Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

The present study aims to compare the monotherapy of diosmetin and 5-hydroxydecanoate (5-HD) against the therapeutic effect of their combination therapy in the unilaterally injected rotenone-induced neurotoxicity in the male rats. Motor deficits accompany Parkinson's Disease (PD), while Bioflavonoids like diosmetin, which are antioxidants and anti-inflammatories, protect against neurotoxins. Moreover, mitochondrial dysfunction contributes to PD. The mitochondrial ATP-sensitive potassium channel [mito(K)] regulates reactive species and 5-HD, meaning decreasing it may lessen mitochondrial injury. To evaluate the effect of diosmetin, alone and in combination with 5-HD, on Oxidative Stress (OS) markers, mitochondrial function, and dopaminergic preservation in the SNpc.

Methods

Male Wistar rats were divided into seven groups, including normal control, sham, rotenone-treated, and treatment groups receiving diosmetin, 5-HD, their combination, or selegiline as a standard drug. Biochemical assays were conducted to assess OS markers, mitochondrial complex-I activity, and dopaminergic neuroprotection. Behavioral tests were performed to evaluate motor deficits.

Results

Rotenone administration significantly increased OS, impaired mitochondrial complex-I activity, and reduced motor coordination. Diosmetin treatment significantly reverses the effects of rotenone. Combined treatment with diosmetin and 5-HD showed enhanced neuroprotective effects compared to individual treatments.

Discussion

This study demonstrates that both diosmetin and 5-HD monotherapies alleviate rotenone-induced behavioral impairments in the experimental rats. Additionally, the individual treatment of diosmetin and 5-HD reduces dopaminergic toxicity induced by rotenone. At the sub-cellular level, diosmetin and 5-HD monotherapies counteract rotenone’s impact on antioxidant markers, DA metabolites, and mitochondrial function in the SNpc region of the brain. Notably, combining diosmetin and 5-HD yielded superior therapeutic effects on rotenone-induced behavioral and molecular changes compared to either monotherapy alone. These findings suggest that diosmetin and 5-HD may offer a promising alternative for PD management.

Conclusion

Diosmetin exhibits potent antioxidant and neuroprotective properties against rotenone-induced PD-like pathology. The combination of diosmetin and 5-HD offers a synergistic therapeutic potential, suggesting a promising approach for managing oxidative stress and mitochondrial dysfunction in PD.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665398088250904074136
2025-10-21
2026-02-01
Loading full text...

Full text loading...

