Skip to content
2000
image of Use of Plant Peptidases for the Production of Therapeutic Peptides

Abstract

Peptidases play crucial roles in numerous physiological processes within living organisms. Therefore, they have been employed in various pharmaceutical applications. Plant peptidases have attracted considerable attention in various areas due to their specificity, stability across a diverse range of pH and temperatures, and safety profile. Here, we have focused on the use of plant peptidases, mostly papain and bromelain, to produce biologically active peptides, which confer various health advantages, including antioxidant, antimicrobial, antihypertensive, analgesic, antidiabetic, and anti-inflammatory effects. We have also discussed the importance of the action mechanism of peptidases for generating bioactive peptides with specific sequences and functions, the ecological and sustainability benefits of plant-derived peptidases compared to animal alternatives, digestive stability and bioavailability of peptides, as well as some obstacles to the commercialization of bioactive peptides and key challenges in peptidase-based industrial applications. Finally, we have examined enzyme immobilization as a viable method to enhance the production of bioactive peptides, offering numerous advantages in both research and industry contexts.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665373399250319082357
2025-04-11
2025-09-07
Loading full text...

Full text loading...

References

  1. Kos J. Peptidases: Role and function in health and disease. Int. J. Mol. Sci. 2023 24 9 7823 10.3390/ijms24097823 37175526
    [Google Scholar]
  2. Kandel R. Jung J. Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin. Cell Dev. Biol. 2024 156 107 120 10.1016/j.semcdb.2023.08.002 37734998
    [Google Scholar]
  3. Liu H. Peng J. Huang L. Ruan D. Li Y. Yuan F. Tu Z. Huang K. Zhu X. The role of lysosomal peptidases in glioma immune escape: Underlying mechanisms and therapeutic strategies. Front. Immunol. 2023 14 1154146 10.3389/fimmu.2023.1154146 37398678
    [Google Scholar]
  4. Craik C.S. Page M.J. Madison E.L. Proteases as therapeutics. Biochem. J. 2011 435 1 1 16 10.1042/BJ20100965 21406063
    [Google Scholar]
  5. Sharma P. Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Rep. 2021 40 11 2081 2095 10.1007/s00299‑021‑02739‑9 34173047
    [Google Scholar]
  6. Dalio R.J.D. Paschoal D. Arena G.D. Magalhães D.M. Oliveira T.S. Merfa M.V. Maximo H.J. Machado M.A. Hypersensitive response: From NLR pathogen recognition to cell death response. Ann. Appl. Biol. 2021 178 2 268 280 10.1111/aab.12657
    [Google Scholar]
  7. Bera I. O’Sullivan M. Flynn D. Shields D.C. Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules 2023 28 7 3204 10.3390/molecules28073204 37049968
    [Google Scholar]
  8. Luciński R. Adamiec M. The role of plant proteases in the response of plants to abiotic stress factors. Front. Plant Physiol. 2023 1 1330216 10.3389/fphgy.2023.1330216
    [Google Scholar]
  9. Bakare O.O. Gokul A. Fadaka A.O. Wu R. Niekerk L.A. Barker A.M. Keyster M. Klein A. Plant Antimicrobial Peptides (PAMPs): Features, applications, production, expression, and challenges. Molecules 2022 27 12 3703 10.3390/molecules27123703 35744828
    [Google Scholar]
  10. Silva-López R.E. Gonçalves R.N. Therapeutic proteases from plants: Biopharmaceuticals with multiple applications. J. Appl. Biotechnol. Bioeng 2019 6 2 101 109 10.15406/jabb.2019.06.00180
    [Google Scholar]
  11. Rawlings N.D. Barrett A.J. Thomas P.D. Huang X. Bateman A. Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018 46 D1 D624 D632 10.1093/nar/gkx1134 29145643
