Skip to content
2000
image of Antimicrobial Activity of a Defensin-Rich Fraction from Capsicum chinense Fruits: Insights for Biotechnological Applications against Fungal Infections

Abstract

Background

The increasing resistance of fungal pathogens to conventional antifungal treatments has led to a global rise in fungal infections, affecting human health ( spp.) and agricultural productivity ( and spp.). Antimicrobial peptides (AMPs), such as defensins, have gained attention for their potential in controlling these infections due to their broad-spectrum activity.

Objectives

The aim of this study was to partially purify and characterize the antifungal activity of a defensin-enriched fraction (F3) from fruits. Specifically, we sought to evaluate its efficacy against pathogenic fungi and yeasts, and to assess the relative abundance of defensins in the fraction.

Methods

The F3 fraction was obtained using ion exchange and molecular exclusion chromatography. Reverse-phase chromatography (HPLC) was then employed for further purification. The antifungal activity of F3 was tested against , , and species. Mass spectrometry was used to identify and characterize the defensin (Def3) within the fraction. The presence of the defensin relative to other components was inferred from electrophoretic profiles and peptide analysis.

Results

The F3 fraction exhibited significant antifungal activity, with growth inhibition of of 51% and 60.9% at concentrations of 100 and 200 μg mL-1, respectively. The fraction also inhibited the growth of several species, notably (93.8%) and (79.6%) at 100 μg mL-1. Cell viability analysis indicated a fungistatic effect. Fluorescence microscopy assays showed that F3 induced membrane permeabilization in and , and increased ROS production in and . The defensin-rich H8 fraction, containing a 6.5 kDa protein (Def3), was identified as a major component mass spectrometry.

Discussion

The ongoing development of resistance in fungal strains, particularly Candida species, against traditional antibiotics and antifungals has turned into a significant medical concern and has increased the need for new treatment options.

Conclusion

These results suggest that the F3 fraction, particularly the defensin Def3, has potential as an antifungal agent for biotechnological and therapeutic applications. However, further studies are needed to quantify the contribution of Def3 relative to other components in the fraction and to fully isolate the defensin for in-depth analysis.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665377738250626233111
2025-07-16
2025-10-02
Loading full text...

Full text loading...