References

  1. DruiG. CarnicellaS. CarcenacC. FavierM. BertrandA. BouletS. SavastaM. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in parkinson’s disease.Mol. Psychiatry201419335836710.1038/mp.2013.323399912
    [Google Scholar]
  2. DorseyE.R. ShererT. OkunM.S. BloemB.R. The emerging evidence of the parkinson pandemic.J. Parkinsons Dis.20188s1S3S810.3233/JPD‑18147430584159
    [Google Scholar]
  3. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ROS and RNS sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.201620161124504910.1155/2016/124504927478531
    [Google Scholar]
  4. StokerT.B. BarkerR.A. Recent developments in the treatment of parkinson's disease.F1000Res2020 9.10.12688/f1000research.25634.132789002
    [Google Scholar]
  5. RudrapalM. KhairnarS.J. KhanJ. DukhyilA.B. AnsariM.A. AlomaryM.N. AlshabrmiF.M. PalaiS. DebP.K. DeviR. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action.Front. Pharmacol.20221380647010.3389/fphar.2022.80647035237163
    [Google Scholar]
  6. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.949820716914
    [Google Scholar]
  7. YangY. GongX.B. HuangL.G. WangZ.X. WanR.Z. ZhangP. ZhangQ.Y. ChenZ. ZhangB.S. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice.Oncotarget2017819307233073310.18632/oncotarget.1541328430612
    [Google Scholar]
  8. WójciakM. FeldoM. BorowskiG. KubrakT. PłachnoB.J. SowaI. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells.Molecules20222723823210.3390/molecules2723823236500323
    [Google Scholar]
  9. LiaoW. NingZ. ChenL. WeiQ. YuanE. YangJ. RenJ. Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation.J. Agric. Food Chem.201462348648865410.1021/jf502359x25075433
    [Google Scholar]
  10. SaghaeiE. NasiriB.S. SafaviP. BorjianB.Z. BijadE. Diosmetin mitigates cognitive and memory impairment provoked by chronic unpredictable mild stress in mice.Evid. Based Complement. Alternat. Med.202020201572536110.1155/2020/572536133414836
    [Google Scholar]
  11. LeeD.H. ParkJ.K. ChoiJ. JangH. SeolJ.W. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model.Int. Immunopharmacol.202089Pt A10704610.1016/j.intimp.2020.10704633045572
    [Google Scholar]
  12. VillaP. CovaD. De FrancescoL. GuaitaniA. PalladiniG. PeregoR. Protective effect of diosmetin on in vitro cell membrane damage and oxidative stress in cultured rat hepatocytes.Toxicology199273217918910.1016/0300‑483X(92)90101‑J1609428
    [Google Scholar]
  13. Ibarra-GutiérrezM.T. Serrano-GarcíaN. Orozco-IbarraM. Rotenone-induced model of parkinson’s disease: Beyond mitochondrial complex I inhibition.Mol. Neurobiol.20236041929194810.1007/s12035‑022‑03193‑836593435
    [Google Scholar]
  14. XiongN. HuangJ. ZhangZ. ZhangZ. XiongJ. LiuX. JiaM. WangF. ChenC. CaoX. LiangZ. SunS. LinZ. WangT. Stereotaxical infusion of rotenone: A reliable rodent model for parkinson’s disease.PLoS One2009411e787810.1371/journal.pone.000787819924288
    [Google Scholar]
  15. CannonJ.R. TapiasV. NaH.M. HonickA.S. DroletR.E. GreenamyreJ.T. A highly reproducible rotenone model of parkinson’s disease.Neurobiol. Dis.200934227929010.1016/j.nbd.2009.01.01619385059
    [Google Scholar]
  16. FagottiJ. TargaA.D.S. RodriguesL.S. NosedaA.C.D. DorieuxF.W.C. ScaranteF.F. IlkiwJ.L. LouzadaF.M. ChowdhuryN.R. van der VeenD.R. MiddletonB. PenningsJ.L.A. SwannJ.R. SkeneD.J. LimaM.M.S. Chronic sleep restriction in the rotenone parkinson’s disease model in rats reveals peripheral early-phase biomarkers.Sci. Rep.201991189810.1038/s41598‑018‑37657‑630760786
    [Google Scholar]
  17. ZhangY. LuoC. HuangP. ChengY. MaY. GaoJ. DingH. Diosmetin ameliorates hfd-induced cognitive impairments via inhibiting metabolic disorders, mitochondrial dysfunction and neuroinflammation in male SD rats.Mol. Neurobiol.202461108069808510.1007/s12035‑024‑04083‑x38460078
    [Google Scholar]
  18. ZhangY. JiangY. LuD. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-Kinase (PI3K)/AKT/Nuclear factor-κB (NF-κB) signaling pathway in a rat model of pneumococcal meningitis.Med. Sci. Monit.2019252238224510.12659/MSM.91186030914630
    [Google Scholar]
  19. PengK. HuJ. XiaoJ. DanG. YangL. YeF. ZouZ. CaoJ. SaiY. Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of parkinson’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2018186444 Pt A1086110310.1016/j.bbadis.2018.01.01329353068
    [Google Scholar]
  20. ZhangS. ShaoS.Y. SongX.Y. XiaC.Y. YangY.N. ZhangP.C. ChenN.H. Protective effects of forsythia suspense extract with antioxidant and anti-inflammatory properties in a model of rotenone induced neurotoxicity.Neurotoxicology201652728310.1016/j.neuro.2015.09.00926408940
