Skip to content
2000
image of Evaluation of the Cardioprotective Potential of Syzygium aromaticum in High-Glucose and Trimethylamine-N-Oxide-Induced In-Vitro Diabetic Cardiomyopathy

Abstract

Introduction

Diabetic hyperglycemia is often associated with elevated levels of trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite that was recently identified as a risk factor for cardiovascular diseases. The combined presence of hyperglycemia and TMAO can aggravate cardiac dysfunction in diabetic patients. This study aimed to evaluate the protective effects of the methanolic extract of against the toxic effects induced by TMAO and hyperglycemia in cultured rat cardiomyocytes.

Methods

Rat cardiomyocytes, H9C2 were exposed to high glucose and TMAO, individually and in combination to simulate diabetic and dysbiotic stress conditions. Cells were treated with optimized doses of extract under dual-stress conditions. Cellular and nuclear morphology were assessed microscopically. Oxidative stress markers were evaluated. Proteomic profiling using liquid chromatography-mass spectrometry (LC-MS) was conducted to identify differentially expressed proteins. Crucial targets were identified and functionally annotated using integrated bioinformatics tools and databases. Expression of the critical transcription factor Yin-Yang-1 (YY1) was analysed using quantitative PCR (qPCR).

Results

Dual exposure to TMAO and hyperglycemia resulted in greater morphological and oxidative damage compared to exposure to either individual stressor alone. Treatment with extract significantly reduced cellular and nuclear damage as well as oxidative stress under dual-stress conditions. Proteomic analysis revealed several differentially expressed proteins, with YY1 identified as a key regulatory factor. qPCR confirmed the suppression of YY1 expression by treatment.

Discussion

Our findings suggest that mitigates cardiomyocyte injury caused by metabolic and microbial stress. Its protective effect may be mediated through antioxidant activity and transcriptional regulation, particularly the downregulation of YY1, a key player in cardiac stress responses.

Conclusion

exhibits multifaceted cardioprotective and prebiotic potential by mitigating TMAO and hyperglycemia-induced toxicity, highlighting its therapeutic promise in managing gut dysbiosis linked to diabetic cardiomyopathy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665390952250814224511
2025-09-10
2025-11-03
Loading full text...

Full text loading...

