Skip to content
2000
image of Role of 5-Hydroxydecanoate in the Neuroprotective Activity of Diosmetin Against Rotenone-Induced Dopaminergic Toxicity in Rats

Abstract

Introduction

The present study aims to compare the monotherapy of diosmetin and 5-hydroxydecanoate (5-HD) against the therapeutic effect of their combination therapy in the unilaterally injected rotenone-induced neurotoxicity in the male rats. Motor deficits accompany Parkinson's Disease (PD), while Bioflavonoids like diosmetin, which are antioxidants and anti-inflammatories, protect against neurotoxins. Moreover, mitochondrial dysfunction contributes to PD. The mitochondrial ATP-sensitive potassium channel [mito(K)] regulates reactive species and 5-HD, meaning decreasing it may lessen mitochondrial injury. To evaluate the effect of diosmetin, alone and in combination with 5-HD, on Oxidative Stress (OS) markers, mitochondrial function, and dopaminergic preservation in the SNpc.

Methods

Male Wistar rats were divided into seven groups, including normal control, sham, rotenone-treated, and treatment groups receiving diosmetin, 5-HD, their combination, or selegiline as a standard drug. Biochemical assays were conducted to assess OS markers, mitochondrial complex-I activity, and dopaminergic neuroprotection. Behavioral tests were performed to evaluate motor deficits.

Results

Rotenone administration significantly increased OS, impaired mitochondrial complex-I activity, and reduced motor coordination. Diosmetin treatment significantly reverses the effects of rotenone. Combined treatment with diosmetin and 5-HD showed enhanced neuroprotective effects compared to individual treatments.

Discussion

This study demonstrates that both diosmetin and 5-HD monotherapies alleviate rotenone-induced behavioral impairments in the experimental rats. Additionally, the individual treatment of diosmetin and 5-HD reduces dopaminergic toxicity induced by rotenone. At the sub-cellular level, diosmetin and 5-HD monotherapies counteract rotenone’s impact on antioxidant markers, DA metabolites, and mitochondrial function in the SNpc region of the brain. Notably, combining diosmetin and 5-HD yielded superior therapeutic effects on rotenone-induced behavioral and molecular changes compared to either monotherapy alone. These findings suggest that diosmetin and 5-HD may offer a promising alternative for PD management.

Conclusion

Diosmetin exhibits potent antioxidant and neuroprotective properties against rotenone-induced PD-like pathology. The combination of diosmetin and 5-HD offers a synergistic therapeutic potential, suggesting a promising approach for managing oxidative stress and mitochondrial dysfunction in PD.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665398088250904074136
2025-10-21
2025-11-01
Loading full text...

Full text loading...