    [Google Scholar]
  12. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  13. Rossino G. Marchese E. Galli G. Verde F. Finizio M. Serra M. Linciano P. Collina S. Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules 2023 28 20 7165 10.3390/molecules28207165 37894644
    [Google Scholar]
  14. Penggalih M.H.S.T. Praditya G.N. Rizqiansyah C.Y. Setyawardani A. Purnomo A.F. Maulana R.A. Gunawan W.B. Subali D. Kurniawan R. Mayulu N. Taslim N.A. Hardinsyah H. Sutanto Y.S. Nurkolis F. Marine-derived protein: peptide bioresources for the development of nutraceuticals for improved athletic performance. Front. Sports Act. Living 2023 5 1281397 10.3389/fspor.2023.1281397 37964773
    [Google Scholar]
  15. Balakireva A.V. Kuznetsova N.V. Petushkova A.I. Savvateeva L.V. Zamyatnin A.A. Jr Trends and prospects of plant proteases in therapeutics. Curr. Med. Chem. 2019 26 3 465 486 10.2174/0929867325666171123204403 29173148
    [Google Scholar]
  16. Caminero A. Guzman M. Libertucci J. Lomax A.E. The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes 2023 15 1 2181922 10.1080/19490976.2023.2181922 36843008
    [Google Scholar]
  17. Troncoso D.F. Sánchez A.D. Ferreira L.M. Production of plant proteases and new biotechnological applications: An updated review. ChemistryOpen 2022 11 3 e202200017 10.1002/open.202200017 35286022
    [Google Scholar]
  18. Gimenes N.C. Silveira E. Tambourgi E.B. An Overview of proteases: Production, downstream processes and industrial applications. Separ. Purif. Rev. 2021 50 3 223 243 10.1080/15422119.2019.1677249
    [Google Scholar]
  19. Ashaolu T.J. Lee C.C. Ashaolu J.O. Tarhan O. Pourjafar H. Jafari S.M. Pepsin: An excellent proteolytic enzyme for the production of bioactive peptides. Food Rev. Int. 2024 40 7 1875 1912 10.1080/87559129.2023.2238814
    [Google Scholar]
  20. Mokhtari R. Rezaei M. Fard K.M. Dirandeh E. Evaluation of antimicrobial and antioxidant activities of casein‐derived bioactive peptides using trypsin enzyme. J. Food Qual. 2023 2023 1 9 10.1155/2023/1792917
    [Google Scholar]
  21. Tacias-Pascacio V.G. Castañeda-Valbuena D. Morellon-Sterling R. Tavano O. Berenguer-Murcia Á. Vela-Gutiérrez G. Rather I.A. Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int. J. Biol. Macromol. 2021 184 415 428 10.1016/j.ijbiomac.2021.06.076 34157329
    [Google Scholar]
  22. Ren Q. Zhao H. Hu H. Zhou Z. Yang Z. Yang Z. Characterisation of a novel metalloprotease produced by Bacillus subtilis JQ-2 and casein-derived bioactive peptides by the protease. Int. Dairy J. 2024 151 105866 10.1016/j.idairyj.2023.105866
    [Google Scholar]
  23. Naveed M. Nadeem F. Mehmood T. Bilal M. Anwar Z. Amjad F. Protease—A versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catal. Lett. 2021 151 2 307 323 10.1007/s10562‑020‑03316‑7
    [Google Scholar]
  24. Mazorra-Manzano M.A. Ramírez-Suarez J.C. Yada R.Y. Plant proteases for bioactive peptides release: A review. Crit. Rev. Food Sci. Nutr. 2018 58 13 2147 2163 10.1080/10408398.2017.1308312 28394630
    [Google Scholar]
  25. Korhonen H. Pihlanto A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006 16 9 945 960 10.1016/j.idairyj.2005.10.012
    [Google Scholar]
  26. Tacias-Pascacio V.G. Morellon-Sterling R. Siar E.H. Tavano O. Berenguer-Murcia Á. Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020 165 Pt B 2143 2196 10.1016/j.ijbiomac.2020.10.060 33091472
    [Google Scholar]
  27. Lima P.G. Oliveira J.T.A. Amaral J.L. Freitas C.D.T. Souza P.F.N. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 2021 278 119647 10.1016/j.lfs.2021.119647 34043990