References

  1. Salvatore T. Pafundi P.C. Galiero R. Albanese G. Di Martino A. Caturano A. Vetrano E. Rinaldi L. Sasso F.C. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Front. Med. 2021 8 695792 10.3389/fmed.2021.695792 34277669
    [Google Scholar]
  2. Hameed I. Masoodi S.R. Mir S.A. Nabi M. Ghazanfar K. Ganai B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 2015 6 4 598 612 10.4239/wjd.v6.i4.598 25987957
    [Google Scholar]
  3. Zhao X. Liu S. Wang X. Chen Y. Pang P. Yang Q. Lin J. Deng S. Wu S. Fan G. Wang B. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol. 2022 13 1032268 10.3389/fendo.2022.1032268 36568097
    [Google Scholar]
  4. Jia G. Hill M.A. Sowers J.R. Diabetic Cardiomyopathy. Circ. Res. 2018 122 4 624 638 10.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  5. Nunes S. Rolo A.P. Palmeira C.M. Reis F. Diabetic cardiomyopathy: Focus on oxidative stress, mitochondrial dysfunction and inflammation. Cardiomyopathies - Types and Treatments InTech 2017 235 257 10.5772/65915
    [Google Scholar]
  6. Izzo C. Vitillo P. Di Pietro P. Visco V. Strianese A. Virtuoso N. Ciccarelli M. Galasso G. Carrizzo A. Vecchione C. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life 2021 11 1 60 10.3390/life11010060 33467601
    [Google Scholar]
  7. Tan Y. Zhang Z. Zheng C. Wintergerst K.A. Keller B.B. Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020 17 9 585 607 10.1038/s41569‑020‑0339‑2 32080423
    [Google Scholar]
  8. Ke J. Pan J. Lin H. Gu J. Diabetic cardiomyopathy: A brief summary on lipid toxicity. ESC Heart Fail. 2023 776 790.Apr 10.1002/ehf2.14224
    [Google Scholar]
  9. Yadav M. Chauhan N.S. Microbiome therapeutics: Exploring the present scenario and challenges. Gastroenterol. Rep. 2022 10 goab046 10.1093/gastro/goab046 35382166
    [Google Scholar]
  10. Qian B. Zhang K. Li Y. Sun K. Update on gut microbiota in cardiovascular diseases. Front. Cell. Infect. Microbiol. 2022 12 1059349 10.3389/fcimb.2022.1059349 36439214
    [Google Scholar]
  11. Roncal C. Martínez-Aguilar E. Orbe J. Ravassa S. Fernandez-Montero A. Saenz-Pipaon G. Ugarte A. Estella-Hermoso de Mendoza A. Rodriguez J.A. Fernández-Alonso S. Fernández-Alonso L. Oyarzabal J. Paramo J.A. Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease. Sci. Rep. 2019 9 1 15580 10.1038/s41598‑019‑52082‑z 31666590
    [Google Scholar]
  12. Lama S. Monda V. Rizzo M.R. Dacrema M. Maisto M. Annunziata G. Tenore G.C. Novellino E. Stiuso P. Cardioprotective effects of taurisolo® in cardiomyoblast h9c2 cells under high-glucose and trimethylamine n-oxide treatment via de novo sphingolipid synthesis. Oxid. Med. Cell. Longev. 2020 2020 1 11 10.1155/2020/2961406 33273998
    [Google Scholar]
  13. Palomer X. Pizarro-Delgado J. Vázquez-Carrera M. Emerging actors in diabetic cardiomyopathy: Heartbreaker biomarkers or therapeutic targets? Trends Pharmacol. Sci. 2018 39 5 452 467 10.1016/j.tips.2018.02.010 29605388
    [Google Scholar]
  14. Kong L. Zhao Q. Jiang X. Hu J. Jiang Q. Sheng L. Peng X. Wang S. Chen Y. Wan Y. Hou S. Liu X. Ma C. Li Y. Quan L. Chen L. Cui B. Li P. Trimethylamine N-oxide impairs β-cell function and glucose tolerance. Nat. Commun. 2024 15 1 2526 10.1038/s41467‑024‑46829‑0 38514666
    [Google Scholar]
  15. Parham S. Kharazi A.Z. Bakhsheshi-Rad H.R. Nur H. Ismail A.F. Sharif S. RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020 9 12 1309 10.3390/antiox9121309 33371338
    [Google Scholar]
  16. Teles A.M. Silva-Silva J.V. Fernandes J.M.P. Abreu-Silva A.L. Calabrese K.S. Mendes Filho N.E. Mouchrek A.N. Almeida-Souza F. GC-MS characterization of antibacterial, antioxidant, and antitrypanosomal activity of syzygium aromaticum essential oil and eugenol. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/6663255 33688364
    [Google Scholar]
  17. Sucharov C.C. Mariner P. Long C. Bristow M. Leinwand L. Yin Yang 1 is increased in human heart failure and represses the activity of the human α-myosin heavy chain promoter. J. Biol. Chem. 2003 278 33 31233 31239 10.1074/jbc.M301917200 12754214
    [Google Scholar]
  18. Redfern J. Kinninmonth M. Burdass D. Verran J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Microbiol. Biol. Educ. 2014 15 1 45 46 10.1128/jmbe.v15i1.656 24839520
    [Google Scholar]
  19. Abubakar A.R. Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020 12 1 1 10 10.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  20. Watkins S.J. Borthwick G.M. Arthur H. M. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell. Dev. Biol. Anim. 2011 47 2 125 131 10.1007/s11626‑010‑9368‑1 21082279
