Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Proteins and peptides play a crucial role in biological functions and contemporary therapeutic approaches; however, their clinical effectiveness is frequently hindered by swift renal clearance and enzymatic degradation. Peptides possess structured amino acid sequences that facilitate targeted drug delivery and enhance patient adherence. In contrast, proteins demonstrate intricate stability behaviors affected by pH and environmental conditions, requiring careful formulation strategies. Addressing these challenges necessitates a comprehensive understanding of stability and regulatory requirements. Regulatory agencies, including the FDA, EMA, and PMDA, require comprehensive stability testing per guidelines such as ICH Q5C and ICH Q1A(R2). This ensures meticulous management of factors such as temperature control, formulation optimization, and aggregation mitigation. Stability enhancement requires the application of innovative techniques, including protein engineering, lyoprotection, and nanoparticle encapsulation, in conjunction with ongoing quality monitoring. Integrating scientific expertise with regulatory standards enables researchers and pharmaceutical manufacturers to develop safe, effective, and compliant protein and peptide therapeutics for various patient populations.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665375151250626124048
2025-07-11
2025-11-03
Loading full text...

Full text loading...

References

  1. Sánchez-NavarroM. Advances in peptide-mediated cytosolic delivery of proteins.Adv. Drug Deliv. Rev.202117118719810.1016/j.addr.2021.02.00333561452
    [Google Scholar]
  2. WangL WangN ZhangW Therapeutic peptides: Current applications and future directions.Sig. Transduct. Target Ther.2022714810.1038/s41392‑022‑00904‑4
    [Google Scholar]
  3. RossinoG. MarcheseE. GalliG. VerdeF. FinizioM. SerraM. LincianoP. CollinaS. Peptides as therapeutic agents: Challenges and opportunities in the green transition era.Molecules20232820716510.3390/molecules2820716537894644
    [Google Scholar]
  4. KumarS. SanapS.N. VasoyaM. HandaM. PandeyP. KhopadeA. SawantK.K. USFDA-approved parenteral peptide formulations and excipients: Industrial perspective.J. Drug Deliv. Sci. Technol.20249510558910.1016/j.jddst.2024.105589
    [Google Scholar]
  5. Peptide Therapeutics Market Size, Share, and Trends 2025 to 2034.2025Available from: https://www.precedenceresearch.com/peptide-therapeutics-market
  6. GroupI.C.H.E.W. GroupI.C.H.E.W. ICH harmonised tripartite guideline: Quality of biotechnological products: Stability testing of biotechnological/biological products Q5C.International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use1995.
    [Google Scholar]
  7. RignallA. ICHQ1A (R2) stability testing of new drug substance and product and ICHQ1C stability testing of new dosage forms.ICH Quality Guidelines: An Implementation GuideHoboken, New JerseyWiley Online Library2017
    [Google Scholar]
  8. Immunogenicity information in human prescription therapeutic protein and select drug product labeling--content and format.2022Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-information-human-prescription-therapeutic-protein-and-select-drug-product-labeling 2025
  9. Immunogenicity assessment of biotechnology-derived therapeutic proteins - Scientific guideline.2021Available from: https://www.ema.europa.eu/en/immunogenicity-assessment-biotechnology-derived-therapeutic-proteins-scientific-guideline 2017