    [Google Scholar]
  28. Lima A.M. Azevedo M.I.G. Sousa L.M. Oliveira N.S. Andrade C.R. Freitas C.D.T. Souza P.F.N. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int. J. Biol. Macromol. 2022 214 10 21 10.1016/j.ijbiomac.2022.06.043 35700843
    [Google Scholar]
  29. Souza P.F.N. Marques L.S.M. Oliveira J.T.A. Lima P.G. Dias L.P. Neto N.A.S. Lopes F.E.S. Sousa J.S. Silva A.F.B. Caneiro R.F. Lopes J.L.S. Ramos M.V. Freitas C.D.T. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 2020 175 132 145 10.1016/j.biochi.2020.05.016 32534825
    [Google Scholar]
  30. Verma A.K. Chatli M.K. Mehta N. Kumar P. Antimicrobial and antioxidant potential of papain liver hydrolysate in meat emulsion model at chilling storage under aerobic packaging condition. Waste Biomass Valoriz. 2022 13 1 417 429 10.1007/s12649‑021‑01538‑3
    [Google Scholar]
  31. Freitas D.C. Zambelli R.A. Ramos M.V. Oliveira J.P.B. Souza P.F.N. Santos G.B.M. Nagano C.S. Bezerra L.P. Silva A.F.B. Oliveira J.S. Freitas C.D.T. Latex peptidases produce peptides capable of delaying fungal growth in bread. Food Chem. 2022 373 Pt A 131410 10.1016/j.foodchem.2021.131410 34710691
    [Google Scholar]
  32. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  33. César A.P.C. Lopes F.E.S. Azevedo F.F.N. Pinto Y.O. Andrade C.R. Mesquita F.P. Silva G.O. Freitas C.D.T. Souza P.F.N. Antioxidant peptides from plants: A review. Phytochem. Rev. 2024 23 1 95 104 10.1007/s11101‑023‑09875‑y
    [Google Scholar]
  34. Noman A. Wang Y. Zhang C. Yin L. Abed S.M. Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L. Arab. J. Chem. 2022 15 12 104368 10.1016/j.arabjc.2022.104368
    [Google Scholar]
  35. Zarei M. Ebrahimpour A. Abdul-Hamid A. Anwar F. Bakar F.A. Philip R. Saari N. Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Res. Int. 2014 62 726 734 10.1016/j.foodres.2014.04.041
    [Google Scholar]
  36. Selamassakul O. Laohakunjit N. Kerdchoechuen O. Yang L. Maier C.S. Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Process Biochem. 2018 70 179 187 10.1016/j.procbio.2018.03.024 31031560
    [Google Scholar]
  37. Carey R.M. Moran A.E. Whelton P.K. Treatment of hypertension: A review. JAMA 2022 328 18 1849 1861 10.1001/jama.2022.19590 36346411
    [Google Scholar]
  38. Okagu I.U. Ezeorba T.P.C. Aham E.C. Aguchem R.N. Nechi R.N. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. Food Chem. 2022 4 100078 10.1016/j.fochms.2022.100078 35415696
    [Google Scholar]
  39. Das S. Hati S. Food derived ACE inhibitory peptides: Science to application. Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health Academic Press Cambridge, Massachusetts 2022 39 54 10.1016/B978‑0‑12‑821232‑5.00006‑9
    [Google Scholar]
  40. Nirmal P.N. Rajput S.M. Rathod B.N. Mudgil P. Pati S. Bono G. Nalinanon S. Li L. Maqsood S. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides. Food Chem. 2023 405 Pt A 134737 10.1016/j.foodchem.2022.134737 36335734
    [Google Scholar]
  41. Zhang Y. Dai Z. Zhao X. Chen C. Li S. Meng Y. Suonan Z. Sun Y. Shen Q. Wang L. Xue Y. Deep learning drives efficient discovery of novel antihypertensive peptides from soybean protein isolate. Food Chem. 2023 404 Pt B 134690 10.1016/j.foodchem.2022.134690 36323032
    [Google Scholar]
  42. Zaharuddin N.D. Hanafi M.A. Chay S.Y. Hussin F.S. Auwal S.M. Zarei M. Sarbini S.R. Wan Ibadullah W.Z. Karim R. Saari N. Multifunctional hydrolysates from kenaf (Hibiscus cannabinus L.) seed protein with high antihypertensive activity in vitro and in vivo. J. Food Meas. Charact. 2021 15 1 652 663 10.1007/s11694‑020‑00663‑2
