Skip to content
2000
image of Effective Plant-Derived Proteins and Peptides in Leukemia Treatment

Abstract

Leukemia is one of the most prevalent malignancies worldwide that causes the unusual evolution of hematopoietic stem cells. The type of leukemia determines the optimal treatment plan and the patient's survival. However, finding safer and more effective medications and developing novel therapeutic strategies are still the most challenging research topics. Nowadays, over half of the medications used to treat cancer are derived from natural ingredients. Medicinal plants are a reliable natural source of anti-leukemic medications. Plant-derived biologically active compounds, including secondary metabolites, have long been considered extremely valuable for treating various human illnesses. However, the limitations of secondary metabolites have led scientists to seek alternative biologically active compounds. Plant-derived proteins and peptides have recently been explored as potential treatments for various human ailments, showing anti-microbial, anti-oxidant, anti-HIV, anti-cancer, ribosome-inactivating, and neuromodulatory properties. Until now, no review article has documented the biologically active proteins and peptides against leukemia. This review article explores the therapeutic properties of plant-derived proteins and peptides against leukemia.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665395842250814085828
2025-09-10
2025-11-03
Loading full text...

Full text loading...

References

  1. He L. Gu J. Lim L.Y. Yuan Z. Mo J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol. 2016 7 313 10.3389/fphar.2016.00313 27679576
    [Google Scholar]
  2. Qin W. Huang G. Chen Z. Zhang Y. Nanomaterials targeting cancer stem cells for cancer therapy. Front. Pharmacol. 2017 8 1 10.3389/fphar.2017.00001 28149278
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018 68 1 7 30 10.3322/caac.21442 29313949
    [Google Scholar]
  4. Khalafalla M.M. Abdellatef E. Daffalla H.M. Nasrallah A.A. Aboul-Enein K.M. Lightfoot D.A. Cocchetto A. El-Shemy H.A. Anti-leukemia activity from root cultures of vernonia amygdalina. J. Med. Plants Res. 2009 3 8 556 562
    [Google Scholar]
  5. Sarkar M.K. Mahapatra S.K. Vadivel V. Oxidative stress mediated cytotoxicity in leukemia cells induced by active phyto-constituents isolated from traditional herbal drugs of West Bengal. J. Ethnopharmacol. 2020 251 112527 10.1016/j.jep.2019.112527 31891796
    [Google Scholar]
  6. Davis A.S. Viera A.J. Mead M.D. Leukemia: An overview for primary care. Am. Fam. Physician 2014 89 9 731 738 24784336
    [Google Scholar]
  7. Berg S. Nand S. Neurological complications of the leukemias across the ages. Curr. Neurol. Neurosci. Rep. 2017 17 2 13 10.1007/s11910‑017‑0726‑1 28229399
    [Google Scholar]
  8. Lou L.L. Li W. Zhou B.H. Chen L. Weng H.Z. Zou Y.H. Tang G.H. Bu X.Z. Yin S. (+)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/small mother against decapentaplegic signaling pathway. Phytother. Res. 2019 33 1 214 223 10.1002/ptr.6219 30375049
    [Google Scholar]
  9. Seca A. Pinto D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018 19 1 263 10.3390/ijms19010263 29337925
    [Google Scholar]
  10. Kayyal M. Bolhassani A. Noormohammadi Z. Sadeghizadeh M. Immunological responses and anti-tumor effects of HPV16/18 L1-L2-E7 multiepitope fusion construct along with curcumin and nanocurcumin in C57BL/6 mouse model. Life Sci. 2021 285 119945 10.1016/j.lfs.2021.119945 34516991
    [Google Scholar]
  11. Abbasifarid E. Bolhassani A. Irani S. Sotoodehnejadnematalahi F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS One 2021 16 10 0258599 10.1371/journal.pone.0258599 34648579
    [Google Scholar]
  12. Soleymani S. Zabihollahi R. Shahbazi S. Bolhassani A. Antiviral effects of saffron and its major ingredients. Curr. Drug Deliv. 2018 15 5 698 704 10.2174/1567201814666171129210654 29189153
    [Google Scholar]
  13. Clemente A. Arques M.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroenterol. 2014 20 30 10305 10315 10.3748/wjg.v20.i30.10305 25132747
    [Google Scholar]
  14. Wani S.S. Dar P.A. Zargar S.M. Dar T.A. Therapeutic potential of medicinal plant proteins: Present status and future perspectives. Curr. Protein Pept. Sci. 2020 21 5 443 487 10.2174/1389203720666191119095624 31746291
    [Google Scholar]
  15. Juliusson G. Lazarevic V. Hörstedt A.S. Hagberg O. Höglund M. Acute myeloid leukemia in the real world: Why population-based registries are needed. Blood 2012 119 17 3890 3899 10.1182/blood‑2011‑12‑379008 22383796
    [Google Scholar]
  16. Bispo J.A.B. Pinheiro P.S. Kobetz E.K. Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb. Perspect. Med. 2020 10 6 a034819 10.1101/cshperspect.a034819 31727680
    [Google Scholar]
  17. Miranda-Filho A. Piñeros M. Ferlay J. Soerjomataram I. Monnereau A. Bray F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 2018 5 1 e14 e24 10.1016/S2352‑3026(17)30232‑6 29304322
