Skip to content
2000
image of Innovative Immunoinformatics Tools for Enhancing MHC (Major Histocompatibility Complex) Class I Epitope Prediction in Immunoproteomics

Abstract

Immune responses depend on the identification and prediction of peptides that bind to MHC (major histocompatibility complex) class I molecules, especially when it comes to the creation of vaccines, cancer immunotherapy, and autoimmune disorders. The ability to predict and evaluate MHC class immunoproteomics have completely transformed I epitopes in conjunction with immunoinformatics technologies. However, precisely identifying epitopes across various populations and situations is extremely difficult due to the complexity and diversity of MHC class I binding peptides. The most recent developments in immunoinformatics technology that have improved MHC class I epitope prediction are examined in this article. The sensitivity and specificity of epitope prediction have been greatly enhanced by recent developments that have concentrated on bioinformatics algorithms, artificial intelligence, and machine learning models. Potential epitopes are predicted using large-scale peptide-MHC binding data, structural characteristics, and interaction dynamics using tools like NetMHC, IEDB, and MHCflurry. Additionally, the integration of proteomic, transcriptomic, and genomic data has improved prediction accuracy in real-world scenarios by enabling more accurate identification of naturally occurring peptides. Furthermore, newer techniques like deep learning and multi-omics data integration have the potential to overcome peptide binding prediction constraints. Utilizing these technologies is expected to speed up the identification of new epitopes, improve the accuracy of immunotherapy techniques, and enable customized vaccine development. These innovative techniques, their uses, and potential future developments for improving MHC class I epitope prediction in immunoproteomics are highlighted in this study.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665373152250625054723
2025-07-14
2025-09-03
Loading full text...

Full text loading...

References

  1. Gomase V.S. Kale K.V. Chikhale N.J. Changbhale S.S. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus. Curr. Drug Discov. Technol. 2007 4 2 117 125 10.2174/157016307781483441 17691913
    [Google Scholar]
  2. Gomase V. Prediction of antigenic epitopes of neurotoxin Bmbktx1 from Mesobuthus martensii. Curr. Drug Discov. Technol. 2006 3 3 225 229 10.2174/157016306780136817 17311567
    [Google Scholar]
  3. Gomase V.S. Kemkar K.R. Baviskar B.A. Mundhe V.S. Sakhare A.D. Kolsure A.K. Bhimanwar A.A. Dhamane S.P. Potnis V.V. Immunoinformatics study of physical properties of scorpion neurotoxin Bmk-M8 from Mesobuthus martensii. Int. J. Mod. Pharm. Res. 2023 7 3 13 15
    [Google Scholar]
  4. Changbhale S.S. Chitlange N.R. Gomase V.S. Kale K.V. An immunoinformatics approach to design synthetic peptide vaccine from Dendroaspis polylepis polylepis dendrotoxin-K (DTX-K). J. Environ. Anal. Toxicol. 2012 2 7 157 10.4172/2161‑0525.1000157
    [Google Scholar]
  5. Mishra S. Gomase V.S. An immunoinformatics-based approach to identify and design synthetic peptide vaccine for loiasis. Int. J. Adv. Res. Sci. Eng. 2018 7 3 694 707
    [Google Scholar]
  6. Gomase V.S. Kale K.V. Development of MHC class nonamers from Cowpea mosaic viral protein. Gene Ther. Mol. Biol. 2008 12 87 94
    [Google Scholar]
  7. Gomase V.S. Kale K.V. Prediction of MHC binder for fragment-based viral peptide vaccines from Cabbage leaf curl virus. Gene Ther. Mol. Biol. 2008 12 83 86
    [Google Scholar]
  8. Gomase V.S. Waghmare S.B. Jadhav B.V. Kale K.V. Mapping of MHC class binding nonamers from lipid binding protein of Ascaridia galli. Gene Ther. Mol. Biol. 2009 13 10 14
    [Google Scholar]
  9. Gomase V.S. Chitlange N.R. Microbial proteomics approach for sensitive quantitative predictions of MHC binding peptide from Taenia ovis. J. Data Mining Genomics Proteomics 2012 3 3 121 10.4172/2153‑0602.1000121
    [Google Scholar]
  10. Mishra S. Gomase V.S. Cytochrome B- Analysis of hydrophobicity, surface accessibility, antigenicity, and prediction of MHC I and MHC II binders from dracunculiasis. Med. Chem. 2016 6 41 46 10.4172/2161‑0444.1000322
    [Google Scholar]
  11. Kumar N. Bajiya N. Patiyal S. Raghava G.P.S. Multi-perspectives and challenges in identifying B-cell epitopes. Protein Sci. 2023 32 11 e4785 10.1002/pro.4785 37733481