    [Google Scholar]
  43. Tacias-Pascacio V.G. Castañeda-Valbuena D. Tavano O. Murcia Á.B. Torrestina-Sánchez B. Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int. J. Biol. Macromol. 2023 253 Pt 5 127244 10.1016/j.ijbiomac.2023.127244 37806416
    [Google Scholar]
  44. Yu Z. Wang L. Wu S. Zhao W. Ding L. Liu J. In vivo anti‐hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int. J. Food Sci. Technol. 2021 56 2 1030 1039 10.1111/ijfs.14756
    [Google Scholar]
  45. Oh J.Y. Je J.G. Lee H.G. Kim E.A. Kang S.I. Lee J.S. Jeon Y.J. Anti-hypertensive activity of novel peptides identified from olive flounder (Paralichthys olivaceus) surimi. Foods 2020 9 5 647 10.3390/foods9050647 32443419
    [Google Scholar]
  46. Dong J. Wang S. Yin X. Fang M. Gong Z. Wu Y. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effects of rice peptides. Food Sci. Hum. Wellness 2022 11 6 1539 1543 10.1016/j.fshw.2022.06.011
    [Google Scholar]
  47. Zhao L. Luo H. Ma Y. Zhu S. Wu Y. Lu M. Yao X. Liu X. Chen G. An analgesic peptide H-20 attenuates chronic pain via the PD-1 pathway with few adverse effects. Proc. Natl. Acad. Sci. USA 2022 119 31 e2204114119 10.1073/pnas.2204114119 35878019
    [Google Scholar]
  48. Hayes M. Naik A. Mora L. Iñarra B. Ibarruri J. Bald C. Cariou T. Reid D. Gallagher M. Dragøy R. Galino J. Deyà A. Albrektsen S. Thoresen L. Solstad R.G. Generation, characterisation and identification of bioactive peptides from mesopelagic fish protein hydrolysates using in silico and in vitro approaches. Mar. Drugs 2024 22 7 297 10.3390/md22070297 39057406
    [Google Scholar]
  49. Tyagi A. Daliri E.B.M. Ofosu K.F. Yeon S.J. Oh D.H. Food-derived opioid peptides in human health: A review. Int. J. Mol. Sci. 2020 21 22 8825 10.3390/ijms21228825 33233481
    [Google Scholar]
  50. Chakraborty A. Mitra S. Tallei T. Tareq A. Nainu F. Cicia D. Dhama K. Emran T. Simal-Gandara J. Capasso R. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective. Life 2021 11 4 317 10.3390/life11040317 33917319
    [Google Scholar]
  51. Gach-Janczak K. Biernat M. Kuczer M. Adamska-Bartłomiejczyk A. Kluczyk A. Analgesic peptides: From natural diversity to rational design. Molecules 2024 29 7 1544 10.3390/molecules29071544 38611824
    [Google Scholar]
  52. Rivera-Jiménez J. Berraquero-García C. Pérez-Gálvez R. García-Moreno P.J. Espejo-Carpio F.J. Guadix A. Guadix E.M. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022 13 24 12510 12540 10.1039/D2FO02223K 36420754
    [Google Scholar]
  53. Nguyen T. Marusich J. Li J.X. Zhang Y. Neuropeptide FF and its receptors: Therapeutic applications and ligand development. J. Med. Chem. 2020 63 21 12387 12402 10.1021/acs.jmedchem.0c00643 32673481
    [Google Scholar]
  54. McDougall J.J. O’Brien M.S. Analgesic potential of voltage gated sodium channel modulators for the management of pain. Curr. Opin. Pharmacol. 2024 75 102433 10.1016/j.coph.2024.102433 38277942
    [Google Scholar]
  55. Zamudio V.F. Hidalgo-Figueroa S.N. Andrade O.R.R. Álvarez H.A.J. Campos S.M.R. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chem. 2022 394 133479 10.1016/j.foodchem.2022.133479 35717911
    [Google Scholar]
  56. Farias T.C. de Souza T.S.P. Fai A.E.C. Koblitz M.G.B. Critical review for the production of antidiabetic peptides by a bibliometric approach. Nutrients 2022 14 20 4275 10.3390/nu14204275 36296965
    [Google Scholar]