  10. ProgramH.F. Draft guidance for industry: Protein efficiency ratio (PER) rat bioassay studies to demonstrate that a new infant formula supports the quality factor of sufficient biological quality of protein.2023Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-protein-efficiency-ratio-rat-bioassay-studies-demonstrate-new-infant-formula 2024
  11. ManningM.C. PatelK. BorchardtR.T. Stability of protein pharmaceuticals.Pharm. Res.198961190391810.1023/A:10159291098942687836
    [Google Scholar]
  12. GhilzaiN.M.K. Therapeutic peptides and proteins: Formulation, processing, and delivery systems.Am. J. Pharm. Educ.200670354
    [Google Scholar]
  13. TallanH.H. SteinW.H. Chromatographic studies on lysozyme.J. Biol. Chem.1953200250751410.1016/S0021‑9258(18)71394‑X13034807
    [Google Scholar]
  14. LewisU.J. CheeverE.V. HopkinsW.C. Kinetic study of the deamidation of growth hormone and prolactin.Biochim. Biophys. Acta Protein Struct.1970214349850810.1016/0005‑2795(70)90310‑75534305
    [Google Scholar]
  15. DiAugustineR.P. GibsonB.W. AberthW. KellyM. FerruaC.M. TomookaY. BrownC.F. WalkerM. Evidence for isoaspartyl1 (deamidated) forms of mouse epidermal growth factor.Anal. Biochem.1987165242042910.1016/0003‑2697(87)90291‑03501256
    [Google Scholar]
  16. JangG.M. Annan SudarsanA.K. ShayeganmehrA. Prando MunhozE. LaoR. GabaA. Granadillo RodríguezM. LoveR.P. PolaccoB.J. ZhouY. KroganN.J. KaakeR.M. ChelicoL. Protein interaction map of APOBEC3 enzyme family reveals deamination-independent role in cellular function.Mol. Cell. Proteomics202423510075510.1016/j.mcpro.2024.10075538548018
    [Google Scholar]
  17. GrassiL. CabreleC. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions.Amino. Acids20195110-121409143110.1007/s00726‑019‑02787‑2
    [Google Scholar]
  18. Crespi-LoftonJ. SkeltonJ.B. The growing role of biologics and biosimilars in the United States: Perspectives from the APhA Biologics and Biosimilars Stakeholder Conference.J. Am. Pharm. Assoc. (Wash. D.C.)2017575e15e2710.1016/j.japh.2017.05.01428689708
    [Google Scholar]
  19. WangW. SinghS. ZengD.L. KingK. NemaS. Antibody structure, instability, and formulation.J. Pharm. Sci.200796112610.1002/jps.2072716998873
    [Google Scholar]
  20. ManningM.C. ChouD.K. MurphyB.M. PayneR.W. KatayamaD.S. Stability of protein pharmaceuticals: An update.Pharm. Res.201027454457510.1007/s11095‑009‑0045‑620143256
    [Google Scholar]
  21. BarelliS. CanelliniG. ThadikkaranL. CrettazD. QuadroniM. RossierJ.S. TissotJ.D. LionN. Oxidation of proteins: Basic principles and perspectives for blood proteomics.Proteomics Clin. Appl.20082214215710.1002/prca.20078000921136821
    [Google Scholar]
  22. HochmanP.S. HuberB.T. Immune recognition of insulin by mice: The mutation in the I-A gene of the B6.C-H-2 bm12 mouse alters the self-I-A-restricted T cell repertoire.Eur. J. Immunol.198414761061510.1002/eji.18301407066204877
    [Google Scholar]
  23. WangH. SuoR. WangY. SunJ. LiuY. WangW. WangJ. Effects of electron beam irradiation on protein oxidation and textural properties of shrimp (Litopenaeus vannamei) during refrigerated storage.Food Chem. X20232010100910.1016/j.fochx.2023.10100938144782
    [Google Scholar]
  24. SreedharaA. YinJ. JoyceM. LauK. WeckslerA.T. DeperaltaG. YiL. John WangY. KabakoffB. KishoreR.S.K. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development.Eur. J. Pharm. Biopharm.2016100384610.1016/j.ejpb.2015.12.00326707077
    [Google Scholar]
  25. TorosantucciR. SchöneichC. JiskootW. Oxidation of therapeutic proteins and peptides: Structural and biological consequences.Pharm. Res.201431354155310.1007/s11095‑013‑1199‑924065593
