Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Immune responses depend on the identification and prediction of peptides that bind to MHC (major histocompatibility complex) class I molecules, especially when it comes to the creation of vaccines, cancer immunotherapy, and autoimmune disorders. The ability to predict and evaluate MHC class immunoproteomics have completely transformed I epitopes in conjunction with immunoinformatics technologies. However, precisely identifying epitopes across various populations and situations is extremely difficult due to the complexity and diversity of MHC class I binding peptides. The most recent developments in immunoinformatics technology that have improved MHC class I epitope prediction are examined in this article. The sensitivity and specificity of epitope prediction have been greatly enhanced by recent developments that have concentrated on bioinformatics algorithms, artificial intelligence, and machine learning models. Potential epitopes are predicted using large-scale peptide-MHC binding data, structural characteristics, and interaction dynamics using tools like NetMHC, IEDB, and MHCflurry. Additionally, the integration of proteomic, transcriptomic, and genomic data has improved prediction accuracy in real-world scenarios by enabling more accurate identification of naturally occurring peptides. Furthermore, newer techniques like deep learning and multi-omics data integration have the potential to overcome peptide binding prediction constraints. Utilizing these technologies is expected to speed up the identification of new epitopes, improve the accuracy of immunotherapy techniques, and enable customized vaccine development. These innovative techniques, their uses, and potential future developments for improving MHC class I epitope prediction in immunoproteomics are highlighted in this study.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665373152250625054723
2025-07-14
2025-11-04
Loading full text...

Full text loading...

References

  1. GomaseV.S. KaleK.V. ChikhaleN.J. ChangbhaleS.S. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus.Curr. Drug Discov. Technol.20074211712510.2174/15701630778148344117691913
    [Google Scholar]
  2. GomaseV. Prediction of antigenic epitopes of neurotoxin Bmbktx1 from Mesobuthus martensii.Curr. Drug Discov. Technol.20063322522910.2174/15701630678013681717311567
    [Google Scholar]
  3. GomaseV.S. KemkarK.R. BaviskarB.A. MundheV.S. SakhareA.D. KolsureA.K. BhimanwarA.A. DhamaneS.P. PotnisV.V. Immunoinformatics study of physical properties of scorpion neurotoxin Bmk-M8 from Mesobuthus martensii.Int. J. Mod. Pharm. Res.2023731315
    [Google Scholar]
  4. ChangbhaleS.S. ChitlangeN.R. GomaseV.S. KaleK.V. An immunoinformatics approach to design synthetic peptide vaccine from Dendroaspis polylepis polylepis dendrotoxin-K (DTX-K).J. Environ. Anal. Toxicol.20122715710.4172/2161‑0525.1000157
    [Google Scholar]
  5. MishraS. GomaseV.S. An immunoinformatics-based approach to identify and design synthetic peptide vaccine for loiasis. Int. J. Adv. Res. Sci. Eng.201873694707
    [Google Scholar]
  6. GomaseV.S. KaleK.V. Development of MHC class nonamers from Cowpea mosaic viral protein.Gene Ther. Mol. Biol.2008128794
    [Google Scholar]
  7. GomaseV.S. KaleK.V. Prediction of MHC binder for fragment-based viral peptide vaccines from Cabbage leaf curl virus.Gene Ther. Mol. Biol.2008128386
    [Google Scholar]
  8. GomaseV.S. WaghmareS.B. JadhavB.V. KaleK.V. Mapping of MHC class binding nonamers from lipid binding protein of Ascaridia galli.Gene Ther. Mol. Biol.2009131014
    [Google Scholar]