    [Google Scholar]
  12. Liu Z. Shi M. Ren Y. Xu H. Weng S. Ning W. Ge X. Liu L. Guo C. Duo M. Li L. Li J. Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol. Cancer 2023 22 1 35 10.1186/s12943‑023‑01738‑6 36797756
    [Google Scholar]
  13. Tom J.K. Albin T.J. Manna S. Moser B.A. Steinhardt R.C. Esser-Kahn A.P. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development. Trends Biotechnol. 2019 37 4 373 388 10.1016/j.tibtech.2018.10.004 30470547
    [Google Scholar]
  14. Megha K.B. Mohanan P.V. Role of immunoglobulin and antibodies in disease management. Int. J. Biol. Macromol. 2021 169 28 38 10.1016/j.ijbiomac.2020.12.073 33340621
    [Google Scholar]
  15. Gomase V.S. Tagore S. Vaccinomics. Gene Ther. Mol. Biol. 2008 12 141 146
    [Google Scholar]
  16. Falkiewicz B. Liberek B. Structure and function of major histocompatibility antigens (MHC) class I. Postepy Biochem. 1996 42 1 41 48 8657654
    [Google Scholar]
  17. Sherkhane A.S. Changbhale S.S. Gomase V.S. Quantitative immunoproteomics approach for the development of MHC Class I associated peptide antigens of alpha-cobra toxin from Naja kaouthia. J. Biotechnol. Biomater. 2014 4 169
    [Google Scholar]
  18. Gomase V.S. Chitlange N.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Onchocerca volvulus. Drug Invention Today 2010 2 6 297 299
    [Google Scholar]
  19. Gomase V.S. Chitlange N.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Treponema pallidum. J. Biosci. Technol. 2010 1 2 84 89
    [Google Scholar]
  20. Gomase V.S. Chitlange N.R. Immunoproteomics approach for synthetic vaccine development from Streptococcus dysgalactiae subsp. equisimilis. Int. J. Pharma Bio Sci. 2010 1 3 1 6
    [Google Scholar]
  21. Øynebråten I. Involvement of autophagy in MHC class I antigen presentation. Scand. J. Immunol. 2020 92 5 e12978 10.1111/sji.12978 32969499
    [Google Scholar]
  22. Lehner P.J. Cresswell P. Recent developments in MHC-class-I-mediated antigen presentation. Curr. Opin. Immunol. 2004 16 1 82 89 10.1016/j.coi.2003.11.012 14734114
    [Google Scholar]
  23. Tiwari N. Garbi N. Reinheckel T. Moldenhauer G. Hämmerling G.J. Momburg F. A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J. Immunol. 2007 178 12 7932 7942 10.4049/jimmunol.178.12.7932 17548631
    [Google Scholar]
  24. D’Alicandro V. Romania P. Melaiu O. Fruci D. Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases. Mol. Immunol. 2019 113 11 15 10.1016/j.molimm.2018.03.024 29625843
    [Google Scholar]
  25. Leone P. Shin E.C. Perosa F. Vacca A. Dammacco F. Racanelli V. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells. J. Natl. Cancer Inst. 2013 105 16 1172 1187 10.1093/jnci/djt184 23852952
    [Google Scholar]
  26. McDevitt H. Evolution of MHC class II allelic diversity. Immunol. Rev. 1995 143 1 113 122 10.1111/j.1600‑065X.1995.tb00672.x 7558072
    [Google Scholar]
  27. Vasoya D. Connelley T. Tzelos T. Todd H. Ballingall K.T. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep. HLA 2024 103 2 e15356 10.1111/tan.15356 38304958
    [Google Scholar]
  28. Slieker R.C. Warmerdam D.O. Vermeer M.H. van Doorn R. Heemskerk M.H.M. Scheeren F.A. Reassessing human MHC-I genetic diversity in T cell studies. Sci. Rep. 2024 14 1 7966 10.1038/s41598‑024‑58777‑2 38575727
    [Google Scholar]
  29. Zhao X. Ma S. Wang B. Jiang X. Xu S. PGG. MHC: Toward understanding the diversity of major histocompatibility complexes in human populations. Nucleic Acids Res. 2023 51 D1 D1102 D1108 10.1093/nar/gkac997 36321663
    [Google Scholar]
  30. Natarajan K. Li H. Mariuzza R.A. Margulies D.H. MHC class I molecules, structure and function. Rev. Immunogenet. 1999 1 1 32 46 11256571
    [Google Scholar]
  31. Gomase V.S. Dhamane S.P. Kakade P.G. Immunoproteomics: A review of techniques, applications, and advancements. Protein Pept. Lett. 2024 31 11 827 849 10.2174/0109298665333029240926092919 39506417
    [Google Scholar]
  32. Gomase V.S. Dhamane S.P. Kemkar K.R. Kakade P.G. Sakhare A.D. Immunoproteomics- approach to diagnostic and vaccine development. Protein Pept. Lett. 2024 31 10 773 795 10.2174/0109298665342261240912105111 39473104
    [Google Scholar]
  33. Fulton K.M. Baltat I. Twine S.M. Immunoproteomics methods and techniques. Methods Mol. Biol. 2019 2024 25 58 10.1007/978‑1‑4939‑9597‑4_2 31364041
    [Google Scholar]
  34. Sherkhane A.S. Gomase V.S. Immunoproteomics: Current approach for subunit vaccine design. Int. J. Immunol. Stud. 2014 2 1 16 28 10.1504/IJIS.2014.066845