References

  1. Drui G. Carnicella S. Carcenac C. Favier M. Bertrand A. Boulet S. Savasta M. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in parkinson’s disease. Mol. Psychiatry 2014 19 3 358 367 10.1038/mp.2013.3 23399912
    [Google Scholar]
  2. Dorsey E.R. Sherer T. Okun M.S. Bloem B.R. The emerging evidence of the parkinson pandemic. J. Parkinsons Dis. 2018 8 s1 S3 S8 10.3233/JPD‑181474 30584159
    [Google Scholar]
  3. Di Meo S. Reed T.T. Venditti P. Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016 2016 1 1245049 10.1155/2016/1245049 27478531
    [Google Scholar]
  4. Stoker TB Barker RA Recent developments in the treatment of parkinson's disease. F1000Res 2020 9 10.12688/f1000research.25634.1 32789002
    [Google Scholar]
  5. Rudrapal M. Khairnar S.J. Khan J. Dukhyil A.B. Ansari M.A. Alomary M.N. Alshabrmi F.M. Palai S. Deb P.K. Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022 13 806470 10.3389/fphar.2022.806470 35237163
    [Google Scholar]
  6. Pandey K.B. Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009 2 5 270 278 10.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  7. Yang Y. Gong X.B. Huang L.G. Wang Z.X. Wan R.Z. Zhang P. Zhang Q.Y. Chen Z. Zhang B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget 2017 8 19 30723 30733 10.18632/oncotarget.15413 28430612
    [Google Scholar]
  8. Wójciak M. Feldo M. Borowski G. Kubrak T. Płachno B.J. Sowa I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules 2022 27 23 8232 10.3390/molecules27238232 36500323
    [Google Scholar]
  9. Liao W. Ning Z. Chen L. Wei Q. Yuan E. Yang J. Ren J. Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. J. Agric. Food Chem. 2014 62 34 8648 8654 10.1021/jf502359x 25075433
    [Google Scholar]
  10. Saghaei E. Nasiri Boroujeni S. Safavi P. Borjian Boroujeni Z. Bijad E. Diosmetin mitigates cognitive and memory impairment provoked by chronic unpredictable mild stress in mice. Evid. Based Complement. Alternat. Med. 2020 2020 1 5725361 10.1155/2020/5725361 33414836
    [Google Scholar]
  11. Lee DH Park JK Choi J Jang H Seol JW Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int Immunopharmacol 2020 89 Pt A 107046 10.1016/j.intimp.2020.107046 33045572
    [Google Scholar]
  12. Villa P. Cova D. De Francesco L. Guaitani A. Palladini G. Perego R. Protective effect of diosmetin on in vitro cell membrane damage and oxidative stress in cultured rat hepatocytes. Toxicology 1992 73 2 179 189 10.1016/0300‑483X(92)90101‑J 1609428
    [Google Scholar]
  13. Ibarra-Gutiérrez M.T. Serrano-García N. Orozco-Ibarra M. Rotenone-induced model of parkinson’s disease: Beyond mitochondrial complex I inhibition. Mol. Neurobiol. 2023 60 4 1929 1948 10.1007/s12035‑022‑03193‑8 36593435
    [Google Scholar]
  14. Xiong N. Huang J. Zhang Z. Zhang Z. Xiong J. Liu X. Jia M. Wang F. Chen C. Cao X. Liang Z. Sun S. Lin Z. Wang T. Stereotaxical infusion of rotenone: A reliable rodent model for parkinson’s disease. PLoS One 2009 4 11 e7878 10.1371/journal.pone.0007878 19924288
    [Google Scholar]
  15. Cannon J.R. Tapias V. Na H.M. Honick A.S. Drolet R.E. Greenamyre J.T. A highly reproducible rotenone model of parkinson’s disease. Neurobiol. Dis. 2009 34 2 279 290 10.1016/j.nbd.2009.01.016 19385059
    [Google Scholar]
  16. Fagotti J. Targa A.D.S. Rodrigues L.S. Noseda A.C.D. Dorieux F.W.C. Scarante F.F. Ilkiw J.L. Louzada F.M. Chowdhury N.R. van der Veen D.R. Middleton B. Pennings J.L.A. Swann J.R. Skene D.J. Lima M.M.S. Chronic sleep restriction in the rotenone parkinson’s disease model in rats reveals peripheral early-phase biomarkers. Sci. Rep. 2019 9 1 1898 10.1038/s41598‑018‑37657‑6 30760786
    [Google Scholar]
  17. Zhang Y. Luo C. Huang P. Cheng Y. Ma Y. Gao J. Ding H. Diosmetin ameliorates hfd-induced cognitive impairments via inhibiting metabolic disorders, mitochondrial dysfunction and neuroinflammation in male SD rats. Mol. Neurobiol. 2024 61 10 8069 8085 10.1007/s12035‑024‑04083‑x 38460078
    [Google Scholar]
  18. Zhang Y. Jiang Y. Lu D. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-Kinase (PI3K)/AKT/Nuclear factor-κB (NF-κB) signaling pathway in a rat model of pneumococcal meningitis. Med. Sci. Monit. 2019 25 2238 2245 10.12659/MSM.911860 30914630
    [Google Scholar]
  19. Peng K. Hu J. Xiao J. Dan G. Yang L. Ye F. Zou Z. Cao J. Sai Y. Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 4 4 Pt A 1086 1103 10.1016/j.bbadis.2018.01.013 29353068
    [Google Scholar]
  20. Zhang S. Shao S.Y. Song X.Y. Xia C.Y. Yang Y.N. Zhang P.C. Chen N.H. Protective effects of forsythia suspense extract with antioxidant and anti-inflammatory properties in a model of rotenone induced neurotoxicity. Neurotoxicology 2016 52 72 83 10.1016/j.neuro.2015.09.009 26408940