    [Google Scholar]
  18. Steliarova-Foucher E. Colombet M. Ries L.A.G. Moreno F. Dolya A. Bray F. Hesseling P. Shin H.Y. Stiller C.A. Bouzbid S. Hamdi-Cherif M. Hablas A. Chirpaz E. Buziba N. Chesumbai G.C. Manraj S.S. Reynders D. Wabinga H.R. Chokunonga E. Moreno F. Lima C.A. Asturian Laporte C. de Oliveira J.C. de Aquino J.A.P. Gallagher S.M.V. Uribe C.J. Bravo L.E. Yepez Chamorro M.C. Torres Alvarado G. Galán Alvarez Y.H. Martinez Reyes F.C. Castillo Calvas J.C. Mendoza Alava M. Cueva Ayala P. Hanchard B. Fajardo-Gutiérrez A. Zavala Zegarra D.E. Barrios E. Nikiforuk C. Woods R. Turner D. MacIntyre M. Corriveau A. Navaneelan T. Bertrand C. Stuart-Panko H. Wilson R.J. Kosary C. Shen X. Brockhouse J. Yee G.A. Mitchell T.C. Snipes K. West D. Rao C. Bolick S. Rycroft R.K. Mueller L. Zheng Y. Dosch K. Brown H. Vargas A. Levin G.M. Bayakly R. Johnson C. Shen T. Ruppert L. Lynch C.F. Lai S.M. Tucker T.C. Wu X.C. Schwenn M. Stern K. Gershman S. Copeland G. Bushhouse S. Rogers D.B. Jackson Thompson J. Lemons D. Frederick S. Harris J.A. Riddle B. Stroup A. Wiggins C. Schymura M.J. Giljahn L.K. Sheikh A. Schubert S. Aldinger W. Fulton J.P. Whiteside M. Nogueira L. Sweeney C. Johnson A. Martin J. Farley S. Harrelson D. Malicki R. Espinoza J.R. Hernandez B.Y. Abulfateh N. Wang N. Ngan R.K.C. Lingegowda K.B. Swaminathan R. Koyande S.S. Silverman B. Ozasa K. Kanemura S. Soda M. Miyashiro I. Shibata A. Nimri O. Won Y.J. Kim C.H. Hong N.S. Nam H.S. Kweon S. Kim W.C. Huh J.S. Jung K.W. Yoo C.I. Elbasmy A. Laudico A.V. Lumague M.R. AlMutlag H. Buasom R. Srisukho S. Tanabodee J. Wiangnon S. Pongnikorn D. Sriplung H. Dirican O. Eser S. Le Hoang M. Hackl M. Zborovskaya A. Dimitrova N. Valerianova Z. Sekerija M. Pavlou P. Dušek M. Mägi M. Clavel J. Lacour B. Guizard A.V. Bouvier V. Troussard X. Woronoff A.S. Tretarre B. Colonna M. Molinié F. Bara S. Velten M. Marrer E. Ganry O. Grosclaude P. Kaatsch P. Zeissig S.R. Holleczek B. Katalinic A. Jakab Z. Birgisson H. Walsh P.M. Mangone L. Merletti F. Magoni M. Mangone L. Ferretti S. Serraino D. Spagnoli G. Fusco M. Michiara M. Tumino R. Falcini F. Sensi F. Tisano F. Piffer S. Stracci F. Tagliabue G. Smailyte G. Agius D. Visser O. Ursin G. Didkowska J. Trojanowski M. Wojciechowska U. Forjaz de Lacerda G. Silva M.A. Laranja Pontes J. da Costa Miranda A. Kaiserova E. Primic Žakelj M. Peris-Bonet R. Vicente Raneda M.L. Almar Marqués E. Quirós Garcia J.R. Ramos Monserrat M. Errezola Saizar M. Alemán Herrera A. Díaz García J.M. Marcos-Gragera R. Sanchez-Perez M.J. Ardanaz Aicua E. Galceran J. Klint A. Kuehni C.E. Bouchardy C. Levi F. Bordoni A. Konzelmann I. Rohrmann S. Stiller C.A. Gavin A.T. Brewster D.H. Phung H. Rushton S. Guthridge S. Aitken J. D’Onise K. Venn A. Farrugian H. Threlfall T.J. Laumond S. Yen Kai Sun L. Hendrix J. Ballantine K. Colombet M. Dolya A. Masuyer E. Steliarova-Foucher E. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol. 2017 18 6 719 731 10.1016/S1470‑2045(17)30186‑9 28410997
    [Google Scholar]
  19. Wéber A. Vignat J. Shah R. Morgan E. Laversanne M. Nagy P. Kenessey I. Znaor A. Global burden of bladder cancer mortality in 2020 and 2040 according to GLOBOCAN estimates. World J. Urol. 2024 42 1 237 10.1007/s00345‑024‑04949‑8 38625417
    [Google Scholar]
  20. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  21. Bray F. Colombet M. Aitken J. Bardot A. Eser S. Galceran J. Hagenimana M. Matsuda T. Mery L. Piñeros M. Soerjomataram I. de Vries E. Wiggins C. Won Y.J. Znaor A. Ferlay J. IARC CancerBase no. 19 Lyon International Agency for Research on Cancer 2024 XII
    [Google Scholar]
  22. Daltveit D.S. Morgan E. Colombet M. Steliarova-Foucher E. Bendahhou K. Marcos-Gragera R. Rongshou Z. Smith A. Wei H. Soerjomataram I. Global patterns of leukemia by subtype, age, and sex in 185 countries in 2022. Leukemia 2025 39 2 412 9 39567675
    [Google Scholar]
  23. Swerdlow S.H. Campo E. Pileri S.A. Harris N.L. Stein H. Siebert R. Advani R. Ghielmini M. Salles G.A. Zelenetz A.D. Jaffe E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016 127 20 2375 2390 10.1182/blood‑2016‑01‑643569 26980727
    [Google Scholar]
  24. Cazzola M. Introduction to a review series: The 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood 2016 127 20 2361 2364 10.1182/blood‑2016‑03‑657379 27069255
    [Google Scholar]
  25. Arber D.A. Orazi A. Hasserjian R. Thiele J. Borowitz M.J. Le Beau M.M. Bloomfield C.D. Cazzola M. Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016 127 20 2391 2405 10.1182/blood‑2016‑03‑643544 27069254
    [Google Scholar]
  26. Chennamadhavuni A. Lyengar V. Mukkamalla S.K.R. Shimanovsky A. Leukemia. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  27. Snyder R. Leukemia and benzene. Int. J. Environ. Res. Public Health 2012 9 8 2875 2893 10.3390/ijerph9082875 23066403