    [Google Scholar]
  26. RizzottoE. InciardiI. FongaroB. TroleseP. MioloG. Polverino de LauretoP. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab.Eur. J. Pharm. Biopharm.202420111438710.1016/j.ejpb.2024.11438738944210
    [Google Scholar]
  27. LamX.M. YangJ.Y. ClelandJ.L. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2.J. Pharm. Sci.199786111250125510.1021/js970143s9383735
    [Google Scholar]
  28. QiuJ. LiuQ. LiP. JiangQ. ChenW. LiD. LiG. ShanG. Ligand-directed photodegradation of interacting proteins: Oxidative her2/her3 heterodimer degradation with a lapatinib-derived photosensitizer.J. Med. Chem.20236615102651027210.1021/acs.jmedchem.3c0025237421416
    [Google Scholar]
  29. HipperE. LehmannF. KaiserW. HübnerG. BuskeJ. BlechM. HinderbergerD. GaridelP. Protein photodegradation in the visible range? Insights into protein photooxidation with respect to protein concentration.Int. J. Pharm. X2023510015510.1016/j.ijpx.2022.10015536798831
    [Google Scholar]
  30. DeanR.T. Lysosomes and protein degradation.Ciba Found. Symp.19797513914910.1002/9780470720585.ch9399886
    [Google Scholar]
  31. LiuW. HanY. AnJ. YuS. ZhangM. LiL. LiuX. LiH. Alternation in sequence features and their influence on the anti-inflammatory activity of soy peptides during digestion and absorption in different enzymatic hydrolysis conditions.Food Chem.202547114282410.1016/j.foodchem.2025.14282439799691
    [Google Scholar]
  32. HuckriedeJ.B. BeurskensD.M.H. WildhagenK.C.C.A. ReutelingspergerC.P.M. WichapongK. NicolaesG.A.F. Design and characterization of novel activated protein C variants for the proteolysis of cytotoxic extracellular histone H3.J. Thromb. Haemost.202321123557356710.1016/j.jtha.2023.08.02337657561
    [Google Scholar]
  33. FriedmanM. MastersP.M. Kinetics of racemization of amino acid residues in casein.J. Food Sci.198247376076410.1111/j.1365‑2621.1982.tb12709.x
    [Google Scholar]
  34. ZeeC.T. GlynnC. Gallagher-JonesM. MiaoJ. SantiagoC.G. CascioD. GonenT. SawayaM.R. RodriguezJ.A. Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ.IUCrJ20196219720510.1107/S205225251801762130867917
    [Google Scholar]
  35. WangC.H. DamodaranS. Thermal destruction of cysteine and cystine residues of soy protein under conditions of gelation.J. Food Sci.19905541077108010.1111/j.1365‑2621.1990.tb01602.x
    [Google Scholar]
  36. AhernT.J. KlibanovA.M. The mechanisms of irreversible enzyme inactivation at 100C.Science198522847051280128410.1126/science.40019424001942
    [Google Scholar]
  37. WhitakerJ.R. FeeneyR.E. SternbergM.M. Chemical and physical modification of proteins by the hydroxide ion.CRC Crit. Rev. Food Sci. Nutr.198319317321210.1080/104083983095273756380954
    [Google Scholar]
  38. FlorenceT.M. Degradation of protein disulphide bonds in dilute alkali.Biochem. J.1980189350752010.1042/bj18905077213343
    [Google Scholar]
  39. TsutsuiH. ShimizuH. MizunoH. NukinaN. FurutaT. MiyawakiA. The E1 mechanism in photo-induced β-elimination reactions for green-to-red conversion of fluorescent proteins.Chem. Biol.200916111140114710.1016/j.chembiol.2009.10.01019942137
    [Google Scholar]
  40. RobertsC.J. Protein aggregation and its impact on product quality.Curr. Opin. Biotechnol.20143021121710.1016/j.copbio.2014.08.00125173826
    [Google Scholar]
  41. QiY.K. ZhengJ.S. LiuL. Mirror-image protein and peptide drug discovery through mirror-image phage display.Chem20241082390240710.1016/j.chempr.2024.06.004
    [Google Scholar]