References

  1. Pennisi E. Armed and dangerous. Science 2010 327 5967 804 805 10.1126/science.327.5967.804 20150482
    [Google Scholar]
  2. Fisher M.C. Henk D.A. Briggs C.J. Brownstein J.S. Madoff L.C. McCraw S.L. Gurr S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012 484 7393 186 194 10.1038/nature10947 22498624
    [Google Scholar]
  3. Parisi K. Shafee T.M.A. Quimbar P. van der Weerden N.L. Bleackley M.R. Anderson M.A. The evolution, function and mechanisms of action for plant defensins. Semin. Cell Dev. Biol. 2019 88 107 118 10.1016/j.semcdb.2018.02.004 29432955
    [Google Scholar]
  4. GAFFI Improving outcomes for patients with fungal infections across the world a road map for the next decade. Geneva, Switzerland Gaffi 2015
    [Google Scholar]
  5. Cortegiani A. Misseri G. Chowdhary A. What’s new on emerging resistant Candida species. Intensive Care Med. 2019 45 4 512 515 10.1007/s00134‑018‑5363‑x 30191295
    [Google Scholar]
  6. Lima P.G. Souza P.F.N. Freitas C.D.T. Oliveira J.T.A. Dias L.P. Neto J.X.S. Vasconcelos I.M. Lopes J.L.S. Sousa D.O.B. Anticandidal activity of synthetic peptides: Mechanism of action revealed by scanning electron and fluorescence microscopies and synergism effect with nystatin. J. Pept. Sci. 2020 26 6 3249 10.1002/psc.3249 32189445
    [Google Scholar]
  7. Shuping D.S.S. Eloff J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 2017 14 4 120 127 10.21010/ajtcam.v14i4.14 28638874
    [Google Scholar]
  8. da Cunha N.B. Cobacho N.B. Viana J.F.C. Lima L.A. Sampaio K.B.O. Dohms S.S.M. Ferreira A.C.R. de la Fuente-Núñez C. Costa F.F. Franco O.L. Dias S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today 2017 22 2 234 248 10.1016/j.drudis.2016.10.017 27890668
    [Google Scholar]
  9. Seyfi R. Kahaki F.A. Ebrahimi T. Montazersaheb S. Eyvazi S. Babaeipour V. Tarhriz V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther. 2020 26 3 1451 1463 10.1007/s10989‑019‑09946‑9
    [Google Scholar]
  10. Bleackley M.R. Vasa S. Harvey P.J. Shafee T.M.A. Kerenga B.K. Soares da Costa T.P. Craik D.J. Lowe R.G.T. Anderson M.A. Histidine-rich defensins from the Solanaceae and Brasicaceae are antifungal and metal binding proteins. J. Fungi. 2020 6 3 145 10.3390/jof6030145 32847065
    [Google Scholar]
  11. Shafee T.M.A. Lay F.T. Phan T.K. Anderson M.A. Hulett M.D. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 2017 74 4 663 682 10.1007/s00018‑016‑2344‑5 27557668
    [Google Scholar]
  12. de Oliveira Carvalho A. Moreira Gomes V. Plant defensins and defensin-like peptides - biological activities and biotechnological applications. Curr. Pharm. Des. 2011 17 38 4270 4293 10.2174/138161211798999447 22204427
    [Google Scholar]
  13. Games P.D. dos Santos I.S. Mello É.O. Diz M.S.S. Carvalho A.O. de Souza-Filho G.A. Da Cunha M. Vasconcelos I.M. Ferreira B.S. Gomes V.M. Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 2008 29 12 2090 2100 10.1016/j.peptides.2008.08.008 18786582
    [Google Scholar]
  14. Skalska J. Andrade V.M. Cena G.L. Harvey P.J. Gaspar D. Mello É.O. Henriques S.T. Valle J. Gomes V.M. Conceição K. Castanho M.A.R.B. Andreu D. Synthesis, structure, and activity of the antifungal plant defensin PvD1. J. Med. Chem. 2020 63 17 9391 9402 10.1021/acs.jmedchem.0c00543 32787086
    [Google Scholar]
  15. Manzanares P. Giner-Llorca M. Marcos J.F. Garrigues S. Fighting pathogenic yeasts with plant defensins and anti-fungal proteins from fungi. Appl. Microbiol. Biotechnol. 2024 108 1 277 10.1007/s00253‑024‑13118‑1 38536496
    [Google Scholar]
  16. Li S. Mu R. Guo X. Defensins regulate cell cycle: Insights of defensins on cellular proliferation and division. Life Sci. 2024 349 122740 10.1016/j.lfs.2024.122740 38777302
    [Google Scholar]
  17. Aguieiras M.C.L. Resende L.M. Souza T.A.M. Nagano C.S. Chaves R.P. Taveira G.B. Carvalho A.O. Rodrigues R. Gomes V.M. Mello É.O. Potent anti-Candida fraction isolated from Capsicum chinense fruits contains an antimicrobial peptide that is similar to plant defensin and is able to inhibit the activity of different α-amylase enzymes. Probiotics Antimicrob. Proteins 2021 13 3 862 872 10.1007/s12602‑020‑09739‑3 33454869
    [Google Scholar]