  9. GomaseV.S. ChitlangeN.R. Microbial proteomics approach for sensitive quantitative predictions of MHC binding peptide from Taenia ovis.J. Data Mining Genomics Proteomics20123312110.4172/2153‑0602.1000121
    [Google Scholar]
  10. MishraS. GomaseV.S. Cytochrome B- Analysis of hydrophobicity, surface accessibility, antigenicity, and prediction of MHC I and MHC II binders from dracunculiasis.Med. Chem.20166414610.4172/2161‑0444.1000322
    [Google Scholar]
  11. KumarN. BajiyaN. PatiyalS. RaghavaG.P.S. Multi-perspectives and challenges in identifying B-cell epitopes.Protein Sci.20233211e478510.1002/pro.478537733481
    [Google Scholar]
  12. LiuZ. ShiM. RenY. XuH. WengS. NingW. GeX. LiuL. GuoC. DuoM. LiL. LiJ. HanX. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy.Mol. Cancer20232213510.1186/s12943‑023‑01738‑636797756
    [Google Scholar]
  13. TomJ.K. AlbinT.J. MannaS. MoserB.A. SteinhardtR.C. Esser-KahnA.P. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development.Trends Biotechnol.201937437338810.1016/j.tibtech.2018.10.00430470547
    [Google Scholar]
  14. MeghaK.B. MohananP.V. Role of immunoglobulin and antibodies in disease management.Int. J. Biol. Macromol.2021169283810.1016/j.ijbiomac.2020.12.07333340621
    [Google Scholar]
  15. GomaseV.S. TagoreS. Vaccinomics.Gene Ther. Mol. Biol.200812141146
    [Google Scholar]
  16. FalkiewiczB. LiberekB. Structure and function of major histocompatibility antigens (MHC) class I.Postepy Biochem.199642141488657654
    [Google Scholar]
  17. SherkhaneA.S. ChangbhaleS.S. GomaseV.S. Quantitative immunoproteomics approach for the development of MHC Class I associated peptide antigens of alpha-cobra toxin from Naja kaouthia.J. Biotechnol. Biomater.20144169
    [Google Scholar]
  18. GomaseV.S. ChitlangeN.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Onchocerca volvulus.Drug Invention Today201026297299
    [Google Scholar]
  19. GomaseV.S. ChitlangeN.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Treponema pallidum.J. Biosci. Technol.2010128489
    [Google Scholar]
  20. GomaseV.S. ChitlangeN.R. Immunoproteomics approach for synthetic vaccine development from Streptococcus dysgalactiae subsp. equisimilis.Int. J. Pharma Bio Sci.20101316
    [Google Scholar]
  21. ØynebråtenI. Involvement of autophagy in MHC class I antigen presentation.Scand. J. Immunol.2020925e1297810.1111/sji.1297832969499
    [Google Scholar]
  22. LehnerP.J. CresswellP. Recent developments in MHC-class-I-mediated antigen presentation.Curr. Opin. Immunol.2004161828910.1016/j.coi.2003.11.01214734114
    [Google Scholar]
  23. TiwariN. GarbiN. ReinheckelT. MoldenhauerG. HämmerlingG.J. MomburgF. A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins.J. Immunol.2007178127932794210.4049/jimmunol.178.12.793217548631
    [Google Scholar]
  24. D’AlicandroV. RomaniaP. MelaiuO. FruciD. Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases.Mol. Immunol.2019113111510.1016/j.molimm.2018.03.02429625843
    [Google Scholar]
  25. LeoneP. ShinE.C. PerosaF. VaccaA. DammaccoF. RacanelliV. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells.J. Natl. Cancer Inst.2013105161172118710.1093/jnci/djt18423852952
    [Google Scholar]
  26. McDevittH. Evolution of MHC class II allelic diversity.Immunol. Rev.1995143111312210.1111/j.1600‑065X.1995.tb00672.x7558072
    [Google Scholar]
  27. VasoyaD. ConnelleyT. TzelosT. ToddH. BallingallK.T. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep.HLA20241032e1535610.1111/tan.1535638304958
    [Google Scholar]
  28. SliekerR.C. WarmerdamD.O. VermeerM.H. van DoornR. HeemskerkM.H.M. ScheerenF.A. Reassessing human MHC-I genetic diversity in T cell studies.Sci. Rep.2024141796610.1038/s41598‑024‑58777‑238575727