    [Google Scholar]
  35. Gomase V.S. Shyamkumar K. Prediction of antigenic epitopes and MHC binders of neurotoxin alpha-KTx 3.8 from Mesobuthus tamulus sindicus. Afr. J. Biotechnol. 2009 8 23 6658 6676
    [Google Scholar]
  36. Gomase V.S. Kale K.V. Shyamkumar K. Prediction of MHC binding peptides and epitopes from Groundnut bud necrosis virus (GBNV). J. Proteomics Bioinform. 2008 1 4 188 205 10.4172/jpb.1000024
    [Google Scholar]
  37. Mendes M. Mahita J. Blazeska N. Greenbaum J. Ha B. Wheeler K. Wang J. Shackelford D. Sette A. Peters B. IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database. Protein Sci. 2023 32 4 e4605 10.1002/pro.4605 36806329
    [Google Scholar]
  38. Vita R. Blazeska N. Marrama D. The Immune Epitope Database (IEDB)- 2024 update. Nucleic Acids Res. 2024 Advance online publication
    [Google Scholar]
  39. O’Donnell T.J. Rubinsteyn A. Bonsack M. Riemer A.B. Laserson U. Hammerbacher J. MHCflurry- Open-source class I MHC binding affinity prediction. Cell Syst. 2018 7 1 129 132.e4 10.1016/j.cels.2018.05.014 29960884
    [Google Scholar]
  40. O’Donnell T.J. Rubinsteyn A. Laserson U. MHCflurry 2.0- Improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 2020 11 1 42 48.e7 10.1016/j.cels.2020.06.010 32711842
    [Google Scholar]
  41. Dennehy R. McClean S. Immunoproteomics: The key to discovery of new vaccine antigens against bacterial respiratory infections. Curr. Protein Pept. Sci. 2012 13 8 807 815 10.2174/138920312804871184 23305366
    [Google Scholar]
  42. Eggensperger S. Tampé R. The transporter associated with antigen processing: A key player in adaptive immunity. Biol. Chem. 2015 396 9-10 1059 1072 10.1515/hsz‑2014‑0320 25781678
    [Google Scholar]
  43. Kelly A. Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics 2019 71 3 161 170 10.1007/s00251‑018‑1082‑2 30215098
    [Google Scholar]
  44. Nielsen M. Andreatta M. Peters B. Buus S. Immunoinformatics- Predicting peptide-MHC binding. Annu. Rev. Biomed. Data Sci. 2020 3 1 191 215 10.1146/annurev‑biodatasci‑021920‑100259 37427310
    [Google Scholar]
  45. Perez M.A.S. Cuendet M.A. Röhrig U.F. Michielin O. Zoete V. Structural prediction of peptide-MHC binding modes. Methods Mol. Biol. 2022 2405 245 282 10.1007/978‑1‑0716‑1855‑4_13 35298818
    [Google Scholar]
  46. Aranha M.P. Spooner C. Demerdash O. Czejdo B. Smith J.C. Mitchell J.C. Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets. Biochim. Biophys. Acta, Gen. Subj. 2020 1864 4 129535 10.1016/j.bbagen.2020.129535 31954798
    [Google Scholar]
  47. Dönnes P. Support vector machine-based prediction of MHC-binding peptides. Methods Mol. Biol. 2007 409 273 282 10.1007/978‑1‑60327‑118‑9_19 18450007
    [Google Scholar]
  48. Srivastava A. Ghosh S. Anantharaman N. Jayaraman V.K. Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests. J. Immunol. Methods 2013 387 1-2 284 292 10.1016/j.jim.2012.09.013 23058675
    [Google Scholar]
  49. Dhusia K. Su Z. Wu Y. A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes. Mol. Immunol. 2021 139 76 86 10.1016/j.molimm.2021.07.020 34455212
    [Google Scholar]
  50. Hu Y. Wang Z. Hu H. Wan F. Chen L. Xiong Y. Wang X. Zhao D. Huang W. Zeng J. ACME: pan-specific peptide–MHC class I binding prediction through attention-based deep neural networks. Bioinformatics 2019 35 23 4946 4954 10.1093/bioinformatics/btz427 31120490
    [Google Scholar]
  51. Samudrala M. Dhaveji S. Savsani K. Dakshanamurthy S. AutoEpiCollect, a novel machine learning-based GUI software for vaccine design- Application to pan-cancer vaccine design targeting PIK3CA neoantigens. Bioengineering 2024 11 4 322 10.3390/bioengineering11040322 38671743
    [Google Scholar]
  52. Martínez-Naves E. Lafuente E.M. Reche P.A. Recognition of the ligand-type specificity of classical and non-classical MHC I proteins. FEBS Lett. 2011 585 21 3478 3484 10.1016/j.febslet.2011.10.007 22001201
    [Google Scholar]
  53. Jurtz V. Paul S. Andreatta M. Marcatili P. Peters B. Nielsen M. NetMHCpan-4.0- Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 2017 199 9 3360 3368 10.4049/jimmunol.1700893 28978689
    [Google Scholar]
  54. Vita R. Mahajan S. Overton J.A. Dhanda S.K. Martini S. Cantrell J.R. Wheeler D.K. Sette A. Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019 47 D1 D339 D343 10.1093/nar/gky1006 30357391
    [Google Scholar]
  55. Rammensee H.G. Bachmann J. Emmerich N.P.N. Bachor O.A. Stevanović S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics 1999 50 3-4 213 219 10.1007/s002510050595 10602881