  42. WangW. RobertsC.J. Protein aggregation – Mechanisms, detection, and control.Int. J. Pharm.20185501-225126810.1016/j.ijpharm.2018.08.04330145245
    [Google Scholar]
  43. KonnoT. MoriiT. ShimizuH. OikiS. IkuraK. Paradoxical inhibition of protein aggregation and precipitation by transglutaminase-catalyzed intermolecular cross-linking.J. Biol. Chem.200528017175201752510.1074/jbc.M41398820015731111
    [Google Scholar]
  44. JainD. MahammadS.S. SinghP.P. KodipyakaR. A review on parenteral delivery of peptides and proteins.Drug Dev. Ind. Pharm.20194591403142010.1080/03639045.2019.162877031215293
    [Google Scholar]
  45. Le BasleY. ChennellP. TokhadzeN. AstierA. SautouV. Physicochemical stability of monoclonal antibodies: A review.J. Pharm. Sci.2020109116919010.1016/j.xphs.2019.08.00931465737
    [Google Scholar]
  46. BanksH. SurfaroF. PastrykK.F. BuchholzC. ZaluzhnyyI.A. GerlachA. SchreiberF. From adsorption to crystallization of proteins: Evidence for interface-assisted nucleation.Colloids Surf. B Biointerfaces202424111406310.1016/j.colsurfb.2024.11406338954939
    [Google Scholar]
  47. PrivalovP.L. Cold denaturation of proteins.Crit. Rev. Biochem. Mol. Biol.199025428130610.3109/104092390090906122225910
    [Google Scholar]
  48. GahtoriP. GunwantV. PandeyR. Role of hydrophobic side chain in urea induced protein denaturation at interface.Chem. Phys. Impact2023710031410.1016/j.chphi.2023.100314
    [Google Scholar]
  49. RautA.S. KaloniaD.S. Pharmaceutical perspective on opalescence and liquid–liquid phase separation in protein solutions.Mol. Pharm.20161351431144410.1021/acs.molpharmaceut.5b0093727017836
    [Google Scholar]
  50. YanY. SeemanD. ZhengB. KizilayE. XuY. DubinP.L. pH-Dependent aggregation and disaggregation of native β-lactoglobulin in low salt.Langmuir201329144584459310.1021/la400258r23458495
    [Google Scholar]
  51. JoS. XuA. CurtisJ.E. SomaniS. MacKerellA.D.Jr Computational characterization of antibody–excipient interactions for rational excipient selection using the site identification by ligand competitive saturation-biologics approach.Mol. Pharm.202017114323433310.1021/acs.molpharmaceut.0c0077532965126
    [Google Scholar]
  52. RobertsC.J. BlancoM.A. Role of anisotropic interactions for proteins and patchy nanoparticles.J. Phys. Chem. B201411844125991261110.1021/jp507886r25302767
    [Google Scholar]
  53. SuleS.V. SukumarM. WeissW.F.IV Marcelino-CruzA.M. SampleT. TessierP.M. High-throughput analysis of concentration-dependent antibody self-association.Biophys. J.201110171749175710.1016/j.bpj.2011.08.03621961601
    [Google Scholar]
  54. PucciF. DhananiM. DehouckY. RoomanM. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.PLoS One2014939165910.1371/journal.pone.009165924646884
    [Google Scholar]
  55. PucciF. BourgeasR. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC..Sci. Rep.201662325710.1038/srep23257
    [Google Scholar]
  56. JaenickeR. Protein structure and function at low temperatures.Philos. Trans. R. Soc. Lond. B Biol. Sci.1990326123753555310.1098/rstb.1990.00301969647
    [Google Scholar]
  57. NguiS.P. NyobeC.E. BakwoB.C.B. NchuajiT.E. MinkaS.R. MuneM.M.A. Influence of pH and temperature on the physicochemical and functional properties of Bambara bean protein isolate.Heliyon2021780782410.1016/j.heliyon.2021.e0782434471709
    [Google Scholar]
  58. BjeloševićM. ZvonarP.A. PlaninšekO. AhlinG.P. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation.Int. J. Pharm.202057611902910.1016/j.ijpharm.2020.11902931953087
    [Google Scholar]