    [Google Scholar]
  28. Friedman D.L. Whitton J. Leisenring W. Mertens A.C. Hammond S. Stovall M. Donaldson S.S. Meadows A.T. Robison L.L. Neglia J.P. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Natl. Cancer Inst. 2010 102 14 1083 1095 10.1093/jnci/djq238 20634481
    [Google Scholar]
  29. Stieglitz E. Loh M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 2013 4 4 270 290 10.1177/2040620713498161 23926459
    [Google Scholar]
  30. Nebgen D.R. Rhodes H.E. Hartman C. Munsell M.F. Lu K.H. Abnormal uterine bleeding is the presenting symptom of hematologic cancer. Obstet. Gynecol. 2016 128 2 357 363 10.1097/AOG.0000000000001529 27400009
    [Google Scholar]
  31. Kliegman R. Geme J.W.St. III The leukemias. Nelson Textbook of Pediatrics. 21st Ed Amsterdam, Netherlands Elsevier 2020
    [Google Scholar]
  32. Niederhuber J.E. Armitage J.O. Doroshow J.H. Kastan M.B. Tepper J.E. Abeloff’s Clinical Oncology. 6th Ed Amsterdam, Netherlands Elsevier 2020
    [Google Scholar]
  33. Leukemia. 2021 Available from: https://www.hematology.org/education/patients/blood-cancers/leukemia
  34. Maude S.L. Frey N. Shaw P.A. Aplenc R. Barrett D.M. Bunin N.J. Chew A. Gonzalez V.E. Zheng Z. Lacey S.F. Mahnke Y.D. Melenhorst J.J. Rheingold S.R. Shen A. Teachey D.T. Levine B.L. June C.H. Porter D.L. Grupp S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014 371 16 1507 1517 10.1056/NEJMoa1407222 25317870
    [Google Scholar]
  35. Lee D.W. Kochenderfer J.N. Stetler-Stevenson M. Cui Y.K. Delbrook C. Feldman S.A. Fry T.J. Orentas R. Sabatino M. Shah N.N. Steinberg S.M. Stroncek D. Tschernia N. Yuan C. Zhang H. Zhang L. Rosenberg S.A. Wayne A.S. Mackall C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015 385 9967 517 528 10.1016/S0140‑6736(14)61403‑3 25319501
    [Google Scholar]
  36. Davila M.L. Riviere I. Wang X. Bartido S. Park J. Curran K. Chung S.S. Stefanski J. Borquez-Ojeda O. Olszewska M. Qu J. Wasielewska T. He Q. Fink M. Shinglot H. Youssif M. Satter M. Wang Y. Hosey J. Quintanilla H. Halton E. Bernal Y. Bouhassira D.C.G. Arcila M.E. Gonen M. Roboz G.J. Maslak P. Douer D. Frattini M.G. Giralt S. Sadelain M. Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014 6 224 224ra25 10.1126/scitranslmed.3008226 24553386
    [Google Scholar]
  37. Cai Z. Yin Y. Shen C. Wang J. Yin X. Chen Z. Zhou Y. Zhang B. Comparative effectiveness of preoperative, postoperative and perioperative treatments for resectable gastric cancer: A network meta-analysis of the literature from the past 20 years. Surg. Oncol. 2018 27 3 563 574 10.1016/j.suronc.2018.07.011 30217320
    [Google Scholar]
  38. Yu W.D. Sun G. Li J. Xu J. Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019 452 66 70 10.1016/j.canlet.2019.02.048 30902563
    [Google Scholar]
  39. Aljabery F. Shabo I. Gimm O. Johnson S. Olsson H. The expression profile of p14, p53, and p21 in tumor cells is associated with disease-specific survival and the outcome of postoperative chemotherapy treatment in muscle-invasive bladder cancer. In Urologic Oncology. Seminars and Original Investigations. 2018 36 12 530.e7 530.e18 10.1016/j.urolonc.2018.05.025 30539751
    [Google Scholar]
  40. Rajalakshmi M. Suveena S. Vijayalakshmia P. Indu S. Roy A. Ludas A. DaiCee: A database for anti-cancer compounds with targets and side effect profiles. Bioinformation 2020 16 11 843 848 10.6026/97320630016843 34803258
    [Google Scholar]
  41. Shimizu C. Side effects of anticancer treatment and the need for translational toxicity research: A clinician’s perspective. Folia Pharmacologica Japonica 2015 146 2 72 75 10.1254/fpj.146.72 26256743
    [Google Scholar]
  42. Pérez-Tomás R. Multidrug resistance: Retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem. 2006 13 16 1859 1876 10.2174/092986706777585077 16842198
    [Google Scholar]
  43. Bidram M. Ganjalikhany M.R. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024 10 23 40563 10.1016/j.heliyon.2024.e40563 39654719
    [Google Scholar]
  44. Ghadiri N. Javidan M. Sheikhi S. Taştan Ö. Parodi A. Liao Z. Tayybi Azar M. Ganjalıkhani-Hakemi M. Bioactive peptides: An alternative therapeutic approach for cancer management. Front. Immunol. 2024 15 1310443 10.3389/fimmu.2024.1310443 38327525
    [Google Scholar]
  45. Quintal-Bojórquez N. Segura-Campos M.R. Bioactive peptides as therapeutic adjuvants for cancer. Nutr. Cancer 2021 73 8 1309 1321 10.1080/01635581.2020.1813316 32865023
    [Google Scholar]
  46. Marqus S. Pirogova E. Piva T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017 24 1 21 10.1186/s12929‑017‑0328‑x 28320393
    [Google Scholar]
  47. Cevenini A. Celia C. Orrù S. Sarnataro D. Raia M. Mollo V. Locatelli M. Imperlini E. Peluso N. Peltrini R. De Rosa E. Parodi A. Del Vecchio L. Di Marzio L. Fresta M. Netti P.A. Shen H. Liu X. Tasciotti E. Salvatore F. Liposome-embedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy. Pharmaceutics 2020 12 6 559 10.3390/pharmaceutics12060559 32560359