    [Google Scholar]
  21. Anusha C. Sumathi T. Joseph L.D. Protective role of apigenin on rotenone induced rat model of parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact. 2017 269 67 79 10.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  22. Singh R. Zahra W. Singh S.S. Birla H. Rathore A.S. Keshri P.K. Dilnashin H. Singh S. Singh S.P. Oleuropein confers neuroprotection against rotenone-induced model of parkinson’s disease via BDNF/CREB/Akt pathway. Sci. Rep. 2023 13 1 2452 10.1038/s41598‑023‑29287‑4 36774383
    [Google Scholar]
  23. El-Latif A.M.A. Rabie M.A. Sayed R.H. Fattah M.A.A.E. Kenawy S.A. Inosine attenuates rotenone-induced parkinson’s disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev. Res. 2023 84 6 1159 1174 10.1002/ddr.22077 37170799
    [Google Scholar]
  24. Rennie L. Opheim A. Dietrichs E. Löfgren N. Franzén E. Highly challenging balance and gait training for individuals with parkinson’s disease improves pace, rhythm and variability domains of gait – a secondary analysis from a randomized controlled trial. Clin. Rehabil. 2021 35 2 200 212 10.1177/0269215520956503 32985265
    [Google Scholar]
  25. Ferro M.M. Bellissimo M.I. Anselmo-Franci J.A. Angellucci M.E.M. Canteras N.S. Da Cunha C. Comparison of bilaterally 6-ohda- and mptp-lesioned rats as models of the early phase of parkinson’s disease: Histological, neurochemical, motor and memory alterations. J. Neurosci. Methods 2005 148 1 78 87 10.1016/j.jneumeth.2005.04.005 15939479
    [Google Scholar]
  26. Sharma M. Malim F.M. Goswami A. Sharma N. Juvvalapalli S.S. Chatterjee S. Kate A.S. Khairnar A. Neuroprotective effect of swertiamarin in a rotenone model of parkinson’s disease: Role of neuroinflammation and alpha-synuclein accumulation. ACS Pharmacol. Transl. Sci. 2023 6 1 40 51 10.1021/acsptsci.2c00120 36654754
    [Google Scholar]
  27. Thanalakshmi J. Archana R. Senthilkumar S. Shakila R. Pazhanivel N. Subhashini S. Role of caloric vestibular stimulation in improvement of motor symptoms and inhibition of neuronal degeneration in rotenone model of parkinson’s disease – An experimental study. Physiol. Int. 2020 107 3 390 405 10.1556/2060.2020.00036 33021954
    [Google Scholar]
  28. Srivastava S.K. Beutler E. Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues. Anal. Biochem. 1968 25 1 70 76 10.1016/0003‑2697(68)90082‑1 5750729
    [Google Scholar]
  29. Balakrishnan R. Vijayraja D. Mohankumar T. Manimaran D. Ganesan P. Choi D.K. Elangovan N. Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of parkinson’s disease. J. Chem. Neuroanat. 2021 112 101890 10.1016/j.jchemneu.2020.101890 33220427
    [Google Scholar]
  30. Ohkawa H Ohishi N Yagi K Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  31. Srivastava R. Chauhan K. Sharma R. Evaluating motor dysfunction and oxidative stress induced by trichloroethylene in wistar rats. Methods Mol. Biol. 2024 2761 499 510 10.1007/978‑1‑0716‑3662‑6_34 38427258
    [Google Scholar]
  32. Beyer W.F. Jr Fridovich I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987 161 2 559 566 10.1016/0003‑2697(87)90489‑1 3034103
    [Google Scholar]
  33. Srivastava R. Choudhury P.K. Dev S.K. Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-parkinson’s effect. J. Biochem. Mol. Toxicol. 2021 35 11 e22902 10.1002/jbt.22902 34464010
    [Google Scholar]
  34. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  35. Grings M. Moura A.P. Parmeggiani B. Motta M.M. Boldrini R.M. August P.M. Matté C. Wyse A.T.S. Wajner M. Leipnitz G. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 11 2063 2074 10.1016/j.bbadis.2016.08.007 27523630
    [Google Scholar]
  36. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  37. Krishnan M. Prathap L. Reddy V. Krishnan M. Anti oxidative/neuro-inflammation properties of Withania somnifera root extract on rotenone induced stress in rat brain. Bioinformation 2023 19 6 729 738 10.6026/97320630019729 37885788
    [Google Scholar]
  38. Azimullah S. Jayaraj R.L. Meeran M.F.N. Jalal F.Y. Adem A. Ojha S. Beiram R. Myrcene salvages rotenone-induced loss of dopaminergic neurons by inhibiting oxidative stress, inflammation, apoptosis, and autophagy. Molecules 2023 28 2 685 10.3390/molecules28020685 36677744
    [Google Scholar]
  39. Li X. Rapedius M. Baukrowitz T. Liu G.X. Srivastava D.K. Daut J. Hanley P.J. 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches. Biochim. Biophys. Acta, Gen. Subj. 2010 1800 3 385 391 10.1016/j.bbagen.2009.11.012 19931596
    [Google Scholar]