  57. Chandrasekaran S. Gonzalez de Mejia E. Optimization, identification, and comparison of peptides from germinated chickpea (Cicer arietinum) protein hydrolysates using either papain or ficin and their relationship with markers of type 2 diabetes. Food Chem. 2022 374 131717 10.1016/j.foodchem.2021.131717 34920404
    [Google Scholar]
  58. Yuguda Y.M. Profiling and in vivo studies of Bromelain Bitter Gourd (Momodica charantia) seed protein hydrolysate with antidiabetic activity. GSC Biol. Pharm. Sci. 2023 23 1 269 276 10.30574/gscbps.2023.23.1.0156
    [Google Scholar]
  59. Acquah C. Dzuvor C.K.O. Tosh S. Agyei D. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 2022 62 8 2158 2171 10.1080/10408398.2020.1851168 33317324
    [Google Scholar]
  60. Hu K. Huang H. Li H. Wei Y. Yao C. Legume-derived bioactive peptides in type 2 diabetes: Opportunities and challenges. Nutrients 2023 15 5 1096 10.3390/nu15051096 36904097
    [Google Scholar]
  61. Wang R.X. Zhou M. Ma H.L. Qiao Y.B. Li Q.S. The Role of chronic inflammation in various diseases and anti-inflammatory therapies containing natural products. ChemMedChem 2021 16 10 1576 1592 10.1002/cmdc.202000996 33528076
    [Google Scholar]
  62. Sandoval-Sicairos E.S. Milán-Noris A.K. Luna-Vital D.A. Milán-Carrillo J. Montoya-Rodríguez A. Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chem. 2021 343 128394 10.1016/j.foodchem.2020.128394 33097329
    [Google Scholar]
  63. Luo Y. Song Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci. 2021 22 21 11401 10.3390/ijms222111401 34768832
    [Google Scholar]
  64. Hidayat M. Pangastuti R. Prahastuti S. Hasan K. Protein hydrolysate of green peas bromelain attenuates kidney fibrosis in cisplatin-induced nephrotoxicity rats: Emphasis on anti-inflammatory activities. Hayati J. Biosci. 2022 30 2 347 357 10.4308/hjb.30.2.347‑357
    [Google Scholar]
  65. Udenigwe C.C. Lu Y.L. Han C.H. Hou W.C. Aluko R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009 116 1 277 284 10.1016/j.foodchem.2009.02.046
    [Google Scholar]
  66. Zhu Y. Lao F. Pan X. Wu J. Food protein-derived antioxidant peptides: Molecular mechanism, stability and bioavailability. Biomolecules 2022 12 11 1622 10.3390/biom12111622 36358972
    [Google Scholar]
  67. Ketnawa S. Wickramathilaka M. Liceaga A.M. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chem. 2018 254 36 46 10.1016/j.foodchem.2018.01.133 29548465
    [Google Scholar]
  68. Abeer M.M. Trajkovic S. Brayden D.J. Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed. Pharmacother. 2021 144 112275 10.1016/j.biopha.2021.112275 34628165
    [Google Scholar]
  69. Pei J. Gao X. Pan D. Hua Y. He J. Liu Z. Dang Y. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr. Res. Food Sci. 2022 5 2162 2170 10.1016/j.crfs.2022.10.031 36387592
    [Google Scholar]
  70. Frokjaer S. Otzen D.E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005 4 4 298 306 10.1038/nrd1695 15803194
    [Google Scholar]
  71. Chalamaiah M. Keskin Ulug S. Hong H. Wu J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019 58 123 129 10.1016/j.jff.2019.04.050
    [Google Scholar]
  72. Duffuler P. Bhullar K.S. de Campos Zani S.C. Wu J. Bioactive peptides: From basic research to clinical trials and commercialization. J. Agric. Food Chem. 2022 70 12 3585 3595 10.1021/acs.jafc.1c06289 35302369
    [Google Scholar]
  73. Sujitha P. Shanthi C. Importance of enzyme specificity and stability for the application of proteases in greener industrial processing- A review. J. Clean. Prod. 2023 425 138915 10.1016/j.jclepro.2023.138915
    [Google Scholar]
  74. Nicosia F.D. Puglisi I. Pino A. Caggia C. Randazzo C.L. Plant milk-clotting enzymes for cheesemaking. Foods 2022 11 6 871 10.3390/foods11060871 35327293