    [Google Scholar]
  48. Parodi A. Rudzinska M. Leporatti S. Anissimov Y. Zamyatnin A.A. Jr Smart nano theranostics responsive to pathological stimuli. Front. Bioeng. Biotechnol. 2020 8 503 10.3389/fbioe.2020.00503 32523946
    [Google Scholar]
  49. Sable R. Parajuli P. Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Mar. Drugs 2017 15 4 124 10.3390/md15040124 28441741
    [Google Scholar]
  50. Lahlou M. The success of natural products in drug discovery. Pharmacol. Pharm. 2013 4 3 17 31 10.4236/pp.2013.43A003
    [Google Scholar]
  51. Hossain R. Quispe C. Herrera-Bravo J. Islam M.S. Sarkar C. Islam M.T. Martorell M. Cruz-Martins N. Al-Harrasi A. Al-Rawahi A. Sharifi-Rad J. Ibrayeva M. Daştan S.D. Alshehri M.M. Calina D. Cho W.C. Lasia spinosa chemical composition and therapeutic potential: A literature-based review. Oxid. Med. Cell. Longev. 2021 2021 1 1602437 10.1155/2021/1602437 34992714
    [Google Scholar]
  52. Sharifi-Rad J. Quispe C. Bouyahya A. El Menyiy N. El Omari N. Shahinozzaman M. Ara Haque Ovey M. Koirala N. Panthi M. Ertani A. Nicola S. Lapava N. Herrera-Bravo J. Salazar L.A. Changan S. Kumar M. Calina D. Ethnobotany, phytochemistry, biological activities, and health-promoting effects of the genus Bulbophyllum. Evid. Based Complement. Alternat. Med. 2022 2022 1 1 15 10.1155/2022/6727609 35295925
    [Google Scholar]
  53. Sharifi-Rad J. Quispe C. Kumar M. Akram M. Amin M. Iqbal M. Koirala N. Sytar O. Kregiel D. Nicola S. Ertani A. Victoriano M. Khosravi-Dehaghi N. Martorell M. Alshehri M.M. Butnariu M. Pentea M. Rotariu L.S. Calina D. Cruz-Martins N. Cho W.C. Hyssopus essential oil: An update of its phytochemistry, biological activities, and safety profile. Oxid. Med. Cell. Longev. 2022 2022 1 8442734 10.1155/2022/8442734 35069979
    [Google Scholar]
  54. Salehi B. Sharifi-Rad J. Capanoglu E. Adrar N. Catalkaya G. Shaheen S. Jaffer M. Giri L. Suyal R. Jugran A.K. Calina D. Oana Docea A. Kamiloglu S. Kregiel D. Antolak H. Pawlikowska E. Sen S. Acharya K. Bashiry M. Selamoglu Z. Martorell M. Sharopov F. Martins N. Namiesnik J. Cho W.C. Cucurbita plants: From farm to industry. Appl. Sci. 2019 9 16 3387 10.3390/app9163387
    [Google Scholar]
  55. Jain D. Chaudhary P. Varshney N. Bin Razzak K.S. Verma D. Khan Zahra T.R. Janmeda P. Sharifi-Rad J. Daştan S.D. Mahmud S. Docea A.O. Calina D. Tobacco smoking and liver cancer risk: Potential avenues for carcinogenesis. J. Oncol. 2021 2021 1 1 11 10.1155/2021/5905357 34925509
    [Google Scholar]
  56. Koklesova L. Liskova A. Samec M. Qaradakhi T. Zulli A. Smejkal K. Kajo K. Jakubikova J. Behzadi P. Pec M. Zubor P. Biringer K. Kwon T.K. Büsselberg D. Sarria G.R. Giordano F.A. Golubnitschaja O. Kubatka P. Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J. 2020 11 2 261 287 10.1007/s13167‑020‑00210‑5 32547652
    [Google Scholar]
  57. Habli Z. Toumieh G. Fatfat M. Rahal O. Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017 22 2 250 10.3390/molecules22020250 28208712
    [Google Scholar]
  58. Maher T. Ahmad Raus R. Daddiouaissa D. Ahmad F. Adzhar N.S. Latif E.S. Abdulhafiz F. Mohammed A. Medicinal plants with anti-leukemic effects: A review. Molecules 2021 26 9 2741 10.3390/molecules26092741 34066963
    [Google Scholar]
  59. Yakhni M. Briat A. El Guerrab A. Furtado L. Kwiatkowski F. Miot-Noirault E. Cachin F. Penault-Llorca F. Radosevic-Robin N. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am. J. Cancer Res. 2019 9 5 1043 1060 31218111
    [Google Scholar]
  60. Xu B. Ding J. Chen K.X. Miao Z.H. Huang H. Liu H. Luo X.M. Advances in cancer chemotherapeutic drug research in China. Recent Advances in Cancer Research and Therapy Amsterdam, Netherlands Elsevier 2012 287 10.1016/B978‑0‑12‑397833‑2.00012‑1
    [Google Scholar]
  61. Takemura Y. Ohnuma T. Chou T.C. Okano T. Holland J. Biologic and pharmacologic effects of harringtonine on human leukemia-lymphoma cells. Cancer Chemother. Pharmacol. 1985 14 3 206 210 10.1007/BF00258117 3995683
    [Google Scholar]
  62. Martino E. Casamassima G. Castiglione S. Cellupica E. Pantalone S. Papagni F. Rui M. Siciliano A.M. Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018 28 17 2816 2826 10.1016/j.bmcl.2018.06.044 30122223
    [Google Scholar]
  63. Vilpo J.A. Koski T. Vilpo L.M. Selective toxicity of vincristine against chronic lymphocytic leukemia cells in vitro. Eur. J. Haematol. 2000 65 6 370 378 10.1034/j.1600‑0609.2000.065006370.x 11168494
    [Google Scholar]
  64. Varsha K. Sharma A. Kaur A. Madan J. Pandey R.S. Jain U.K. Chandra R. Natural plant‑derived anticancer drugs nanotherapeutics: A review on preclinical to clinical success. Nanostructures for Cancer Therapy. Amsterdam, Netherlands Elsevier. 2017 775 809 10.1016/B978‑0‑323‑46144‑3.00028‑3
    [Google Scholar]