  59. RatanjiK.D. DerrickJ.P. DearmanR.J. KimberI. Immunogenicity of therapeutic proteins: Influence of aggregation.J. Immunotoxicol.20141129910910.3109/1547691X.2013.82156423919460
    [Google Scholar]
  60. WangW. Lyophilization and development of solid protein pharmaceuticals.Int. J. Pharm.20002031-216010.1016/S0378‑5173(00)00423‑310967427
    [Google Scholar]
  61. van den BergL. RoseD. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: The reciprocal system KH2PO4-Na2HPO4-H2O.Arch. Biochem. Biophys.195981231932910.1016/0003‑9861(59)90209‑713637993
    [Google Scholar]
  62. PicaA LeoneS Di GirolamoR pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis.Biochim. Biophys. Acta. Gen. Subj.18621862480881510.1016/j.bbagen.2017.12.012
    [Google Scholar]
  63. MaL. ZouL. McClementsD. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum ArabicAmsterdam, NetherlandsElsevier2021
    [Google Scholar]
  64. ZhuQ. LuH. ZhuJ. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles.Amsterdam, NetherlandsElsevier2023
    [Google Scholar]
  65. WanZ. YangX. SagisL.M.C. Contribution of long fibrils and peptides to surface and foaming behavior of soy protein fibril system.Langmuir201632328092810110.1021/acs.langmuir.6b0151127452662
    [Google Scholar]
  66. ZhangY. DiaoY. ZhangW. XuW. HuZ. YiY. Influence of molecular structure and interface behavior on foam properties of rice bran protein nano-particles.Lebensm. Wiss. Technol.202216311353710.1016/j.lwt.2022.113537
    [Google Scholar]
  67. ArakawaT. TimasheffS.N. Stabilization of protein structure by sugars.Biochemistry198221256536654410.1021/bi00268a0337150574
    [Google Scholar]
  68. VagenendeV. YapM.G.S. TroutB.L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.Biochemistry20094846110841109610.1021/bi900649t19817484
    [Google Scholar]
  69. TiwariA. BhatR. Stabilization of yeast hexokinase A by polyol osmolytes: Correlation with the physicochemical properties of aqueous solutions.Biophys. Chem.20061242909910.1016/j.bpc.2006.06.00316828962
    [Google Scholar]
  70. CarpenterJ.F. HandS.C. CroweL.M. CroweJ.H. Cryoprotection of phosphofructokinase with organic solutes: Characterization of enhanced protection in the presence of divalent cations.Arch. Biochem. Biophys.1986250250551210.1016/0003‑9861(86)90755‑12946263
    [Google Scholar]
  71. ChenY. LingJ. LiM. SuY. ArteK.S. MutukuriT.T. TaylorL.S. MunsonE.J. ToppE.M. ZhouQ.T. Understanding the impact of protein–excipient interactions on physical stability of spray-dried protein solids.Mol. Pharm.20211872657266810.1021/acs.molpharmaceut.1c0018934096731
    [Google Scholar]
  72. Di StasioE. De CristofaroR. The effect of shear stress on protein conformation.Biophys. Chem.201015311810.1016/j.bpc.2010.07.00220797815
    [Google Scholar]
  73. ChristofJ. GebhardtM. RiefM. Biochemistry. Force signaling in biology.Science200932459321278128010.1126/science.117587419498156
    [Google Scholar]
  74. HippM. KasturiP. The proteostasis network and its decline in ageing.Nat. Rev. Mol. Cell. Biol.201920742143510.1038/s41580‑019‑0101‑y
    [Google Scholar]
  75. NillegodaN. WentinkA. Protein disaggregation in multicellular organisms.Trends Biochem. Sci.201843428530010.1016/j.tibs.2018.02.003
    [Google Scholar]
  76. KlimekC. KathageB. WördehoffJ. HöhfeldJ. BAG3-mediated proteostasis at a glance.J. Cell Sci.2017130172781278810.1242/jcs.203679
    [Google Scholar]
  77. ClarkR.H. LatypovR.F. De ImusC. CarterJ. WilsonZ. ManchulenkoK. BrownM.E. KetchemR.R. Remediating agitation-induced antibody aggregation by eradicating exposed hydrophobic motifs.MAbs2014661540155010.4161/mabs.3625225484048