    [Google Scholar]
  56. Hashemzadeh P. nezhad S.A. Khoshkhabar H. Immunoinformatics analysis of Brucella melitensis to approach a suitable vaccine against brucellosis. J. Genet. Eng. Biotechnol. 2023 21 1 152 10.1186/s43141‑023‑00614‑6 38019359
    [Google Scholar]
  57. Liu R. Hu Y.F. Huang J.D. Fan X. A Bayesian approach to estimate MHC-peptide binding threshold. Brief. Bioinform. 2023 24 4 bbad208 10.1093/bib/bbad208 37279464
    [Google Scholar]
  58. Thomas S. Abraham A. Baldwin J. Piplani S. Petrovsky N. Artificial intelligence in vaccine and drug design. Methods Mol. Biol. 2022 2410 131 146 10.1007/978‑1‑0716‑1884‑4_6 34914045
    [Google Scholar]
  59. McCaffrey P. Artificial intelligence for vaccine design. Methods Mol. Biol. 2022 2412 3 13 10.1007/978‑1‑0716‑1892‑9_1 34918238
    [Google Scholar]
  60. Han Y. Kim D. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. BMC Bioinformatics 2017 18 1 585 10.1186/s12859‑017‑1997‑x 29281985
    [Google Scholar]
  61. Pei B. Hsu Y.H. IConMHC: A deep learning convolutional neural network model to predict peptide and MHC-I binding affinity. Immunogenetics 2020 72 5 295 304 10.1007/s00251‑020‑01163‑9 32577798
    [Google Scholar]
  62. Jiang L. Yu H. Li J. Tang J. Guo Y. Guo F. Predicting MHC class I binder: Existing approaches and a novel recurrent neural network solution. Brief. Bioinform. 2021 22 6 bbab216 10.1093/bib/bbab216 34131696
    [Google Scholar]
  63. Reynisson B. Alvarez B. Paul S. Peters B. Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020 48 W1 W449 W454 10.1093/nar/gkaa379 32406916
    [Google Scholar]
  64. Wang F. Wang H. Wang L. Lu H. Qiu S. Zang T. Zhang X. Hu Y. MHCRoBERTa: pan-specific peptide–MHC class I binding prediction through transfer learning with label-agnostic protein sequences. Brief. Bioinform. 2022 23 3 bbab595 10.1093/bib/bbab595 35443027
    [Google Scholar]
  65. Roomp K. Antes I. Lengauer T. Predicting MHC class I epitopes in large datasets. BMC Bioinformatics 2010 11 1 90 10.1186/1471‑2105‑11‑90 20163709
    [Google Scholar]
  66. Lata S. Bhasin M. Raghava G.P.S. Application of machine learning techniques in predicting MHC binders. Methods Mol. Biol. 2007 409 201 215 10.1007/978‑1‑60327‑118‑9_14 18450002
    [Google Scholar]
  67. Bhasin M. Raghava G.P.S. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004 22 23-24 3195 3204 10.1016/j.vaccine.2004.02.005 15297074
    [Google Scholar]
  68. Altmann D.M. New tools for MHC research from machine learning and predictive algorithms to the tumour immunopeptidome. Immunology 2018 154 3 329 330 10.1111/imm.12956 29902342
    [Google Scholar]
  69. Suri S. Dakshanamurthy S. IntegralVac- A machine learning-based comprehensive multivalent epitope vaccine design method. Vaccines 2022 10 10 1678 10.3390/vaccines10101678 36298543
    [Google Scholar]
  70. Wilman W. Wróbel S. Bielska W. Deszynski P. Dudzic P. Jaszczyszyn I. Kaniewski J. Młokosiewicz J. Rouyan A. Satława T. Kumar S. Greiff V. Krawczyk K. Machine-designed biotherapeutics: Opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief. Bioinform. 2022 23 4 bbac267 10.1093/bib/bbac267 35830864
    [Google Scholar]
  71. Clifford J.N. Høie M.H. Deleuran S. Peters B. Nielsen M. Marcatili P. BepiPred-3.0: Improved B-cell epitope prediction using protein language models. Protein Sci. 2022 31 12 e4497 10.1002/pro.4497 36366745
    [Google Scholar]
  72. Grewal S. Hegde N. Yanow S.K. Integrating machine learning to advance epitope mapping. Front. Immunol. 2024 15 1463931 10.3389/fimmu.2024.1463931 39403389
    [Google Scholar]
  73. Rifaioglu A.S. Atas H. Martin M.J. Cetin-Atalay R. Atalay V. Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2019 20 5 1878 1912 10.1093/bib/bby061 30084866
    [Google Scholar]
  74. Jiang Y. Huo M. Cheng Li S. TEINet: A deep learning framework for prediction of TCR–epitope binding specificity. Brief. Bioinform. 2023 24 2 bbad086 10.1093/bib/bbad086 36907658
    [Google Scholar]
  75. Silva-Arrieta S. Goulder P.J.R. Brander C. In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction. PLoS Pathog. 2020 16 6 e1008607 10.1371/journal.ppat.1008607 32497149
    [Google Scholar]
  76. Shao X.M. Bhattacharya R. Huang J. Sivakumar I.K.A. Tokheim C. Zheng L. Hirsch D. Kaminow B. Omdahl A. Bonsack M. Riemer A.B. Velculescu V.E. Anagnostou V. Pagel K.A. Karchin R. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunol. Res. 2020 8 3 396 408 10.1158/2326‑6066.CIR‑19‑0464 31871119