    [Google Scholar]
  29. ZhaoX. MaS. WangB. JiangX. XuS. PGG. MHC: Toward understanding the diversity of major histocompatibility complexes in human populations.Nucleic Acids Res.202351D1D1102D110810.1093/nar/gkac99736321663
    [Google Scholar]
  30. NatarajanK. LiH. MariuzzaR.A. MarguliesD.H. MHC class I molecules, structure and function.Rev. Immunogenet.199911324611256571
    [Google Scholar]
  31. GomaseV.S. DhamaneS.P. KakadeP.G. Immunoproteomics: A review of techniques, applications, and advancements.Protein Pept. Lett.2024311182784910.2174/010929866533302924092609291939506417
    [Google Scholar]
  32. GomaseV.S. DhamaneS.P. KemkarK.R. KakadeP.G. SakhareA.D. Immunoproteomics- approach to diagnostic and vaccine development.Protein Pept. Lett.2024311077379510.2174/010929866534226124091210511139473104
    [Google Scholar]
  33. FultonK.M. BaltatI. TwineS.M. Immunoproteomics methods and techniques.Methods Mol. Biol.20192024255810.1007/978‑1‑4939‑9597‑4_231364041
    [Google Scholar]
  34. SherkhaneA.S. GomaseV.S. Immunoproteomics: Current approach for subunit vaccine design.Int. J. Immunol. Stud.201421162810.1504/IJIS.2014.066845
    [Google Scholar]
  35. GomaseV.S. ShyamkumarK. Prediction of antigenic epitopes and MHC binders of neurotoxin alpha-KTx 3.8 from Mesobuthus tamulus sindicus.Afr. J. Biotechnol.200982366586676
    [Google Scholar]
  36. GomaseV.S. KaleK.V. ShyamkumarK. Prediction of MHC binding peptides and epitopes from Groundnut bud necrosis virus (GBNV).J. Proteomics Bioinform.20081418820510.4172/jpb.1000024
    [Google Scholar]
  37. MendesM. MahitaJ. BlazeskaN. GreenbaumJ. HaB. WheelerK. WangJ. ShackelfordD. SetteA. PetersB. IEDB-3D 2.0: Structural data analysis within the Immune Epitope Database.Protein Sci.2023324e460510.1002/pro.460536806329
    [Google Scholar]
  38. VitaR. BlazeskaN. MarramaD. The Immune Epitope Database (IEDB)- 2024 update.Nucleic Acids Res.2024Advance online publication
    [Google Scholar]
  39. O’DonnellT.J. RubinsteynA. BonsackM. RiemerA.B. LasersonU. HammerbacherJ. MHCflurry- Open-source class I MHC binding affinity prediction.Cell Syst.201871129132.e410.1016/j.cels.2018.05.01429960884
    [Google Scholar]
  40. O’DonnellT.J. RubinsteynA. LasersonU. MHCflurry 2.0- Improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing.Cell Syst.20201114248.e710.1016/j.cels.2020.06.01032711842
    [Google Scholar]
  41. DennehyR. McCleanS. Immunoproteomics: The key to discovery of new vaccine antigens against bacterial respiratory infections.Curr. Protein Pept. Sci.201213880781510.2174/13892031280487118423305366
    [Google Scholar]
  42. EggenspergerS. TampéR. The transporter associated with antigen processing: A key player in adaptive immunity.Biol. Chem.20153969-101059107210.1515/hsz‑2014‑032025781678
    [Google Scholar]
  43. KellyA. TrowsdaleJ. Genetics of antigen processing and presentation.Immunogenetics201971316117010.1007/s00251‑018‑1082‑230215098
    [Google Scholar]
  44. NielsenM. AndreattaM. PetersB. BuusS. Immunoinformatics- Predicting peptide-MHC binding.Annu. Rev. Biomed. Data Sci.20203119121510.1146/annurev‑biodatasci‑021920‑10025937427310
    [Google Scholar]
  45. PerezM.A.S. CuendetM.A. RöhrigU.F. MichielinO. ZoeteV. Structural prediction of peptide-MHC binding modes.Methods Mol. Biol.2022240524528210.1007/978‑1‑0716‑1855‑4_1335298818
    [Google Scholar]
  46. AranhaM.P. SpoonerC. DemerdashO. CzejdoB. SmithJ.C. MitchellJ.C. Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets.Biochim. Biophys. Acta, Gen. Subj.20201864412953510.1016/j.bbagen.2020.12953531954798