    [Google Scholar]
  78. EomK.S. CheongJ.S. LeeS.J. Structural analyses of zinc finger domains for specific interactions with DNA.J. Microbiol. Biotechnol.201626122019202910.4014/jmb.1609.0902127713215
    [Google Scholar]
  79. RoseG.D. WolfendenR. Hydrogen bonding, hydrophobicity, packing, and protein folding.Annu. Rev. Biophys. Biomol. Struct.199322138141510.1146/annurev.bb.22.060193.0021218347995
    [Google Scholar]
  80. KathuriaS.V. ChanY.H. NobregaR.P. ÖzenA. MatthewsC.R. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.Protein Sci.201625366267510.1002/pro.286026660714
    [Google Scholar]
  81. PaceC.N. FuH. Lee FryarK. LanduaJ. TrevinoS.R. SchellD. ThurlkillR.L. ImuraS. ScholtzJ.M. GajiwalaK. SevcikJ. UrbanikovaL. MyersJ.K. TakanoK. HebertE.J. ShirleyB.A. GrimsleyG.R. Contribution of hydrogen bonds to protein stability.Protein Sci.201423565266110.1002/pro.244924591301
    [Google Scholar]
  82. DonaldJ.E. KulpD.W. DeGradoW.F. Salt bridges: Geometrically specific, designable interactions.Proteins201179389891510.1002/prot.2292721287621
    [Google Scholar]
  83. FassD. ThorpeC. Chemistry and enzymology of disulfide cross-linking in proteins.Chem. Rev.201811831169119810.1021/acs.chemrev.7b0012328699750
    [Google Scholar]
  84. MelnikovS. MailliotJ. RiggerL. NeunerS. ShinB.S. YusupovaG. DeverT.E. MicuraR. YusupovM. Molecular insights into protein synthesis with proline residues.EMBO Rep.201617121776178410.15252/embr.20164294327827794
    [Google Scholar]
  85. DongH. SharmaM. ZhouH.X. CrossT.A. Glycines: Role in α-helical membrane protein structures and a potential indicator of native conformation.Biochemistry201251244779478910.1021/bi300090x22650985
    [Google Scholar]
  86. SchusterJ. KamujuV. MathaesR. Protein stability after administration: A physiologic consideration.J. Pharm. Sci.2023112237037610.1016/j.xphs.2022.09.03236202247
    [Google Scholar]
  87. CurrierJ.R. GalleyL.M. WenschuhH. MorafoV. Ratto-KimS. GrayC.M. MabokoL. HoelscherM. MarovichM.A. CoxJ.H. Peptide impurities in commercial synthetic peptides and their implications for vaccine trial assessment.Clin. Vaccine Immunol.200815226727610.1128/CVI.00284‑0718077621
    [Google Scholar]
  88. Mathieu VerbekenS.V.D. VerbekenM. WynendaeleE. Purity profiling of peptide drugs.J. Bioanal. Biomed.2012s61510.4172/1948‑593X.S6‑003
    [Google Scholar]
  89. WuL.C. ChenF. LeeS.L. RawA. YuL.X. Building parity between brand and generic peptide products: Regulatory and scientific considerations for quality of synthetic peptides.Int. J. Pharm.20175181-232033410.1016/j.ijpharm.2016.12.05128027918
    [Google Scholar]
  90. Q3A(R). Questions and answers on biosimilar development and the bpci act guidance for industry | FDA.2017Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/questions-and-answers-biosimilar-development-and-bpci-act-guidance-industry
  91. Questions and answers on biosimilar development and the bpci act guidance for industry biosimilars revision 2 questions and answers on biosimilar development and the bpci act guidance for industry.2012 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/questions-and-answers-biosimilar-development-and-bpci-act-guidance-industry
  92. Q3B(R) impurities in new drug products (Revision 3) | FDA.2017Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q3br-impurities-new-drug-products-revision-3#:~:text=Products%20(Revision%203)-,Q3B(R)%20Impurities%20in%20New%20Drug,Products%20(Revision%203)%20August%202006&text=This%20guidance%20provides%20recommendations%20for,a%20region%20or%20member%20state.