    [Google Scholar]
  77. Millar D.G. Yang S.Y.C. Sayad A. Zhao Q. Nguyen L.T. Warner K. Sangster A.G. Nakatsugawa M. Murata K. Wang B.X. Shaw P. Clarke B. Bernardini M.Q. Pugh T. Thibault P. Hirano N. Perreault C. Ohashi P.S. Identification of antigenic epitopes recognized by tumor infiltrating lymphocytes in high grade serous ovarian cancer by multi-omics profiling of the auto-antigen repertoire. Cancer Immunol. Immunother. 2023 72 7 2375 2392 10.1007/s00262‑023‑03413‑7 36943460
    [Google Scholar]
  78. Dhanushkumar T. Santhosh M.E. Selvam P.K. Rambabu M. Dasegowda K.R. Vasudevan K. George Priya Doss C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci. 2024 337 122360 10.1016/j.lfs.2023.122360 38135117
    [Google Scholar]
  79. Nieman D.C. Pence B.D. Exercise immunology: Future directions. J. Sport Health Sci. 2020 9 5 432 445 10.1016/j.jshs.2019.12.003 32928447
    [Google Scholar]
  80. Gomase V. Tagore S. Omics: An approach for drug targets. Curr. Drug Metab. 2008 9 3 189 10.2174/138920008783884722 18336219
    [Google Scholar]
  81. Zheng Y. Liu Y. Yang J. Dong L. Zhang R. Tian S. Yu Y. Ren L. Hou W. Zhu F. Mai Y. Han J. Zhang L. Jiang H. Lin L. Lou J. Li R. Lin J. Liu H. Kong Z. Wang D. Dai F. Bao D. Cao Z. Chen Q. Chen Q. Chen X. Gao Y. Jiang H. Li B. Li B. Li J. Liu R. Qing T. Shang E. Shang J. Sun S. Wang H. Wang X. Zhang N. Zhang P. Zhang R. Zhu S. Scherer A. Wang J. Wang J. Huo Y. Liu G. Cao C. Shao L. Xu J. Hong H. Xiao W. Liang X. Lu D. Jin L. Tong W. Ding C. Li J. Fang X. Shi L. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat. Biotechnol. 2024 42 7 1133 1149 10.1038/s41587‑023‑01934‑1 37679543
    [Google Scholar]
  82. Liu X. Peng T. Xu M. Lin S. Hu B. Chu T. Liu B. Xu Y. Ding W. Li L. Cao C. Wu P. Spatial multi-omics: Deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 2024 17 1 72 10.1186/s13045‑024‑01596‑9 39182134
    [Google Scholar]
  83. Backert L. Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 2015 7 1 119 10.1186/s13073‑015‑0245‑0 26589500
    [Google Scholar]
  84. Bahrami A.A. Payandeh Z. Khalili S. Zakeri A. Bandehpour M. Immunoinformatics- In silico approaches and computational design of a multi-epitope, immunogenic protein. Int. Rev. Immunol. 2019 38 6 307 322 10.1080/08830185.2019.1657426 31478759
    [Google Scholar]
  85. Gomase V. Tagore S. Transcriptomics. Curr. Drug Metab. 2008 9 3 245 249 10.2174/138920008783884759 18336229
    [Google Scholar]
  86. Gomase V. Kale K. Tagore S. Hatture S. Proteomics: Technologies for protein analysis. Curr. Drug Metab. 2008 9 3 213 220 10.2174/138920008783884740 18336224
    [Google Scholar]
  87. Gomase V. Tagore S. Changbhale S. Kale K. Pharmacogenomics. Curr. Drug Metab. 2008 9 3 207 212 10.2174/138920008783884830 18336223
    [Google Scholar]
  88. Gomase V. Changbhale S. Patil S. Kale K. Metabolomics. Curr. Drug Metab. 2008 9 1 89 98 10.2174/138920008783331149 18220576
    [Google Scholar]
  89. Gomase V. Tagore S. Epigenomics. Curr. Drug Metab. 2008 9 3 232 237 10.2174/138920008783884821 18336226
    [Google Scholar]
  90. Shuken S.R. An introduction to mass spectrometry-based proteomics. J. Proteome Res. 2023 22 7 2151 2171 10.1021/acs.jproteome.2c00838 37260118
    [Google Scholar]
  91. Chu C.P. Liu S. Song W. Xu E.Y. Nabity M.B. Small RNA sequencing evaluation of renal microRNA biomarkers in dogs with X-linked hereditary nephropathy. Sci. Rep. 2021 11 1 17437 10.1038/s41598‑021‑96870‑y 34465843
    [Google Scholar]
  92. Liu X. Li X. Chen L. Hsu A.C.Y. Asquith K.L. Liu C. Laurie K. Barr I. Foster P.S. Yang M. Proteomic analysis reveals a novel therapeutic strategy using fludarabine for steroid-resistant asthma exacerbation. Front. Immunol. 2022 13 805558 10.3389/fimmu.2022.805558 35280986
    [Google Scholar]
  93. Oughtred R. Rust J. Chang C. Breitkreutz B.J. Stark C. Willems A. Boucher L. Leung G. Kolas N. Zhang F. Dolma S. Coulombe-Huntington J. Chatr-aryamontri A. Dolinski K. Tyers M. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021 30 1 187 200 10.1002/pro.3978 33070389
    [Google Scholar]
  94. Tripodi L. Sasso E. Feola S. Coluccino L. Vitale M. Leoni G. Szomolay B. Pastore L. Cerullo V. Systems biology approaches for the improvement of oncolytic virus-based immunotherapies. Cancers 2023 15 4 1297 10.3390/cancers15041297 36831638
    [Google Scholar]
  95. Bergman P.J. Cancer Immunotherapy. Vet. Clin. North Am. Small Anim. Pract. 2024 54 3 441 468 10.1016/j.cvsm.2023.12.002 38158304
