English L.H. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol. 1994 60 10 3711 3717 10.1128/aem.60.10.3711‑3717.1994 7527203
    [Google Scholar]
  35. Gerber D. Shai Y. Insertion and organization within membranes of the δ-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 2000 275 31 23602 23607 10.1074/jbc.M002596200 10811807
    [Google Scholar]
  36. Gazit E. Rocca P.L. Sansom M.S.P. Shai Y. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis δ-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc. Natl. Acad. Sci. USA 1998 95 21 12289 12294 10.1073/pnas.95.21.12289 9770479
    [Google Scholar]
  37. Leetachewa S. Katzenmeier G. Angsuthanasombat C. Novel preparation and characterization of the α4-loop-α5 membrane-perturbing peptide from the Bacillus thuringiensis Cry4Ba delta-endotoxin. BMB Rep. 2006 39 3 270 277 10.5483/BMBRep.2006.39.3.270 16756755
    [Google Scholar]
  38. Masson L. Tabashnik B.E. Liu Y.B. Brousseau R. Schwartz J.L. Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 1999 274 45 31996 32000 10.1074/jbc.274.45.31996 10542230
    [Google Scholar]
  39. Sramala I. Leetachewa S. Krittanai C. Katzenmeier G. Panyim S. Angsuthanasombat C. Charged residue screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 2001 5 219 225
    [Google Scholar]
  40. Girard F. Vachon V. Préfontaine G. Marceau L. Schwartz J.L. Masson L. Laprade R. Helix alpha 4 of the Bacillus thuringiensis Cry1Aa toxin plays a critical role in the post-binding steps of pore formation. Appl. Environ. Microbiol. 2009 75 2 359 365 10.1128/AEM.01930‑08 19011060
    [Google Scholar]
  41. Nuñez-Valdez M.E. Sánchez J. Lina L. Güereca L. Bravo A. Structural and functional studies of α-helix 5 region from Bacillus thuringiensis Cry1Ab δ-endotoxin. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2001 1546 122 131
    [Google Scholar]
  42. Likitvivatanavong S. Katzenmeier G. Angsuthanasombat C. Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 2006 445 1 46 55 10.1016/j.abb.2005.11.007 16356469
    [Google Scholar]
  43. Juntadech T. Kanintronkul Y. Kanchanawarin C. Katzenmeier G. Angsuthanasombat C. Importance of polarity of the α4–α5 loop residue—Asn166 in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for ion permeation and pore opening. Biochim. Biophys. Acta Biomembr. 2014 1838 1 319 327 10.1016/j.bbamem.2013.10.002 24120447
    [Google Scholar]
  44. Bourchookarn W. Bourchookarn A. Imtong C. Li H.C. Angsuthanasombat C. His180 in the pore-lining α4 of the Bacillus thuringiensis Cry4Aa δ-endotoxin is crucial for structural arrangements of the α4-α5 transmembrane hairpin and hence biotoxicity. Biochim. Biophys. Acta. Proteins Proteomics 2021 1869 6 140634 10.1016/j.bbapap.2021.140634 33636413
    [Google Scholar]
  45. Boonserm P. Pornwiroon W. Katzenmeier G. Panyim S. Angsuthanasombat C. Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa δ-endotoxin. Protein Expr. Purif. 2004 35 2 397 403 10.1016/j.pep.2004.02.016 15135419
    [Google Scholar]
  46. Ward E.S. Ellar D.J. Nucleotide sequence of a Bacillus thuringiensis var. israelensis gene encoding a 130 kDa δ-endotoxin. Nucleic Acids Res. 1987 15 17 7195 10.1093/nar/15.17.7195 2821500
    [Google Scholar]
  47. Imtong C. Kanchanawarin C. Katzenmeier G. Angsuthanasombat C. Bacillus thuringiensis Cry4Aa insecticidal protein: Functional importance of the intrinsic stability of the unique α4–α5 loop comprising the Pro-rich sequence. Biochim. Biophys. Acta. Proteins Proteomics 2014 1844 6 1111 1118 10.1016/j.bbapap.2014.03.003 24632526
    [Google Scholar]
  48. Sakdee S. Aroonkesorn A. Imtong C. Li H.C. Angsuthanasombat C. Optimized high-yield preparation of alkaline-solubilizable crystalline inclusion of the Bacillus thuringiensis Cry4Aa δ-endotoxin expressed in Escherichia coli. Protein Expr. Purif. 2023 210 106320 10.1016/j.pep.2023.106320 37301245
    [Google Scholar]
  49. Pornwiroon W. Katzenmeier G. Panyim S. Angsuthanasombat C. Aromaticity of Tyr-202 in the α4-α5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. BMB Rep. 2004 37 3 292 297 10.5483/BMBRep.2004.37.3.292 15469709
    [Google Scholar]
  50. Hill B. Selective permeability: Independence. Ionic Channels of Excitable Membranes. 3rd Ed Massachusetts Sinauer Associates 2001 441 470
    [Google Scholar]
  51. Phillips J.C. Braun R. Wang W. Gumbart J. Tajkhorshid E. Villa E. Chipot C. Skeel R.D. Kalé L. Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005 26 16 1781 1802 10.1002/jcc.20289 16222654
    [Google Scholar]
  52. MacKerell A.D. Jr Bashford D. Bellott M. Dunbrack R.L. Jr Evanseck J.D. Field M.J. Fischer S. Gao J. Guo H. Ha S. Joseph-McCarthy D. Kuchnir L. Kuczera K. Lau F.T.K. Mattos C. Michnick S. Ngo T. Nguyen D.T. Prodhom B. Reiher W.E. Roux B. Schlenkrich M. Smith J.C. Stote R. Straub J. Watanabe M. Wiórkiewicz-Kuczera J. Yin D. Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998 102 18 3586 3616 10.1021/jp973084f 24889800
    [Google Scholar]
  53. Humphrey W. Dalke A. Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38, 27-28 10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  54. Schrodinger L.L.C. The PyMOL molecular graphics system. 2015 Available from: https://sourceforge.net/projects/pymol/ files/pymol/1.7/
  55. Takahashi H. Asakura M. Ide T. Hayakawa T. Mutational analysis of the transmembrane α4-helix of Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin. Curr. Microbiol. 2024 81 3 80 87 10.1007/s00284‑023‑03602‑8 38281302
    [Google Scholar]
  56. Sramala I. Uawithya P. Chanama U. Leetachewa S. Krittanai C. Katzenmeier G. Panyim S. Angsuthanasombat C. Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 2000 4 187 193
    [Google Scholar]
  57. Zhou P. Tian F. Lv F. Shang Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 2009 76 1 151 163 10.1002/prot.22327 19089987
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665393672250715000125
Loading
/content/journals/ppl/10.2174/0109298665393672250715000125
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test