  18. Broekaert W.F. Terras F.R.G. Cammue B.P.A. Vanderleyden J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 1990 69 1-2 55 59 10.1111/j.1574‑6968.1990.tb04174.x
    [Google Scholar]
  19. Taveira G.B. Carvalho A.O. Rodrigues R. Trindade F.G. Da Cunha M. Gomes V.M. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol. 2016 16 1 12 10.1186/s12866‑016‑0626‑6 26819228
    [Google Scholar]
  20. Thevissen K. Terras F.R.G. Broekaert W.F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 1999 65 12 5451 5458 10.1128/AEM.65.12.5451‑5458.1999 10584003
    [Google Scholar]
  21. Mello E.O. Ribeiro S.F.F. Carvalho A.O. Santos I.S. Da Cunha M. Santa-Catarina C. Gomes V.M. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 2011 62 4 1209 1217 10.1007/s00284‑010‑9847‑3 21170711
    [Google Scholar]
  22. Taveira G.B. Da Motta O.V. Machado O.L.T. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolym. Pept. Sci. 2014 30 39 10.1002/bip.22351
    [Google Scholar]
  23. Smith P.K. Krohn R.I. Hermanson G.T. Mallia A.K. Gartner F.H. Provenzano M.D. Fujimoto E.K. Goeke N.M. Olson B.J. Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985 150 1 76 85 10.1016/0003‑2697(85)90442‑7 3843705
    [Google Scholar]
  24. Schägger H. von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987 166 2 368 379 10.1016/0003‑2697(87)90587‑2 2449095
    [Google Scholar]
  25. Shevchenko A. Tomas H. Havli J. Olsen J.V. Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006 1 6 2856 2860 10.1038/nprot.2006.468 17406544
    [Google Scholar]
  26. Carneiro R.F. de Melo A.A. de Almeida A.S. Moura R.M. Chaves R.P. de Sousa B.L. do Nascimento K.S. Sampaio S.S. Lima J.P.M.S. Cavada B.S. Nagano C.S. Sampaio A.H. H-3, a new lectin from the marine sponge Haliclona caerulea: Purification and mass spectrometric characterization. Int. J. Biochem. Cell Biol. 2013 45 12 2864 2873 10.1016/j.biocel.2013.10.005 24144578
    [Google Scholar]
  27. Dias G.B. Gomes V.M. Pereira U.Z. Ribeiro S.F.F. Carvalho A.O. Rodrigues R. Machado O.L.T. Fernandes K.V.S. Ferreira A.T.S. Perales J. Da Cunha M. Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. Seeds. Protein J. 2013 32 1 15 26 10.1007/s10930‑012‑9456‑z 23117889
    [Google Scholar]
  28. Cherene M.B. Taveira G.B. Almeida-Silva F. Structural and biochemical characterization of three antimicrobial peptides from Capsicum annuum L. var. annuum leaves for anti - Candida use. Probiotics Antimicrob. Proteins 2023 16 4 1270 1287 10.1007/s12602‑023‑10112‑3 37365421
    [Google Scholar]
  29. Diz M.S. Carvalho A.O. Ribeiro S.F.F. Da Cunha M. Beltramini L. Rodrigues R. Nascimento V.V. Machado O.L.T. Gomes V.M. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper ( Capsicum annuum ) seeds with novel α -amylase inhibitory properties. Physiol. Plant. 2011 142 3 233 246 10.1111/j.1399‑3054.2011.01464.x 21382036
    [Google Scholar]
  30. Zottich U. Da M. Carvalho A.O. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta 2011 1810 4 375 383 10.1016/j.bbagen.2010.12.002
    [Google Scholar]
  31. da Silva Gebara R. Taveira G.B. de Azevedo dos Santos L. Calixto S.D. Simão T.L.B.V. Lassounskaia E. Muzitano M.F. Teixeira-Ferreira A. Perales J. Rodrigues R. de Oliveira Carvalho A. Gomes V.M. Identification and characterization of two defensins from Capsicum annuum fruits that exhibit antimicrobial activity. Probiotics Antimicrob. Proteins 2020 12 3 1253 1265 10.1007/s12602‑020‑09647‑6 32221795
    [Google Scholar]
  32. Osborn R.W. De Samblanx G.W. Thevissen K. Goderis I. Torrekens S. Van Leuven F. Attenborough S. Rees S.B. Broekaert W.F. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 1995 368 2 257 262 10.1016/0014‑5793(95)00666‑W 7628617
    [Google Scholar]
  33. da Silva M.S. Gomes V.M. Taveira G.B. de Azevedo dos Santos L. Maracahipes Á.C. Rodrigues R. de Oliveira Carvalho A. Fernandes K.V.S. Oliveira A.E.A. Bifunctional inhibitors from capsicum chinense seeds with antimicrobial activity and specific mechanism of action against phytopathogenic fungi. Protein Pept. Lett. 2021 28 2 149 163 10.2174/0929866527666200617124221 32552632
    [Google Scholar]