  65. Wall M.E. Wani M.C. Cook C.E. Palmer K.H. McPhail A.T. Sim G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. J. Am. Chem. Soc. 1966 88 16 3888 3890 10.1021/ja00968a057
    [Google Scholar]
  66. Liu Y.Q. Li W.Q. Morris-Natschke S.L. Qian K. Yang L. Zhu G.X. Wu X.B. Chen A.L. Zhang S.Y. Nan X. Lee K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev. 2015 35 4 753 789 10.1002/med.21342 25808858
    [Google Scholar]
  67. Miller H.I. The story of taxol: Nature and politics in the pursuit of an anti-cancer drug. Nat. Med. 2001 7 2 148 10.1038/84570
    [Google Scholar]
  68. Schiff P.B. Fant J. Horwitz S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979 277 5698 665 667 10.1038/277665a0 423966
    [Google Scholar]
  69. Chesnoff S. The use of Taxol as a trademark. Nature 1995 374 6519 208 10.1038/374208c0 7885437
    [Google Scholar]
  70. Kingston D.G.I. Taxol, a molecule for all seasons. Chem. Commun. 2001 10 10 867 880 10.1039/b100070p
    [Google Scholar]
  71. Endo A. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Antibiot. (Tokyo) 1980 33 3 334 336 10.7164/antibiotics.33.334 7380744
    [Google Scholar]
  72. Harmon A.D. Weiss U. Silverton J.V. The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya)(Meliaceae). Tetrahedron Lett. 1979 20 8 721 724 10.1016/S0040‑4039(01)93556‑7
    [Google Scholar]
  73. Cragg G.M. Kingston D.G. Newman D.J. Anticancer agents from natural products. Boca Raton, Florida CRC Press 2012 1 767
    [Google Scholar]
  74. Filgueira de Azevedo W. Jr Canduri F. Freitas da Silveira N.J. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem. Biophys. Res. Commun. 2002 293 1 566 571 10.1016/S0006‑291X(02)00266‑8 12054639
    [Google Scholar]
  75. Singh B.P. Vij S. Hati S. Functional significance of bioactive peptides derived from soybean. Peptides 2014 54 171 179 10.1016/j.peptides.2014.01.022 24508378
    [Google Scholar]
  76. Fields K. Falla T.J. Rodan K. Bush L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009 8 1 8 13 10.1111/j.1473‑2165.2009.00416.x 19250159
    [Google Scholar]
  77. Koskimaki J.E. Karagiannis E.D. Rosca E.V. Vesuna F. Winnard P.T. Jr Raman V. Bhujwalla Z.M. Popel A.S. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 2009 11 12 1285 IN2 10.1593/neo.09620 20019836
    [Google Scholar]
  78. Segura-Campos M. Chel-Guerrero L. Betancur-Ancona D. Hernandez-Escalante V.M. Bioavailability of bioactive peptides. Food Rev. Int. 2011 27 3 213 226 10.1080/87559129.2011.563395
    [Google Scholar]
  79. Wang X. Yu H. Xing R. Li P. Characterization, preparation, and purification of marine bioactive peptides. BioMed Res. Int. 2017 2017 1 1 16 10.1155/2017/9746720 28761878
    [Google Scholar]
  80. Zhang Y. Wang C. Zhang W. Li X. Bioactive peptides for anticancer therapies. Biomater. Transl. 2023 4 1 5 17 37206303
    [Google Scholar]
  81. Chiangjong W. Panachan J. Vanichapol T. Pongsakul N. Pongphitcha P. Siriboonpiputtana T. Lerksuthirat T. Nuntnarumit P. Supapannachart S. Srisomsap C. Svasti J. Hongeng S. Chutipongtanate S. HMP-S7 is a novel anti-leukemic peptide discovered from human milk. Biomedicines 2021 9 8 981 10.3390/biomedicines9080981 34440185
    [Google Scholar]
  82. Li Y. Yu J. Research progress in structure-activity relationship of bioactive peptides. J. Med. Food 2015 18 2 147 156 10.1089/jmf.2014.0028 25137594
    [Google Scholar]
  83. Sánchez A. Vázquez A. Bioactive peptides: A review. Food Qual. Saf. 2017 1 1 29 46 10.1093/fqs/fyx006
    [Google Scholar]
  84. Hilchie A.L. Hoskin D.W. Power Coombs M.R. Anticancer activities of natural and synthetic peptides. Adv Exp Med Biol 2019 1117 131 147 10.1007/978‑981‑13‑3588‑4_9 30980357
    [Google Scholar]
  85. Soon T.N. Chia A.Y.Y. Yap W.H. Tang Y.Q. Anticancer mechanisms of bioactive peptides. Protein Pept. Lett. 2020 27 9 823 830 10.2174/0929866527666200409102747 32271692
    [Google Scholar]
  86. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  87. Blanco-Míguez A. Gutiérrez-Jácome A. Pérez-Pérez M. Pérez-Rodríguez G. Catalán-García S. Fdez-Riverola F. Lourenço A. Sánchez B. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Sci. 2016 25 6 1084 1095 10.1002/pro.2927 27010507
    [Google Scholar]
  88. Lee H.T. Lee C.C. Yang J.R. Lai J.Z.C. Chang K.Y. A large-scale structural classification of antimicrobial peptides. BioMed Res. Int. 2015 2015 1 1 6 10.1155/2015/475062 26000295
    [Google Scholar]
  89. Libério M.S. Joanitti G.A. Fontes W. Castro M.S. Anticancer peptides and proteins: A panoramic view. Protein Pept. Lett. 2013 20 4 380 391 23016586
    [Google Scholar]
  90. Rothbard J.B. Jessop T.C. Lewis R.S. Murray B.A. Wender P.A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 2004 126 31 9506 9507 10.1021/ja0482536 15291531
    [Google Scholar]
  91. Guidotti G. Brambilla L. Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci. 2017 38 4 406 424 10.1016/j.tips.2017.01.003 28209404
    [Google Scholar]