    [Google Scholar]
  96. Rui R. Zhou L. He S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023 14 1212476 10.3389/fimmu.2023.1212476 37691932
    [Google Scholar]
  97. Szeto G.L. Finley S.D. Integrative approaches to cancer immunotherapy. Trends Cancer 2019 5 7 400 410 10.1016/j.trecan.2019.05.010 31311655
    [Google Scholar]
  98. Cha J.H. Chan L.C. Song M.S. Hung M.C. New approaches on cancer immunotherapy. Cold Spring Harb. Perspect. Med. 2020 10 8 a036863 10.1101/cshperspect.a036863 31615865
    [Google Scholar]
  99. Riley R.S. June C.H. Langer R. Mitchell M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019 18 3 175 196 10.1038/s41573‑018‑0006‑z 30622344
    [Google Scholar]
  100. Hammershaimb E.A.D. Campbell J.D. Vaccine Development. Pediatr. Clin. North Am. 2024 71 3 529 549 10.1016/j.pcl.2024.01.018 38754940
    [Google Scholar]
  101. Woodland D.L. Vaccine Development. Viral Immunol. 2017 30 3 141 10.1089/vim.2017.29017.dlw 28281914
    [Google Scholar]
  102. Hamley I.W. Peptides for vaccine development. ACS Appl. Bio Mater. 2022 5 3 905 944 10.1021/acsabm.1c01238 35195008
    [Google Scholar]
  103. Moore T.V. Nishimura M.I. Improved MHC II epitope prediction — A step towards personalized medicine. Nat. Rev. Clin. Oncol. 2020 17 2 71 72 10.1038/s41571‑019‑0315‑0 31836878
    [Google Scholar]
  104. Sahin U. Derhovanessian E. Miller M. Kloke B.P. Simon P. Löwer M. Bukur V. Tadmor A.D. Luxemburger U. Schrörs B. Omokoko T. Vormehr M. Albrecht C. Paruzynski A. Kuhn A.N. Buck J. Heesch S. Schreeb K.H. Müller F. Ortseifer I. Vogler I. Godehardt E. Attig S. Rae R. Breitkreuz A. Tolliver C. Suchan M. Martic G. Hohberger A. Sorn P. Diekmann J. Ciesla J. Waksmann O. Brück A.K. Witt M. Zillgen M. Rothermel A. Kasemann B. Langer D. Bolte S. Diken M. Kreiter S. Nemecek R. Gebhardt C. Grabbe S. Höller C. Utikal J. Huber C. Loquai C. Türeci Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017 547 7662 222 226 10.1038/nature23003 28678784
    [Google Scholar]
  105. Xie N. Shen G. Gao W. Huang Z. Huang C. Fu L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 9 10.1038/s41392‑022‑01270‑x 36604431
    [Google Scholar]
  106. Schumacher T.N. Schreiber R.D. Neoantigens in cancer immunotherapy. Science 2015 348 6230 69 74 10.1126/science.aaa4971 25838375
    [Google Scholar]
  107. Ma W. Pham B. Li T. Cancer neoantigens as potential targets for immunotherapy. Clin. Exp. Metastasis 2022 39 1 51 60 10.1007/s10585‑021‑10091‑1 33950415
    [Google Scholar]
  108. Sarfaraz M. Anjum F. Zahra D. Maqsood A. Ashfaq U.A. Recent updates on peptide molecules in drug and vaccine development. Curr. Pharm. Des. 2023 29 20 1564 1578 10.2174/1381612829666230717121632 37461342
    [Google Scholar]
  109. Reginald K. Chan Y. Plebanski M. Poh C.L. Development of peptide vaccines in dengue. Curr. Pharm. Des. 2018 24 11 1157 1173 10.2174/1381612823666170913163904 28914200
    [Google Scholar]
  110. Igarashi Y. Sasada T. Cancer vaccines- Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res. 2020 2020 1 13 10.1155/2020/5825401 33282961
    [Google Scholar]
  111. Iscaro A. Howard N.F. Muthana M. Nanoparticles- Properties and applications in cancer immunotherapy. Curr. Pharm. Des. 2019 25 17 1962 1979 10.2174/1381612825666190708214240 31566122
    [Google Scholar]
  112. Li J. Xiao Z. Wang D. Jia L. Nie S. Zeng X. Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol. Cancer 2023 22 1 141 10.1186/s12943‑023‑01844‑5 37649123
    [Google Scholar]
  113. Peng M. Mo Y. Wang Y. Wu P. Zhang Y. Xiong F. Guo C. Wu X. Li Y. Li X. Li G. Xiong W. Zeng Z. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer 2019 18 1 128 10.1186/s12943‑019‑1055‑6 31443694
    [Google Scholar]
  114. Sahin U. Türeci Ö. Personalized vaccines for cancer immunotherapy. Science 2018 359 6382 1355 1360 10.1126/science.aar7112 29567706
    [Google Scholar]
  115. Katsikis P.D. Ishii K.J. Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 2024 24 3 213 227 10.1038/s41577‑023‑00937‑y 37783860
    [Google Scholar]
  116. Shemesh C.S. Hsu J.C. Hosseini I. Shen B.Q. Rotte A. Twomey P. Girish S. Wu B. Personalized cancer vaccines- Clinical landscape, challenges, and opportunities. Mol. Ther. 2021 29 2 555 570 10.1016/j.ymthe.2020.09.038 33038322
    [Google Scholar]
  117. Holtsträter C. Schrörs B. Bukur T. Löwer M. Bioinformatics for cancer immunotherapy. Methods Mol. Biol. 2020 2120 1 9 10.1007/978‑1‑0716‑0327‑7_1 32124308