    [Google Scholar]
  75. Srivastava G. Gaur N. Makde R.D. Jamdar S.N. Autoproteolysis of Procerain and Procerain B mediated by structural changes. Phytochemistry 2022 196 113086 10.1016/j.phytochem.2022.113086 35091212
    [Google Scholar]
  76. Xiong W. Liu B. Shen Y. Jing K. Savage T.R. Protein engineering design from directed evolution to de novo synthesis. Biochem. Eng. J. 2021 174 108096 10.1016/j.bej.2021.108096
    [Google Scholar]
  77. Gomes A.R. Byregowda S.M. Veeregowda B.M. Balamurugan V. An overview of heterologous expression host systems for the production of recombinant proteins. Adv. Anim. Vet. Sci. 2016 4 7 346 356 10.14737/journal.aavs/2016/4.7.346.356
    [Google Scholar]
  78. Jiang R. Yuan S. Zhou Y. Wei Y. Li F. Wang M. Chen B. Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol. Adv. 2024 75 108417 10.1016/j.biotechadv.2024.108417 39038691
    [Google Scholar]
  79. Juturu V. Wu J.C. Heterologous protein expression in Pichia pastoris: Latest research progress and applications. ChemBioChem 2018 19 1 7 21 10.1002/cbic.201700460 29235217
    [Google Scholar]
  80. Falak S. Sajed M. Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia 2022 77 3 893 905 10.1007/s11756‑021‑00994‑5
    [Google Scholar]
  81. Waegeman H. Soetaert W. Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J. Ind. Microbiol. Biotechnol. 2011 38 12 1891 1910 10.1007/s10295‑011‑1034‑4 21901404
    [Google Scholar]
  82. de Marco A. Deuerling E. Mogk A. Tomoyasu T. Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 2007 7 1 32 10.1186/1472‑6750‑7‑32 17565681
    [Google Scholar]
  83. Watts A. Sankaranarayanan S. Watts A. Raipuria R.K. Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene 2021 29 100899 10.1016/j.mgene.2021.100899
    [Google Scholar]
  84. Ramos M.V. Demarco D. da Costa Souza I.C. de Freitas C.D.T. Laticifers, latex, and their role in plant defense. Trends Plant Sci. 2019 24 6 553 567 10.1016/j.tplants.2019.03.006 30979674
    [Google Scholar]
  85. Freitas C.D.T. Demarco D. Oliveira J.S. Ramos M.V. Review: Laticifer as a plant defense mechanism. Plant Sci. 2024 346 112136 10.1016/j.plantsci.2024.112136 38810884
    [Google Scholar]
  86. Mamboya E.A. Amri E. Papain, a plant enzyme of biological importance: A review. Am. J. Biochem. Biotechnol. 2012 8 2 99 104 10.3844/ajbbsp.2012.99.104
    [Google Scholar]
  87. Babalola A.B. Akinwande I.A. Otunba A.A. Adebami E.G. Babalola O. Nwufo C. Therapeutic benefits of Carica papaya: A review on its pharmacological activities and characterization of papain. Arab. J. Chem. 2024 17 1 105369 10.1016/j.arabjc.2023.105369
    [Google Scholar]
  88. Choudhary R. Kaushik R. Chawla P. Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. J. Sci. Food Agric. 2025 105 3 1533-45 10.1002/jsfa.13776 39077990
    [Google Scholar]
  89. Morellon-Sterling R. El-Siar H. Tavano O.L. Berenguer-Murcia Á. Fernández-Lafuente R. Ficin: A protease extract with relevance in biotechnology and biocatalysis. Int. J. Biol. Macromol. 2020 162 394 404 10.1016/j.ijbiomac.2020.06.144 32574740
    [Google Scholar]
  90. Arya S. Kumar V.L. Antiinflammatory efficacy of extracts of latex of Calotropis procera against different mediators of inflammation. Mediators Inflamm. 2005 2005 4 228 232 10.1155/MI.2005.228 16192673
    [Google Scholar]
  91. de Figueiredo I.S.T. Ramos M.V. Ricardo N.M.P.S. Gonzaga M.L.C. Pinheiro R.S.P. de Alencar N.M.N. Efficacy of a membrane composed of polyvinyl alcohol as a vehicle for releasing of wound healing proteins belonging to latex of Calotropis procera. Process Biochem. 2014 49 3 512 519 10.1016/j.procbio.2013.12.015