  34. Resende L.M. de Oliveira Mello É. de Lima Aguieiras M.C. Nagano C.S. Chaves R.P. Taveira G.B. da Silva M.S. de Oliveira Carvalho A. Rodrigues R. Gomes V.M. inhibition of serine protease, α-amylase and growth of phytopathogenic fungi by antimicrobial peptides from Capsicum chinense fruits. Probiotics Antimicrob. Proteins 2023 15 3 502 515 10.1007/s12602‑021‑09865‑6 34671924
    [Google Scholar]
  35. Taveira G.B. Mello É.O. Carvalho A.O. Regente M. Pinedo M. de La Canal L. Rodrigues R. Gomes V.M. Antimicrobial activity and mechanism of action of a thionin-like peptide from Capsicum annuum fruits and combinatorial treatment with fluconazole against Fusarium solani. Biopolymers 2017 108 3 23008 10.1002/bip.23008 28073158
    [Google Scholar]
  36. dos Santos L.A. Taveira G.B. Ribeiro S.F.F. Pereira L.S. Carvalho A.O. Rodrigues R. Oliveira A.E.A. Machado O.L.T. Araújo J.S. Vasconcelos I.M. Gomes V.M. Purification and characterization of peptides from Capsicum annuum fruits which are α-amylase inhibitors and exhibit high antimicrobial activity against fungi of agronomic importance. Protein Expr. Purif. 2017 132 97 107 10.1016/j.pep.2017.01.013 28161544
    [Google Scholar]
  37. Tetorya M. Li H. Djami-Tchatchou A.T. Buchko G.W. Czymmek K.J. Shah D.M. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide. Mol. Plant Pathol. 2023 24 8 896 913 10.1111/mpp.13336 37036170
    [Google Scholar]
  38. Wang K. Dang W. Xie J. Zhu R. Sun M. Jia F. Zhao Y. An X. Qiu S. Li X. Ma Z. Yan W. Wang R. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochim. Biophys. Acta Biomembr. 2015 1848 10 2365 2373 10.1016/j.bbamem.2015.07.008 26209560
    [Google Scholar]
  39. van der Weerden N.L. Lay F.T. Anderson M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 2008 283 21 14445 14452 10.1074/jbc.M709867200 18339623
    [Google Scholar]
  40. Jenssen H. Hamill P. Hancock R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006 19 3 491 511 10.1128/CMR.00056‑05 16847082
    [Google Scholar]
  41. Ishaq N Bilal M Iqbal HMN Medicinal potentialities of plant defensins: A review with applied perspectives. Medicines 2019 6 1 29 10.3390/medicines6010029
    [Google Scholar]
  42. Oliveira J.T.A. Souza P.F.N. Vasconcelos I.M. Dias L.P. Martins T.F. Van Tilburg M.F. Guedes M.I.F. Sousa D.O.B. Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie 2019 157 10 21 10.1016/j.biochi.2018.10.016 30389515
    [Google Scholar]
  43. Garcia-Rubio R. de Oliveira H.C. Rivera J. Trevijano-Contador N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 2020 10 2993 10.3389/fmicb.2019.02993 31993032
    [Google Scholar]
  44. Bowman S.M. Free S.J. The structure and synthesis of the fungal cell wall. BioEssays 2006 28 8 799 808 10.1002/bies.20441 16927300
    [Google Scholar]
  45. Maurya I.K. Pathak S. Sharma M. Sanwal H. Chaudhary P. Tupe S. Deshpande M. Chauhan V.S. Prasad R. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 2011 32 8 1732 1740 10.1016/j.peptides.2011.06.003 21693143
    [Google Scholar]
  46. Wang Y. Li B. Shang H. Ma R. Zhu Y. Yang X. Ju S. Zhao W. Sun H. Zhuang J. Jiao Z. Effective inhibition of fungal growth, deoxynivalenol biosynthesis and pathogenicity in cereal pathogen Fusarium spp. by cold atmospheric plasma. Chem. Eng. J. 2022 437 135307 10.1016/j.cej.2022.135307
    [Google Scholar]
  47. Nabeta H.W. Kouokam J.C. Lasnik A.B. Fuqua J.L. Palmer K.E. Novel antifungal activity of q-griffithsin, a broad-spectrum antiviral lectin. Microbiol. Spectr. 2021 9 2 e00957-21 10.1128/Spectrum.00957‑21 34494857
    [Google Scholar]
  48. Elsherbiny E.A. Amin B.H. Baka Z.A. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol. Technol. 2016 111 256 263 10.1016/j.postharvbio.2015.09.019
    [Google Scholar]
  49. WHO WHO fungal priority pathogens list to guide research, development and public health action. WHO. 2022. http://dx.doi.org/10.13140/RG.2.2.31126.63040 World Health Organization 2022
    [Google Scholar]
  50. Nicola A.M. Albuquerque P. Paes H.C. Fernandes L. Costa F.F. Kioshima E.S. Abadio A.K.R. Bocca A.L. Felipe M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019 195 21 38 10.1016/j.pharmthera.2018.10.008 30347212
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665377738250626233111
Loading
/content/journals/ppl/10.2174/0109298665377738250626233111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test