  92. Oelkrug C. Hartke M. Schubert A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res. 2015 35 2 635 643 25667440
    [Google Scholar]
  93. Gabernet G. Müller A.T. Hiss J.A. Schneider G. Membranolytic anticancer peptides. MedChemComm 2016 7 12 2232 2245 10.1039/C6MD00376A
    [Google Scholar]
  94. Huang Y. Wang X. Wang H. Liu Y. Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther. 2011 10 3 416 426 10.1158/1535‑7163.MCT‑10‑0811 21252288
    [Google Scholar]
  95. Lehrer R.I. Lichtenstein A.K. Ganz T. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 1993 11 1 105 128 10.1146/annurev.iy.11.040193.000541 8476558
    [Google Scholar]
  96. Kumar P. Kizhakkedathu J. Straus S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018 8 1 4 10.3390/biom8010004 29351202
    [Google Scholar]
  97. Veldhuizen E.J.A. Schneider V.A.F. Agustiandari H. van Dijk A. Tjeerdsma-van Bokhoven J.L.M. Bikker F.J. Haagsman H.P. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One 2014 9 4 95939 10.1371/journal.pone.0095939 24755622
    [Google Scholar]
  98. Ramalho S.D. Pinto M.E. Ferreira D. Bolzani V.S. Biologically active orbitides from the Euphorbiaceae family. Planta Med 2018 84 9-10 558 567 10.1055/s‑0043‑122604 29169187
    [Google Scholar]
  99. Prasad S. Phromnoi K. Yadav V. Chaturvedi M. Aggarwal B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med. 2010 76 11 1044 1063 10.1055/s‑0030‑1250111 20635307
    [Google Scholar]
  100. Pavlicevic M. Marmiroli N. Maestri E. Immunomodulatory peptides—A promising source for novel functional food production and drug discovery. Peptides 2022 148 170696 10.1016/j.peptides.2021.170696 34856531
    [Google Scholar]
  101. Gattringer J. Gruber C.W. Hellinger R. Peptide modulators of cell migration: Overview, applications and future development. Drug Discov. Today 2023 28 5 103554 10.1016/j.drudis.2023.103554 36921670
    [Google Scholar]
  102. Oren Z. Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 1998 47 6 451 463 10.1002/(SICI)1097‑0282(1998)47:6<451::AID‑BIP4>3.0.CO;2‑F 10333737
    [Google Scholar]
  103. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr. 1999 1462 1-2 55 70 10.1016/S0005‑2736(99)00200‑X 10590302
    [Google Scholar]
  104. Matsuzaki K. Murase O. Fujii N. Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996 35 35 11361 11368 10.1021/bi960016v 8784191
    [Google Scholar]
  105. Neeralakeri B.A. Kulkarni B.D. Comprehensive review on anticancer mechanism of bioactive peptides. Res. J. Biotechnol. 2023 18 2 137 143 10.25303/1802rjbt1370143
    [Google Scholar]
  106. Chinnadurai R.K. Khan N. Meghwanshi G.K. Ponne S. Althobiti M. Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed. Pharmacother. 2023 164 114996 10.1016/j.biopha.2023.114996 37311281
    [Google Scholar]
  107. Rasaratnam K. Nantasenamat C. Phaonakrop N. Roytrakul S. Tanyong D. A novel peptide isolated from garlic shows anticancer effect against leukemic cell lines via interaction with Bcl-2 family proteins. Chem. Biol. Drug Des. 2021 97 5 1017 1028 10.1111/cbdd.13831 33595876
    [Google Scholar]
  108. Deesrisak K. Yingchutrakul Y. Krobthong S. Roytrakul S. Chatupheeraphat C. Subkorn P. Anurathapan U. Tanyong D. Bioactive peptide isolated from sesame seeds inhibits cell proliferation and induces apoptosis and autophagy in leukemic cells. EXCLI J. 2021 20 709 721 33907539
    [Google Scholar]
  109. Lucas D.M. Edwards R.B. Lozanski G. West D.A. Shin J.D. Vargo M.A. Davis M.E. Rozewski D.M. Johnson A.J. Su B.N. Goettl V.M. Heerema N.A. Lin T.S. Lehman A. Zhang X. Jarjoura D. Newman D.J. Byrd J.C. Kinghorn A.D. Grever M.R. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 2009 113 19 4656 4666 10.1182/blood‑2008‑09‑175430 19190247
    [Google Scholar]
  110. El-Garawani I.M. Abd El-Gaber A.S. Algamdi N.A. Saeed A. Zhao C. Khattab O.M. AlAjmi M.F. Guo Z. Khalifa S.A.M. El-Seedi H.R. In vitro induction of apoptosis in isolated acute myeloid leukemia cells: The role of Anastatica hierochuntica methanolic extract. Metabolites 2022 12 9 878 10.3390/metabo12090878 36144283
    [Google Scholar]
  111. Ma X. Wu C. Wang W. Li X. Peptides from plants: A new source for antitumor drug research. Asian J. Tradit. Med. 2006 1 2 85 90
    [Google Scholar]
  112. Galvez A.F. de Lumen B.O. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat. Biotechnol. 1999 17 5 495 500 10.1038/8676 10331812
    [Google Scholar]
  113. Odani S. Koide T. Ono T. Amino acid sequence of a soybean (Glycine max) seed polypeptide having a poly(L-aspartic acid) structure. J. Biol. Chem. 1987 262 22 10502 10505 10.1016/S0021‑9258(18)60989‑5 3611081
    [Google Scholar]
  114. Chang J.C. Cancer stem cells. Medicine (Baltimore) 2016 95 1S Suppl. 1 S20 S25 10.1097/MD.0000000000004766 27611935
    [Google Scholar]
  115. Matsuki K. Sasho T. Nakagawa K. Tahara M. Sugioka K. Ochiai N. Ogino S. Wada Y. Moriya H. RGD peptide-induced cell death of chondrocytes and synovial cells. J. Orthop. Sci. 2008 13 6 524 532 10.1007/s00776‑008‑1281‑z 19089540