    [Google Scholar]
  21. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.01628389404
    [Google Scholar]
  22. SinghR. ZahraW. SinghS.S. BirlaH. RathoreA.S. KeshriP.K. DilnashinH. SinghS. SinghS.P. Oleuropein confers neuroprotection against rotenone-induced model of parkinson’s disease via BDNF/CREB/Akt pathway.Sci. Rep.2023131245210.1038/s41598‑023‑29287‑436774383
    [Google Scholar]
  23. El-LatifA.M.A. RabieM.A. SayedR.H. FattahM.A.A.E. KenawyS.A. Inosine attenuates rotenone-induced parkinson’s disease in rats by alleviating the imbalance between autophagy and apoptosis.Drug Dev. Res.20238461159117410.1002/ddr.2207737170799
    [Google Scholar]
  24. RennieL. OpheimA. DietrichsE. LöfgrenN. FranzénE. Highly challenging balance and gait training for individuals with parkinson’s disease improves pace, rhythm and variability domains of gait – a secondary analysis from a randomized controlled trial.Clin. Rehabil.202135220021210.1177/026921552095650332985265
    [Google Scholar]
  25. FerroM.M. BellissimoM.I. Anselmo-FranciJ.A. AngellucciM.E.M. CanterasN.S. Da CunhaC. Comparison of bilaterally 6-ohda- and mptp-lesioned rats as models of the early phase of parkinson’s disease: Histological, neurochemical, motor and memory alterations.J. Neurosci. Methods20051481788710.1016/j.jneumeth.2005.04.00515939479
    [Google Scholar]
  26. SharmaM. MalimF.M. GoswamiA. SharmaN. JuvvalapalliS.S. ChatterjeeS. KateA.S. KhairnarA. Neuroprotective effect of swertiamarin in a rotenone model of parkinson’s disease: Role of neuroinflammation and alpha-synuclein accumulation.ACS Pharmacol. Transl. Sci.202361405110.1021/acsptsci.2c0012036654754
    [Google Scholar]
  27. ThanalakshmiJ. ArchanaR. SenthilkumarS. ShakilaR. PazhanivelN. SubhashiniS. Role of caloric vestibular stimulation in improvement of motor symptoms and inhibition of neuronal degeneration in rotenone model of parkinson’s disease – An experimental study.Physiol. Int.2020107339040510.1556/2060.2020.0003633021954
    [Google Scholar]
  28. SrivastavaS.K. BeutlerE. Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues.Anal. Biochem.1968251707610.1016/0003‑2697(68)90082‑15750729
    [Google Scholar]
  29. BalakrishnanR. VijayrajaD. MohankumarT. ManimaranD. GanesanP. ChoiD.K. ElangovanN. Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of parkinson’s disease.J. Chem. Neuroanat.202111210189010.1016/j.jchemneu.2020.10189033220427
    [Google Scholar]
  30. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal Biochem197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  31. SrivastavaR. ChauhanK. SharmaR. Evaluating motor dysfunction and oxidative stress induced by trichloroethylene in wistar rats.Methods Mol. Biol.2024276149951010.1007/978‑1‑0716‑3662‑6_3438427258
    [Google Scholar]
  32. BeyerW.F.Jr FridovichI. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions.Anal. Biochem.1987161255956610.1016/0003‑2697(87)90489‑13034103
    [Google Scholar]
  33. SrivastavaR. ChoudhuryP.K. DevS.K. RathoreV. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-parkinson’s effect.J. Biochem. Mol. Toxicol.20213511e2290210.1002/jbt.2290234464010
    [Google Scholar]
  34. AebiH. Catalase in vitro. Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  35. GringsM. MouraA.P. ParmeggianiB. MottaM.M. BoldriniR.M. AugustP.M. MattéC. WyseA.T.S. WajnerM. LeipnitzG. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats.Biochim. Biophys. Acta Mol. Basis Dis.20161862112063207410.1016/j.bbadis.2016.08.00727523630
    [Google Scholar]
  36. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  37. KrishnanM. PrathapL. ReddyV. KrishnanM. Anti oxidative/neuro-inflammation properties of Withania somnifera root extract on rotenone induced stress in rat brain.Bioinformation202319672973810.6026/9732063001972937885788
    [Google Scholar]
  38. AzimullahS. JayarajR.L. MeeranM.F.N. JalalF.Y. AdemA. OjhaS. BeiramR. Myrcene salvages rotenone-induced loss of dopaminergic neurons by inhibiting oxidative stress, inflammation, apoptosis, and autophagy.Molecules202328268510.3390/molecules2802068536677744
    [Google Scholar]
  39. LiX. RapediusM. BaukrowitzT. LiuG.X. SrivastavaD.K. DautJ. HanleyP.J. 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches.Biochim. Biophys. Acta, Gen. Subj.20101800338539110.1016/j.bbagen.2009.11.01219931596
    [Google Scholar]