    [Google Scholar]
  92. Dewan S. Sangraula H. Kumar V.L. Preliminary studies on the analgesic activity of latex of Calotropris procera. J. Ethnopharmacol. 2000 73 1-2 307 311 10.1016/S0378‑8741(00)00272‑5 11025170
    [Google Scholar]
  93. Oliveira J.S. Costa-Lotufo L.V. Bezerra D.P. Alencar N.M.N. Marinho-Filho J.D.B. Figueiredo I.S.T. Moraes M.O. Pessoa C. Alves A.P.N.N. Ramos M.V. In vivo growth inhibition of sarcoma 180 by latex proteins from Calotropis procera. Naunyn Schmiedebergs Arch. Pharmacol. 2010 382 2 139 149 10.1007/s00210‑010‑0525‑6 20517595
    [Google Scholar]
  94. Melo I.M. Sarte M.F. Tavares S.J.S. Lustosa M.S. Oliveira J.S. Alencar N.M.N. Ramos M.V. Lima V. Calotropis procera latex protein reduces inflammation and bone loss in ligature-induced period ontitis in male rats. Arch. Oral Biol. 2023 147 105613 10.1016/j.archoralbio.2023.105613 36739838
    [Google Scholar]
  95. Tavares L.S. Ralph M.T. Batista J.E.C. Sales A.C. Ferreira L.C.A. Usman U.A. da Silva Júnior V.A. Ramos M.V. Lima-Filho J.V. Perspectives for the use of latex peptidases from Calotropis procera for control of inflammation derived from Salmonella infections. Int. J. Biol. Macromol. 2021 171 37 43 10.1016/j.ijbiomac.2020.12.172 33418044
    [Google Scholar]
  96. Oliveira K.A. Araújo H.N. Lima T.I. Oliveira A.G. Favero-Santos B.C. Guimarães D.S.P.S.F. Freitas P.A. Neves R.J. Vasconcelos R.P. Almeida M.G.G. Ramos M.V. Silveira L.R. Oliveira A.C. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells. Saudi Pharm. J. 2021 29 9 1061 1069 10.1016/j.jsps.2021.07.008 34588851
    [Google Scholar]
  97. Domsalla A. Melzig M. Occurrence and properties of proteases in plant latices. Planta Med. 2008 74 7 699 711 10.1055/s‑2008‑1074530 18496785
    [Google Scholar]
  98. Freitas C.D.T. Silva R.O. Ramos M.V. Porfírio C.T.M.N. Farias D.F. Sousa J.S. Oliveira J.P.B. Souza P.F.N. Dias L.P. Grangeiro T.B. Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex. Phytochemistry 2020 169 112163 10.1016/j.phytochem.2019.112163 31605904
    [Google Scholar]
  99. Mezhlumyan L.G. Kasymova T.D. Yuldashev P.K. Proteinases from Carica papaya latex. Chem. Nat. Compd. 2003 39 3 223 228 10.1023/A:1025466030937
    [Google Scholar]
  100. de Freitas C.D.T. da Cruz W.T. Silva M.Z.R. Vasconcelos I.M. Moreno F.B.M.B. Moreira R.A. Monteiro-Moreira A.C.O. Alencar L.M.R. Sousa J.S. Rocha B.A.M. Ramos M.V. Proteomic analysis and purification of an unusual germin-like protein with proteolytic activity in the latex of Thevetia peruviana. Planta 2016 243 5 1115 1128 10.1007/s00425‑016‑2468‑8 26794967
    [Google Scholar]
  101. Coelho R.A. Freitas C.D.T. Costa J.H. Ramos M.V. Laticifers as in vivo plant cell factories for therapeutic proteins. Trends Biotechnol. 2024 S0167-7799 24 00327-5. 10.1016/j.tibtech.2024.11.014 39632162
    [Google Scholar]
  102. She F. Zhu D. Kong L. Wang J. An F. Lin W. Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. Ind. Crops Prod. 2013 50 803 808 10.1016/j.indcrop.2013.08.065
    [Google Scholar]
  103. Hagel J. Yeung E. Facchini P. Got milk? The secret life of laticifers. Trends Plant Sci. 2008 13 12 631 639 10.1016/j.tplants.2008.09.005 18977166
    [Google Scholar]
  104. Bilal M. Asgher M. Cheng H. Yan Y. Iqbal H.M.N. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 2019 39 2 202 219 10.1080/07388551.2018.1531822 30394121
    [Google Scholar]
  105. Bezerra C.S. de Farias Lemos C.M.G. de Sousa M. Gonçalves L.R.B. Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. J. Appl. Polym. Sci. 2015 132 26 app.42125 10.1002/app.42125