    [Google Scholar]
  21. Matrella M.L. Valletti A. Marra F. Mallamaci C. Cocco T. Muscolo A. Phytochemicals from red onion, grown with eco-sustainable fertilizers, protect mammalian cells from oxidative stress, increasing their viability. Molecules 2022 27 19 6365 10.3390/molecules27196365 36234903
    [Google Scholar]
  22. Atale N. Chakraborty M. Mohanty S. Bhattacharya S. Nigam D. Sharma M. Rani V. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc. Toxicol. 2013 13 3 278 289 10.1007/s12012‑013‑9207‑1 23512199
    [Google Scholar]
  23. Atale N. Gupta K. Rani V. Protective effect of Syzygium cumini against pesticide-induced cardiotoxicity. Environ. Sci. Pollut. Res. Int. 2014 21 13 7956 7972 10.1007/s11356‑014‑2684‑3 24659402
    [Google Scholar]
  24. Jain A. Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018 205 97 106 10.1016/j.lfs.2018.05.021 29752960
    [Google Scholar]
  25. Kankeu C. Clarke K. Van Haver D. Gevaert K. Impens F. Dittrich A. Roderick H.L. Passante E. Huber H.J. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a ‘function follows form’ model of differentiation. Mol. Omics 2018 14 3 181 196 10.1039/C8MO00036K 29770421
    [Google Scholar]
  26. Piersma S.R. Warmoes M.O. de Wit M. de Reus I. Knol J.C. Jiménez C.R. Whole gel processing procedure for GeLC-MS/MS based proteomics. Proteome Sci. 2013 11 1 17 10.1186/1477‑5956‑11‑17 23617947
    [Google Scholar]
  27. Zhou J. Zhong L. Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized medicine. Front. Mol. Biosci. 2022 9 1049016 10.3389/fmolb.2022.1049016 36406271
    [Google Scholar]
  28. Mi H. Muruganujan A. Thomas P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012 41 D1 D377 D386 10.1093/nar/gks1118 23193289
    [Google Scholar]
  29. Guan W. Liu Y. Liu Y. Wang Q. Ye H.L. Cheng Y.G. Kuang H.X. Jiang X.C. Yang B.Y. Proteomics research on the protective effect of mangiferin on h9c2 cell injury induced by H2O2. Molecules 2019 24 10 1911 10.3390/molecules24101911 31109015
    [Google Scholar]
  30. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019 48 D1 gkz1021 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  31. Otasek D. Morris J.H. Bouças J. Pico A.R. Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019 20 1 185 10.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  32. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  33. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  34. Singhal S. Rani V. Study to explore plant-derived trimethylamine lyase enzyme inhibitors to address gut dysbiosis. Appl. Biochem. Biotechnol. 2022 194 1 99 123 10.1007/s12010‑021‑03747‑x 34822060
    [Google Scholar]
  35. Jindal D. Rani V. In silico studies of phytoconstituents from piper longum and ocimum sanctum as ace2 and tmrss2 inhibitors: Strategies to combat COVID-19. Appl. Biochem. Biotechnol. 2023 195 4 2618 2635 10.1007/s12010‑022‑03827‑6 35157239
    [Google Scholar]
  36. Mathur P. Rani V. Investigating microRNAs in diabetic cardiomyopathy as tools for early detection and therapeutics. Mol. Cell. Biochem. 2023 478 2 229 240 10.1007/s11010‑022‑04473‑6 35779226
    [Google Scholar]
  37. Atale N. Mishra C.B. Kohli S. Mongre R.K. Prakash A. Kumari S. Yadav U.C.S. Jeon R. Rani V. Anti‐inflammatory Effects of S. cumini Seed Extract on Gelatinase‐B (MMP‐9) regulation against hyperglycemic cardiomyocyte stress. Oxid. Med. Cell. Longev. 2021 2021 1 8839479 10.1155/2021/8839479 33747350
    [Google Scholar]
  38. Singhal S. Rani V. Therapeutic potential of syzygium aromaticum in gut dysbiosis via tmao associated diabetic cardiomyopathy. Cardiovasc. Hematol. Agents Med. Chem. 2023 21 10.2174/1871525721666230822100142 37608671
    [Google Scholar]
  39. Mariner P.D. Luckey S.W. Long C.S. Sucharov C.C. Leinwand L.A. Yin Yang 1 represses α-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochem. Biophys. Res. Commun. 2004 326 1 79 86 10.1016/j.bbrc.2004.11.008 15567155
    [Google Scholar]
  40. Song D. Yang Q. Jiang X. Shan A. Nan J. Lei Y. Ji H. Di W. Yang T. Wang T. Wang W. Ning G. Cao Y. YY1 deficiency in β-cells leads to mitochondrial dysfunction and diabetes in mice. Metabolism 2020 112 154353 10.1016/j.metabol.2020.154353 32916152
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665390952250814224511
Loading
/content/journals/ppl/10.2174/0109298665390952250814224511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test