    [Google Scholar]
  118. Schaap-Johansen A.L. Vujović M. Borch A. Hadrup S.R. Marcatili P. T cell epitope prediction and its application to immunotherapy. Front. Immunol. 2021 12 712488 10.3389/fimmu.2021.712488 34603286
    [Google Scholar]
  119. Courcelles M. Durette C. Daouda T. Laverdure J.P. Vincent K. Lemieux S. Perreault C. Thibault P. MAPDP- A cloud-based computational platform for immunopeptidomics analyses. J. Proteome Res. 2020 19 4 1873 1881 10.1021/acs.jproteome.9b00859 32108478
    [Google Scholar]
  120. Bhattacharya M. Sarkar A. Wen Z.H. Wu Y.J. Chakraborty C. Rational design of a multi-epitope vaccine using neoantigen against colorectal cancer through structural immunoinformatics and ML-enabled simulation approach. Mol. Biotechnol. 2024 10.1007/s12033‑024‑01242‑2 39190054
    [Google Scholar]
  121. Borch A. Carri I. Reynisson B. Alvarez H.M.G. Munk K.K. Montemurro A. Kristensen N.P. Tvingsholm S.A. Holm J.S. Heeke C. Moss K.H. Hansen U.K. Schaap-Johansen A.L. Bagger F.O. de Lima V.A.B. Rohrberg K.S. Funt S.A. Donia M. Svane I.M. Lassen U. Barra C. Nielsen M. Hadrup S.R. IMPROVE: A feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition. Front. Immunol. 2024 15 1360281 10.3389/fimmu.2024.1360281 38633261
    [Google Scholar]
  122. Richard G. Princiotta M.F. Bridon D. Martin W.D. Steinberg G.D. De Groot A.S. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev. Vaccines 2022 21 2 173 184 10.1080/14760584.2022.2012456 34882038
    [Google Scholar]
  123. Rubinsteyn A. Kodysh J. Hodes I. Mondet S. Aksoy B.A. Finnigan J.P. Bhardwaj N. Hammerbacher J. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front. Immunol. 2018 8 1807 10.3389/fimmu.2017.01807 29403468
    [Google Scholar]
  124. Aldous A.R. Dong J.Z. Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Bioorg. Med. Chem. 2018 26 10 2842 2849 10.1016/j.bmc.2017.10.021 29111369
    [Google Scholar]
  125. Torrington E. Cancer vaccinations: A personalized approach. Biotechniques 2021 70 6 303 305 10.2144/btn‑2021‑0049 34098738
    [Google Scholar]
  126. Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat. Med. 2023 29 10 2379 2380 10.1038/d41591‑023‑00072‑0 37773210
    [Google Scholar]
  127. Carlino M.S. Larkin J. Long G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021 398 10304 1002 1014 10.1016/S0140‑6736(21)01206‑X 34509219
    [Google Scholar]
  128. Naimi A. Mohammed R.N. Raji A. Chupradit S. Yumashev A.V. Suksatan W. Shalaby M.N. Thangavelu L. Kamrava S. Shomali N. Sohrabi A.D. Adili A. Noroozi-Aghideh A. Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); The pros and cons. Cell Commun. Signal. 2022 20 1 44 10.1186/s12964‑022‑00854‑y 35392976
    [Google Scholar]
  129. Singh S. Khasbage S. Kaur R.J. Sidhu J.K. Bhandari B. Chimeric antigen receptor T cell. Indian J. Pharmacol. 2022 54 3 226 233 10.4103/ijp.ijp_531_20 35848695
    [Google Scholar]
  130. Chung J.B. Brudno J.N. Borie D. Kochenderfer J.N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 2024 24 11 830 845 10.1038/s41577‑024‑01035‑3 38831163
    [Google Scholar]
  131. Wala J.A. Hanna G.J. Chimeric antigen receptor T-cell therapy for solid tumors. Hematol. Oncol. Clin. North Am. 2023 37 6 1149 1168 10.1016/j.hoc.2023.05.009 37353377
    [Google Scholar]
  132. Newcomb R. Jacobson C. Chimeric antigen receptor T cells for B-cell lymphoma. Cancer J. 2021 27 2 107 111 10.1097/PPO.0000000000000509 33750069
    [Google Scholar]
  133. Jiang C. McKay R.M. Lee S.Y. Romo C.G. Blakeley J.O. Haniffa M. Serra E. Steensma M.R. Largaespada D. Le L.Q. Cutaneous neurofibroma heterogeneity- Factors that influence tumor burden in neurofibromatosis type 1. J. Invest. Dermatol. 2023 143 8 1369 1377 10.1016/j.jid.2022.12.027 37318402
    [Google Scholar]
  134. Galassi C. Chan T.A. Vitale I. Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024 42 11 1825 1863 10.1016/j.ccell.2024.09.010 39393356
    [Google Scholar]
  135. Jhunjhunwala S. Hammer C. Delamarre L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021 21 5 298 312 10.1038/s41568‑021‑00339‑z 33750922
    [Google Scholar]
  136. Gomase V. Tagore S. Kale K. Bhiwgade D. Oncogenomics. Curr. Drug Metab. 2008 9 3 199 206 10.2174/138920008783884713 18336222
    [Google Scholar]
  137. Lee S. Schmitt C.A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 2019 21 1 94 101 10.1038/s41556‑018‑0249‑2 30602768
    [Google Scholar]