    [Google Scholar]
  106. Sheldon R.A. van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013 42 15 6223 6235 10.1039/C3CS60075K 23532151
    [Google Scholar]
  107. Homaei A.A. Sariri R. Vianello F. Stevanato R. Enzyme immobilization: An update. J. Chem. Biol. 2013 6 4 185 205 10.1007/s12154‑013‑0102‑9 24432134
    [Google Scholar]
  108. Sheldon R.A. CLEAs, combi-CLEAs and ‘smart’magnetic CLEAs: Biocatalysis in a bio-based economy. Catalysts 2019 9 3 261 10.3390/catal9030261
    [Google Scholar]
  109. Ait Braham S. Hussain F. Morellon-Sterling R. Kamal S. Kornecki J.F. Barbosa O. Kati D.E. Fernandez-Lafuente R. Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnol. Prog. 2019 35 2 e2768 10.1002/btpr.2768 30575340
    [Google Scholar]
  110. Agyei D. Shanbhag B.K. He L. Enzyme engineering (immobilization) for food applications. Improving and tailoring enzymes for food quality and functionality. Woodhead Publishing 2015 213 235 10.1016/B978‑1‑78242‑285‑3.00011‑9
    [Google Scholar]
  111. Nguyen H.H. Kim M. An overview of techniques in enzyme immobilization. Appl. Sci. Converg. Technol. 2017 26 6 157 163 10.5757/ASCT.2017.26.6.157
    [Google Scholar]
  112. Barbosa O. Ortiz C. Berenguer-Murcia Á. Torres R. Rodrigues R.C. Fernandez-Lafuente R. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances 2014 4 4 1583 1600 10.1039/C3RA45991H
    [Google Scholar]
  113. dos Santos J.C.S. Rueda N. Torres R. Barbosa O. Gonçalves L.R.B. Fernandez-Lafuente R. Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochem. 2015 50 6 918 927 10.1016/j.procbio.2015.03.018
    [Google Scholar]
  114. Kimberle P.S. Carolina M-S. Ana I.S.B. Luciana R.B.G. Modifying alcalase activity and stability by immobilization onto chitosan aiming at the production of bioactive peptides by hydrolysis of tilapia skin gelatin. Process Biochem. 2020 97 27 36 10.1016/j.procbio.2020.06.019
    [Google Scholar]
  115. Fernandez-Lopez L. Pedrero S.G. Lopez-Carrobles N. Gorines B.C. Virgen-Ortíz J.J. Fernandez-Lafuente R. Effect of protein load on stability of immobilized enzymes. Enzyme Microb. Technol. 2017 98 18 25 10.1016/j.enzmictec.2016.12.002 28110660
    [Google Scholar]
  116. Garcia-Galan C. Berenguer-Murcia Á. Fernandez-Lafuente R. Rodrigues R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011 353 16 2885 2904 10.1002/adsc.201100534
    [Google Scholar]
  117. Tacias-Pascacio V.G. Morellon-Sterling R. Castañeda-Valbuena D. Berenguer-Murcia Á. Kamli M.R. Tavano O. Fernandez-Lafuente R. Immobilization of papain: A review. Int. J. Biol. Macromol. 2021 188 94 113 10.1016/j.ijbiomac.2021.08.016 34375660
    [Google Scholar]
  118. Oliveira J.P.B. Gonçalves L.R.B. Amorim K.P.S. Pinheiro B.B. Ramos M.V. Souza P.F.N. Oliveira J.S. Freitas D.C. Freitas C.D.T. Immobilization and characterization of latex cysteine peptidases on different supports and application for cow’s milk protein hydrolysis. Process Biochem. 2022 117 180 190 10.1016/j.procbio.2022.04.005
    [Google Scholar]
  119. Siar E.H. Morellon-Sterling R. Zidoune M.N. Fernandez-Lafuente R. Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. Int. J. Biol. Macromol. 2020 144 419 426 10.1016/j.ijbiomac.2019.12.140 31857160
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665373399250319082357
Loading
/content/journals/ppl/10.2174/0109298665373399250319082357
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bromelain ; enzyme ; papain ; protease ; immobilization ; Antimicrobial peptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test