  40. Hanley P. Daut J. K channels and preconditioning: A re-examination of the role of mitochondrial K channels and an overview of alternative mechanisms. J. Mol. Cell. Cardiol. 2005 39 1 17 50 10.1016/j.yjmcc.2005.04.002 15907927
    [Google Scholar]
  41. Srivastava R. Choudhury P.K. Dev S.K. Rathore V. Alpha-pine self-emulsifying nano formulation attenuates rotenone and trichloroethylene-induced dopaminergic loss. Int. J. Neurosci. 2024 1 18 10.1080/00207454.2024.2341916 38598315
    [Google Scholar]
  42. Wrangel C. Schwabe K. John N. Krauss J.K. Alam M. The rotenone-induced rat model of parkinson’s disease: Behavioral and electrophysiological findings. Behav. Brain Res. 2015 279 52 61 10.1016/j.bbr.2014.11.002 25446762
    [Google Scholar]
  43. Van Laar A.D. Webb K.R. Keeney M.T. Van Laar V.S. Zharikov A. Burton E.A. Hastings T.G. Glajch K.E. Hirst W.D. Greenamyre J.T. Rocha E.M. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy. NPJ Parkinsons Dis. 2023 9 1 121 10.1038/s41531‑023‑00561‑6 37567894
    [Google Scholar]
  44. Campanero M.A. Escolar M. Perez G. Garcia-Quetglas E. Sadaba B. Azanza J.R. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. J. Pharm. Biomed. Anal. 2010 51 4 875 881 10.1016/j.jpba.2009.09.012 19800189
    [Google Scholar]
  45. Park S. Bong S.K. Lee J.W. Park N.J. Choi Y. Kim S.M. Yang M.H. Kim Y.K. Kim S.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis- like lesions in 2,4-dinitrochlorobenzene-induced murine models. Biomol. Ther. 2020 28 6 542 548 10.4062/biomolther.2020.135 32938818
    [Google Scholar]
  46. Darbinyan LV Hambardzumyan LE Simonyan KV Chavushyan VA Manukyan LP Badalyan SA Khalaji N Sarkisian VH Protective effects of curcumin against rotenone-induced rat model of parkinson's disease: In vivo electrophysiological and behavioral study. Metab Brain Dis 2017 32 6 1791 1803 10.1007/s11011‑017‑0060‑y 28695411
    [Google Scholar]
  47. Habib C.N. Mohamed M.R. Tadros M.G. Tolba M.F. Menze E.T. Masoud S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of parkinson’s disease in rats. Eur. J. Pharmacol. 2022 914 174573 10.1016/j.ejphar.2021.174573 34656609
    [Google Scholar]
  48. Rodriguez-Pallares J. Parga J.A. Joglar B. Guerra M.J. Labandeira-Garcia J.L. The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons. Neurotox. Res. 2009 15 1 82 95 10.1007/s12640‑009‑9010‑8 19384591
    [Google Scholar]
  49. Hong S.W. Teesdale-Spittle P. Page R. Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022 93 163 172 10.1016/j.neuro.2022.09.008 36155069
    [Google Scholar]
  50. Varshney K.K. Gupta J.K. Srivastava R. Investigating in silico and in vitro therapeutic potential of diosmetin as the anti-parkinson agent. Protein Pept. Lett. 2024 31 9 714 735 10.2174/0109298665333333240909104354 39323333
    [Google Scholar]
  51. Shahid Nadeem M. Khan J.A. Al-Abbasi F.A. AlGhamdi S.A. Alghamdi A.M. Sayyed N. Gupta G. Kazmi I. Protective effect of hirsutidin against rotenone-induced parkinsonism via inhibition of caspase-3/Interleukins-6 and 1β. ACS Omega 2023 8 14 13016 13025 10.1021/acsomega.3c00201 37065035
    [Google Scholar]
  52. Sánchez-Camacho J.V. Gómez-Chavarín M. Galindo-Solano N. Padilla-Cortés P. Maldonado-García J.L. Pérez-Sánchez G. Pavón L. Ramírez-Santos J. Roldán Roldán G. Gómez-López M. Gutierrez-Ospina G. Non-categorical analyses identify rotenone-induced ‘parkinsonian’ rats benefiting from nano-emulsified punicic acid (NANO-PSO) in a phenotypically diverse population: Implications for translational neurodegenerative therapies. Int. J. Mol. Sci. 2024 25 23 12635 10.3390/ijms252312635 39684350
    [Google Scholar]
  53. Srivastava R. Dilnashin H. Kapoor D. Aparna S. Heidarli E. Singh S.P. Jain V. Role of animal models in parkinson’s disease (PD): What role they play in preclinical translational research. CNS Neurol. Disord. Drug Targets 2024 23 2 181 202 10.2174/1871527322666230223150347 36815656
    [Google Scholar]
  54. Garabadu D. Agrawal N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med. 2020 22 2 314 330 10.1007/s12017‑019‑08590‑2 31916219
    [Google Scholar]
  55. Gao L. Cao M. Du G. Qin X. Huangqin decoction exerts beneficial effects on rotenone-induced rat model of parkinson’s disease by improving mitochondrial dysfunction and alleviating metabolic abnormality of mitochondria. Front. Aging Neurosci. 2022 14 911924 10.3389/fnagi.2022.911924 35912075
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665398088250904074136
Loading
/content/journals/ppl/10.2174/0109298665398088250904074136
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Diosmetin ; substantia nigra ; oxidative stress ; neuroprotection ; rotenone ; Parkinson’s disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test