  138. Parvizpour S. Pourseif M.M. Razmara J. Rafi M.A. Omidi Y. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discov. Today 2020 25 6 1034 1042 10.1016/j.drudis.2020.03.006 32205198
    [Google Scholar]
  139. Prawiningrum A.F. Paramita R.I. Panigoro S.S. Immunoinformatics approach for epitope-based vaccine design- Key steps for breast cancer vaccine. Diagnostics 2022 12 12 2981 10.3390/diagnostics12122981 36552988
    [Google Scholar]
  140. Almanaa T.N. Design of an epitope-based vaccine against MERS-CoV. Medicina 2024 60 10 1632 10.3390/medicina60101632 39459420
    [Google Scholar]
  141. Umitaibatin R. Harisna A.H. Jauhar M.M. Syaifie P.H. Arda A.G. Nugroho D.W. Ramadhan D. Mardliyati E. Shalannanda W. Anshori I. Immunoinformatics study- Multi-epitope-based vaccine design from SARS-CoV-2 spike glycoprotein. Vaccines 2023 11 2 399 10.3390/vaccines11020399 36851275
    [Google Scholar]
  142. Mitran C.J. Yanow S.K. The case for exploiting cross-species epitopes in malaria vaccine design. Front. Immunol. 2020 11 335 10.3389/fimmu.2020.00335 32174924
    [Google Scholar]
  143. Sanami S. Rafieian-Kopaei M. Dehkordi K.A. Pazoki-Toroudi H. Azadegan-Dehkordi F. Mobini G.R. Alizadeh M. Nezhad M.S. Ghasemi-Dehnoo M. Bagheri N. In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinformatics 2022 23 1 311 10.1186/s12859‑022‑04784‑x 35918631
    [Google Scholar]
  144. Shaker B. Ahmad S. Shen J. Kim H.W. Na D. Computational design of a multi-epitope vaccine against Porphyromonas gingivalis. Front. Immunol. 2022 13 806825 10.3389/fimmu.2022.806825 35250977
    [Google Scholar]
  145. Maharaj L. Adeleke V.T. Fatoba A.J. Adeniyi A.A. Tshilwane S.I. Adeleke M.A. Maharaj R. Okpeku M. Immunoinformatics approach for multi-epitope vaccine design against P. falciparum malaria. Infect. Genet. Evol. 2021 92 104875 10.1016/j.meegid.2021.104875 33905890
    [Google Scholar]
  146. Bemani P. Amirghofran Z. Mohammadi M. Designing a multi-epitope vaccine against blood-stage of Plasmodium falciparum by in silico approaches. J. Mol. Graph. Model. 2020 99 107645 10.1016/j.jmgm.2020.107645 32454399
    [Google Scholar]
  147. Gebre M.S. Brito L.A. Tostanoski L.H. Edwards D.K. Carfi A. Barouch D.H. Novel approaches for vaccine development. Cell 2021 184 6 1589 1603 10.1016/j.cell.2021.02.030 33740454
    [Google Scholar]
  148. Liang C.K. Lee W.J. Peng L.N. Meng L.C. Hsiao F.Y. Chen L.K. COVID-19 vaccines in older adults- Challenges in vaccine development and policy making. Clin. Geriatr. Med. 2022 38 3 605 620 10.1016/j.cger.2022.03.006 35868676
    [Google Scholar]
  149. Montin D. Santilli V. Beni A. Costagliola G. Martire B. Mastrototaro M.F. Ottaviano G. Rizzo C. Sgrulletti M. Miraglia Del Giudice M. Moschese V. Towards personalized vaccines. Front. Immunol. 2024 15 1436108 10.3389/fimmu.2024.1436108 39421749
    [Google Scholar]
  150. Cañete P.F. Tuong Z.K. Embracing computational immunology. Immunol. Cell Biol. 2024 102 8 663 664 10.1111/imcb.12817 39356468
    [Google Scholar]
  151. Soleymani S. Tavassoli A. Housaindokht M.R. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput. Biol. Med. 2022 140 105057 10.1016/j.compbiomed.2021.105057 34839187
    [Google Scholar]
  152. Ramana J. Mehla K. Immunoinformatics and epitope prediction. Methods Mol. Biol. 2020 2131 155 171 10.1007/978‑1‑0716‑0389‑5_6 32162252
    [Google Scholar]
  153. Tong J.C. Ren E.C. Immunoinformatics: Current trends and future directions. Drug Discov. Today 2009 14 13-14 684 689 10.1016/j.drudis.2009.04.001 19379830
    [Google Scholar]
  154. Joon S. Singla R.K. Shen B. Vaccines and immunoinformatics for vaccine design. Adv. Exp. Med. Biol. 2022 1368 95 110 10.1007/978‑981‑16‑8969‑7_5 35594022
    [Google Scholar]
  155. Lim C.P. Kok B.H. Lim H.T. Chuah C. Abdul Rahman B. Abdul Majeed A.B. Wykes M. Leow C.H. Leow C.Y. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog. Glob. Health 2023 117 2 134 151 10.1080/20477724.2022.2072456 35550001
    [Google Scholar]
  156. De Groot A.S. Moise L. Terry F. Gutierrez A.H. Hindocha P. Richard G. Hoft D.F. Ross T.M. Noe A.R. Takahashi Y. Kotraiah V. Silk S.E. Nielsen C.M. Minassian A.M. Ashfield R. Ardito M. Draper S.J. Martin W.D. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front. Immunol. 2020 11 442 10.3389/fimmu.2020.00442 32318055
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665373152250625054723
Loading
/content/journals/ppl/10.2174/0109298665373152250625054723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test