  40. HanleyP. DautJ. K channels and preconditioning: A re-examination of the role of mitochondrial K channels and an overview of alternative mechanisms.J. Mol. Cell. Cardiol.2005391175010.1016/j.yjmcc.2005.04.00215907927
    [Google Scholar]
  41. SrivastavaR. ChoudhuryP.K. DevS.K. RathoreV. Alpha-pine self-emulsifying nano formulation attenuates rotenone and trichloroethylene-induced dopaminergic loss.Int. J. Neurosci.202411810.1080/00207454.2024.234191638598315
    [Google Scholar]
  42. WrangelC. SchwabeK. JohnN. KraussJ.K. AlamM. The rotenone-induced rat model of parkinson’s disease: Behavioral and electrophysiological findings.Behav. Brain Res.2015279526110.1016/j.bbr.2014.11.00225446762
    [Google Scholar]
  43. Van LaarA.D. WebbK.R. KeeneyM.T. Van LaarV.S. ZharikovA. BurtonE.A. HastingsT.G. GlajchK.E. HirstW.D. GreenamyreJ.T. RochaE.M. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy.NPJ Parkinsons Dis.20239112110.1038/s41531‑023‑00561‑637567894
    [Google Scholar]
  44. CampaneroM.A. EscolarM. PerezG. Garcia-QuetglasE. SadabaB. AzanzaJ.R. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study.J. Pharm. Biomed. Anal.201051487588110.1016/j.jpba.2009.09.01219800189
    [Google Scholar]
  45. ParkS. BongS.K. LeeJ.W. ParkN.J. ChoiY. KimS.M. YangM.H. KimY.K. KimS.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis- like lesions in 2,4-dinitrochlorobenzene-induced murine models.Biomol. Ther.202028654254810.4062/biomolther.2020.13532938818
    [Google Scholar]
  46. DarbinyanL.V. HambardzumyanL.E. SimonyanK.V. ChavushyanV.A. ManukyanL.P. BadalyanS.A. KhalajiN. SarkisianV.H. Protective effects of curcumin against rotenone-induced rat model of parkinson's disease: In vivo electrophysiological and behavioral study.Metab. Brain Dis.20173261791180310.1007/s11011‑017‑0060‑y28695411
    [Google Scholar]
  47. HabibC.N. MohamedM.R. TadrosM.G. TolbaM.F. MenzeE.T. MasoudS.I. The potential neuroprotective effect of diosmin in rotenone-induced model of parkinson’s disease in rats.Eur. J. Pharmacol.202291417457310.1016/j.ejphar.2021.17457334656609
    [Google Scholar]
  48. Rodriguez-PallaresJ. PargaJ.A. JoglarB. GuerraM.J. Labandeira-GarciaJ.L. The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons.Neurotox. Res.2009151829510.1007/s12640‑009‑9010‑819384591
    [Google Scholar]
  49. HongS.W. Teesdale-SpittleP. PageR. TrumanP. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke.Neurotoxicology20229316317210.1016/j.neuro.2022.09.00836155069
    [Google Scholar]
  50. VarshneyK.K. GuptaJ.K. SrivastavaR. Investigating in silico and in vitro therapeutic potential of diosmetin as the anti-parkinson agent.Protein Pept. Lett.202431971473510.2174/010929866533333324090910435439323333
    [Google Scholar]
  51. ShahidN.M. KhanJ.A. Al-AbbasiF.A. AlGhamdiS.A. AlghamdiA.M. SayyedN. GuptaG. KazmiI. Protective effect of hirsutidin against rotenone-induced parkinsonism via inhibition of caspase-3/Interleukins-6 and 1β.ACS Omega2023814130161302510.1021/acsomega.3c0020137065035
    [Google Scholar]
  52. Sánchez-CamachoJ.V. Gómez-ChavarínM. Galindo-SolanoN. Padilla-CortésP. Maldonado-GarcíaJ.L. Pérez-SánchezG. PavónL. Ramírez-SantosJ. RoldánR.G. Gómez-LópezM. Gutierrez-OspinaG. Non-categorical analyses identify rotenone-induced ‘parkinsonian’ rats benefiting from nano-emulsified punicic acid (NANO-PSO) in a phenotypically diverse population: Implications for translational neurodegenerative therapies.Int. J. Mol. Sci.202425231263510.3390/ijms25231263539684350
    [Google Scholar]
  53. SrivastavaR. DilnashinH. KapoorD. AparnaS. HeidarliE. SinghS.P. JainV. Role of animal models in parkinson’s disease (PD): What role they play in preclinical translational research.CNS Neurol. Disord. Drug Targets202423218120210.2174/187152732266623022315034736815656
    [Google Scholar]
  54. GarabaduD. AgrawalN. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents.Neuromolecular Med.202022231433010.1007/s12017‑019‑08590‑231916219
    [Google Scholar]
  55. GaoL. CaoM. DuG. QinX. Huangqin decoction exerts beneficial effects on rotenone-induced rat model of parkinson’s disease by improving mitochondrial dysfunction and alleviating metabolic abnormality of mitochondria.Front. Aging Neurosci.20221491192410.3389/fnagi.2022.91192435912075
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665398088250904074136
Loading
/content/journals/ppl/10.2174/0109298665398088250904074136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test