  93. Development, production, characterisation and specifications for monoclonal antibodies and related products - Scientific guideline.2019Available from: https://www.ema.europa.eu/en/development-production-characterisation-specifications-monoclonal-antibodies-related-products-scientific-guideline 2016
  94. CoghlanJ. HeH. SchwendemanA.S. Overview of humira® biosimilars: Current european landscape and future implications.J. Pharm. Sci.202111041572158210.1016/j.xphs.2021.02.00333556387
    [Google Scholar]
  95. LiS. LingS. WangD. WangX. HaoF. YinL. YuanZ. LiuL. ZhangL. LiY. ChenY. LuoL. DaiY. ZhangL. ChenL. DengD. TangW. ZhangS. WangS. CaiY. Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial.Cell Stem Cell2024317961973.e810.1016/j.stem.2024.04.02138759653
    [Google Scholar]
  96. YanwinitchaiS. DaoH.M. MoonC. Williams IIIR.O. Synergistic cryoprotective effect of deaeration and polysorbate 80 on IgG denaturation during thin-film freeze-drying.J. Drug Deliv. Sci. Technol.202410010610610.1016/j.jddst.2024.106106
    [Google Scholar]
  97. VigoloV. NieroG. PenasaM. De MarchiM. Effects of preservative, storage time, and temperature of analysis on detailed milk protein composition determined by reversed-phase high-performance liquid chromatography.J. Dairy Sci.2022105107917792510.3168/jds.2022‑2206936055834
    [Google Scholar]
  98. HuangJ. ZengL. WeiS. HaibinT. XiaoliangJ. MingjiangW. YueY. NIRS prediction of the protein, fat, and ash of Sargassum fusiforme at different growth stages: A quality control approach.Infrared. Phys. Technol.202413710521110.1016/j.infrared.2024.105211
    [Google Scholar]
  99. XiaoS. LuY. WuQ. YangJ. ChenJ. ZhongS. EliezerD. TanQ. WuC. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands.Int. J. Biol. Macromol.202117838139310.1016/j.ijbiomac.2021.02.21033662414
    [Google Scholar]
  100. VillanuevaJ. CanalsF. VillegasV. QuerolE. AvilésF.X. Hydrogen exchange monitored by MALDI-TOF mass spectrometry for rapid characterization of the stability and conformation of proteins.FEBS Lett.20004721273310.1016/S0014‑5793(00)01418‑610781799
    [Google Scholar]
  101. RanaS. KapoorS. PanwarH. KumarV. MahajanB.V.C. Impact of packaging materials and storage durations on physico-chemical, techno-functional, antioxidant and oxidation properties of tomato seed protein isolate.J. Stored Prod. Res.202410610228410.1016/j.jspr.2024.102284
    [Google Scholar]
  102. VincenzettiS. CecchiT. PerinelliD.R. PucciarelliS. PolzonettiV. BonacucinaG. ArianiA. ParrocchiaL. SperaD.M. FerrettiE. VallesiP. PolidoriP. Effects of freeze-drying and spray-drying on donkey milk volatile compounds and whey proteins stability.Lebensm. Wiss. Technol.20188818919510.1016/j.lwt.2017.10.019
    [Google Scholar]
  103. AisihaerX. GuoH. LiuC. Interchain disulfide engineering enables the efficient production of functional HLA-DQ-Fc fusion proteins.J. Biol. Chem.2024300910765210.1016/j.jbc.2024.10765239121997
    [Google Scholar]
  104. QiY.K. SiY.Y. DuS.S. LiangJ. WangK-W. ZhengJ-S. Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes.Sci. China Chem.201962329931210.1007/s11426‑018‑9401‑8
    [Google Scholar]
  105. ThompsonN.E. ArthurT.M. BurgessR.R. Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: Application to epitope-tagged green fluorescent protein.Anal. Biochem.2003323217117910.1016/j.ab.2003.08.00314656522
    [Google Scholar]
  106. ZhaoM. ZachariaN.S. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation.J. Chem. Phys.20181491616332610.1063/1.504034630384671
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665375151250626124048
Loading
/content/journals/ppl/10.2174/0109298665375151250626124048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test