    [Google Scholar]
  116. Gonzalez de Mejia E. Wang W. Dia V.P. Lunasin, with an arginine–glycine–aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Mol. Nutr. Food Res. 2010 54 3 406 414 10.1002/mnfr.200900073 19937853
    [Google Scholar]
  117. Anuradha C.D. Kanno S. Hirano S. RGD peptide-induced apoptosis in human leukemia HL-60 cells requires caspase-3 activation. Cell Biol. Toxicol. 2000 16 5 275 283 10.1023/A:1026758429238 11201051
    [Google Scholar]
  118. Charoensedtasin K. Norkaew C. Naksawat M. Kheansaard W. Roytrakul S. Tanyong D. Anticancer effects of pomegranate-derived peptide PG2 on CDK2 and miRNA-339-5p-mediated apoptosis via extracellular vesicles in acute leukemia. Sci. Rep. 2024 14 1 27367 10.1038/s41598‑024‑78082‑2 39521813
    [Google Scholar]
  119. Wong J.H. Ng T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 2005 26 7 1120 1126 10.1016/j.peptides.2005.01.003 15949629
    [Google Scholar]
  120. Wong J.H. Ng T.B. Limenin is a defensin‑like peptide from shelf beans that performs multiple exploitable activities. J. Pept. Sci. 2006 12 5 341 346
    [Google Scholar]
  121. Ngai P.H.K. Ng T.B. Coccinin, an antifungal peptide with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from large scarlet runner beans. Peptides 2004 25 12 2063 2068 10.1016/j.peptides.2004.08.003 15572193
    [Google Scholar]
  122. Wong J.H. Ng T.B. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int. J. Biochem. Cell Biol. 2005 37 8 1626 1632 10.1016/j.biocel.2005.02.022 15896669
    [Google Scholar]
  123. Leader B. Baca Q.J. Golan D.E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008 7 1 21 39 10.1038/nrd2399 18097458
    [Google Scholar]
  124. Mahajan A. Rawat A.S. Bhatt N. Chauhan M.K. Structural modification of proteins and peptides. Indian J. Pharma. Educ. Res. 2014 48 3 34 47 10.5530/ijper.48.3.6
    [Google Scholar]
  125. Reddy N. Yang Y. Potential of plant proteins for medical applications. Trends Biotechnol. 2011 29 10 490 498 10.1016/j.tibtech.2011.05.003 21665302
    [Google Scholar]
  126. O’Keefe B.R. Biologically active proteins from natural product extracts. J. Nat. Prod. 2001 64 10 1373 1381 10.1021/np0103362 11678673
    [Google Scholar]
  127. Tang S.S. Prodhan Z.H. Biswas S.K. Le C.F. Sekaran S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018 154 94 105 10.1016/j.phytochem.2018.07.002 30031244
    [Google Scholar]
  128. Chandrashekar P.M. Venkatesh Y.P. Identification of the protein components displaying immunomodulatory activity in aged garlic extract. J. Ethnopharmacol. 2009 124 3 384 390 10.1016/j.jep.2009.05.030 19505565
    [Google Scholar]
  129. Daneshmandi S. Hajimoradi M. Ahmadabad H.N. Hassan Z.M. Roudbary M. Ghazanfari T. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages. Immunopharmacol. Immunotoxicol. 2011 33 1 21 27 10.3109/08923971003690041 20331351
    [Google Scholar]
  130. Chidike Ezeorba T.P. Ezugwu A.L. Chukwuma I.F. Anaduaka E.G. Udenigwe C.C. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food Chem. 2024 435 137632 10.1016/j.foodchem.2023.137632 37801762
    [Google Scholar]
  131. Oza V.P. Parmar P.P. Kumar S. Subramanian R.B. Anticancer properties of highly purified L-asparaginase from Withania somnifera L. against acute lymphoblastic leukemia. Appl. Biochem. Biotechnol. 2010 160 6 1833 1840 10.1007/s12010‑009‑8667‑z 19448978
    [Google Scholar]
  132. Zhang D. Halaweish F.T. Isolation and characterization of ribosome-inactivating proteins from Cucurbitaceae. Chem. Biodivers. 2007 4 3 431 442 10.1002/cbdv.200790035 17372945
    [Google Scholar]
  133. van Meer G. Voelker D.R. Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008 9 2 112 124 10.1038/nrm2330 18216768
    [Google Scholar]
  134. Ooi L.S.M. Tian L. Su M. Ho W.S. Sun S.S.M. Chung H.Y. Wong H.N.C. Ooi V.E.C. Isolation, characterization, molecular cloning and modeling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta. Peptides 2008 29 12 2101 2109 10.1016/j.peptides.2008.08.020 18824058
    [Google Scholar]
  135. Mishra A. Behura A. Mawatwal S. Kumar A. Naik L. Mohanty S.S. Manna D. Dokania P. Mishra A. Patra S.K. Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019 134 110827 10.1016/j.fct.2019.110827 31542433
    [Google Scholar]
  136. Reyes-Montaño E.A. Vega-Castro N.A. Chapter 2 Plant lectins with insecticidal and insectistatic activities. Insect. Agricult. Toxicol. 2018 17 41 10.5772/intechopen.74962
    [Google Scholar]
  137. Mazalovska M. Kouokam J.C. Plant-derived lectins as potential cancer therapeutics and diagnostic tools. BioMed Res. Int. 2020 2020 1 1631394 10.1155/2020/1631394 32509848
    [Google Scholar]
  138. Osman M.E.M. Konozy E.H.E. Insight into erythrina lectins: Properties, structure and proposed physiological significance. Open Bioactive Compd. J. 2017 5 1 57 71 10.2174/1874847301705010057
    [Google Scholar]
  139. Awadallah A.K.E. Osman M.E.M. Ibrahim M.A. Bernardes E.S. Dias-Baruffi M. Konozy E.H.E. Isolation and partial characterization of 3 nontoxic d -galactose–specific isolectins from seeds of Momordica balsamina. J. Mol. Recognit. 2017 30 2 2582 10.1002/jmr.2582 27774692
    [Google Scholar]
  140. Bonnardel F. Bioinformatics study of lectins: New classification and prediction in genomes: Université Grenoble Alpes. Switzerland Université de Genève 2021 1 257
    [Google Scholar]
  141. Konozy E.H.E. Osman M.E.M. Plant lectin: A promising future anti-tumor drug. Biochimie 2022 202 136 145 10.1016/j.biochi.2022.08.002 35952948
    [Google Scholar]
  142. Bhutia S.K. Panda P.K. Sinha N. Praharaj P.P. Bhol C.S. Panigrahi D.P. Mahapatra K.K. Saha S. Patra S. Mishra S.R. Behera B.P. Patil S. Maiti T.K. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019 144 8 18 10.1016/j.phrs.2019.04.001 30951812
    [Google Scholar]
  143. Nonis S.G. Haywood J. Schmidberger J.W. Mackie E.R.R. Soares da Costa T.P. Bond C.S. Mylne J.S. Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase. Plant Cell 2021 33 8 2794 2811 10.1093/plcell/koab130 34235541
    [Google Scholar]
  144. Jiang Q.L. Zhang S. Tian M. Zhang S.Y. Xie T. Chen D.Y. Chen Y.J. He J. Liu J. Ouyang L. Jiang X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 2015 48 1 17 28 10.1111/cpr.12155 25488051
    [Google Scholar]
  145. Cavada B.S. Pinto-Junior V.R. Osterne V.J.S. Nascimento K.S. ConA-like lectins: High similarity proteins as models to study structure/biological activities relationships. Int. J. Mol. Sci. 2018 20 1 30 10.3390/ijms20010030 30577614
    [Google Scholar]
  146. Cavada B.S. Osterne V.J.S. Lossio C.F. Pinto-Junior V.R. Oliveira M.V. Silva M.T.L. Leal R.B. Nascimento K.S. One century of ConA and 40 years of ConBr research: A structural review. Int. J. Biol. Macromol. 2019 134 901 911 10.1016/j.ijbiomac.2019.05.100 31108148
    [Google Scholar]
  147. Huldani H. Rashid A.I. Turaev K.N. Opulencia M.J.C. Abdelbasset W.K. Bokov D.O. Mustafa Y.F. Al-Gazally M.E. Hammid A.T. Kadhim M.M. Ahmadi S.H. Concanavalin A as a promising lectin-based anti-cancer agent: The molecular mechanisms and therapeutic potential. Cell Commun. Signal. 2022 20 1 167 10.1186/s12964‑022‑00972‑7 36289525
    [Google Scholar]
  148. Faheina-Martins G.V. da Silveira A.L. Cavalcanti B.C. Ramos M.V. Moraes M.O. Pessoa C. Araújo D.A.M. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol. In Vitro 2012 26 7 1161 1169 10.1016/j.tiv.2012.06.017 22776218
    [Google Scholar]
  149. Karami Z. Peighambardoust S.H. Hesari J. Akbari-Adergani B. Andreu D. Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Biosci. 2019 32 100450 10.1016/j.fbio.2019.100450
    [Google Scholar]
  150. Li M. Zhang Y. Xia S. Ding X. Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. J. Funct. Foods 2019 62 103557 10.1016/j.jff.2019.103557
    [Google Scholar]
  151. Chen Z. Wang J. Liu W. Chen H. Physicochemical characterization, antioxidant and anticancer activities of proteins from four legume species. J. Food Sci. Technol. 2017 54 4 964 972 10.1007/s13197‑016‑2390‑x 28303047
    [Google Scholar]
  152. Zheng Q. Qiu D. Liu X. Zhang L. Cai S. Zhang X. Antiproliferative effect of Dendrobium catenatum Lindley polypeptides against human liver, gastric and breast cancer cell lines. Food Funct. 2015 6 5 1489 1495 10.1039/C5FO00060B 25811957
    [Google Scholar]
  153. Kusumah J. Aguado Preciado J. Yuan J. Gonzalez de Mejia E. Lunasin, soluble protein concentration and profile in Glycine soja compared to Glycine max, bioaccessibility and peptides bioactivity. Food Biosci. 2025 68 106370 10.1016/j.fbio.2025.106370
    [Google Scholar]
  154. Alves de Souza S.M. Hernández-Ledesma B. de Souza T.L.F. Lunasin as a promising plant-derived peptide for cancer therapy. Int. J. Mol. Sci. 2022 23 17 9548 10.3390/ijms23179548 36076946
    [Google Scholar]
  155. Bahmani F. Azadpour S. Pourbagheri-Sigaroodi A. Bashash D. Plant-derived natural compounds as promising anticancer agents in hematological malignancies. Iran. J. Blood Cancer 2022 14 3 57 70 10.58209/ijbc.14.3.57
    [Google Scholar]
  156. Huang L.H. Yan Q.J. Kopparapu N.K. Jiang Z.Q. Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif. 2012 45 1 15 21 10.1111/j.1365‑2184.2011.00800.x 22172162
    [Google Scholar]
  157. Chatupheeraphat C. Roytrakul S. Phaonakrop N. Deesrisak K. Krobthong S. Anurathapan U. Tanyong D. A novel peptide derived from ginger induces apoptosis through the modulation of p53, BAX, and BCL2 expression in leukemic cell lines. Planta Med. 2021 87 7 560 569 10.1055/a‑1408‑5629 33757145
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665395842250814085828
Loading
/content/journals/ppl/10.2174/0109298665395842250814085828
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test