    [Google Scholar]
  47. DönnesP. Support vector machine-based prediction of MHC-binding peptides.Methods Mol. Biol.200740927328210.1007/978‑1‑60327‑118‑9_1918450007
    [Google Scholar]
  48. SrivastavaA. GhoshS. AnantharamanN. JayaramanV.K. Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests.J. Immunol. Methods20133871-228429210.1016/j.jim.2012.09.01323058675
    [Google Scholar]
  49. DhusiaK. SuZ. WuY. A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes.Mol. Immunol.2021139768610.1016/j.molimm.2021.07.02034455212
    [Google Scholar]
  50. HuY. WangZ. HuH. WanF. ChenL. XiongY. WangX. ZhaoD. HuangW. ZengJ. ACME: pan-specific peptide–MHC class I binding prediction through attention-based deep neural networks.Bioinformatics201935234946495410.1093/bioinformatics/btz42731120490
    [Google Scholar]
  51. SamudralaM. DhavejiS. SavsaniK. DakshanamurthyS. AutoEpiCollect, a novel machine learning-based GUI software for vaccine design- Application to pan-cancer vaccine design targeting PIK3CA neoantigens.Bioengineering202411432210.3390/bioengineering1104032238671743
    [Google Scholar]
  52. Martínez-NavesE. LafuenteE.M. RecheP.A. Recognition of the ligand-type specificity of classical and non-classical MHC I proteins.FEBS Lett.2011585213478348410.1016/j.febslet.2011.10.00722001201
    [Google Scholar]
  53. JurtzV. PaulS. AndreattaM. MarcatiliP. PetersB. NielsenM. NetMHCpan-4.0- Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data.J. Immunol.201719993360336810.4049/jimmunol.170089328978689
    [Google Scholar]
  54. VitaR. MahajanS. OvertonJ.A. DhandaS.K. MartiniS. CantrellJ.R. WheelerD.K. SetteA. PetersB. The Immune Epitope Database (IEDB): 2018 update.Nucleic Acids Res.201947D1D339D34310.1093/nar/gky100630357391
    [Google Scholar]
  55. RammenseeH.G. BachmannJ. EmmerichN.P.N. BachorO.A. StevanovićS. SYFPEITHI: Database for MHC ligands and peptide motifs.Immunogenetics1999503-421321910.1007/s00251005059510602881
    [Google Scholar]
  56. HashemzadehP. NezhadS.A. KhoshkhabarH. Immunoinformatics analysis of Brucella melitensis to approach a suitable vaccine against brucellosis.J. Genet. Eng. Biotechnol.202321115210.1186/s43141‑023‑00614‑638019359
    [Google Scholar]
  57. LiuR. HuY.F. HuangJ.D. FanX. A Bayesian approach to estimate MHC-peptide binding threshold.Brief. Bioinform.2023244bbad20810.1093/bib/bbad20837279464
    [Google Scholar]
  58. ThomasS. AbrahamA. BaldwinJ. PiplaniS. PetrovskyN. Artificial intelligence in vaccine and drug design.Methods Mol. Biol.2022241013114610.1007/978‑1‑0716‑1884‑4_634914045
    [Google Scholar]
  59. McCaffreyP. Artificial intelligence for vaccine design.Methods Mol. Biol.2022241231310.1007/978‑1‑0716‑1892‑9_134918238
    [Google Scholar]
  60. HanY. KimD. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.BMC Bioinformatics201718158510.1186/s12859‑017‑1997‑x29281985
    [Google Scholar]
  61. PeiB. HsuY.H. IConMHC: A deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.Immunogenetics202072529530410.1007/s00251‑020‑01163‑932577798
    [Google Scholar]
  62. JiangL. YuH. LiJ. TangJ. GuoY. GuoF. Predicting MHC class I binder: Existing approaches and a novel recurrent neural network solution.Brief. Bioinform.2021226bbab21610.1093/bib/bbab21634131696
    [Google Scholar]
  63. ReynissonB. AlvarezB. PaulS. PetersB. NielsenM. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data.Nucleic Acids Res.202048W1W449W45410.1093/nar/gkaa37932406916
    [Google Scholar]
  64. WangF. WangH. WangL. LuH. QiuS. ZangT. ZhangX. HuY. MHCRoBERTa: pan-specific peptide–MHC class I binding prediction through transfer learning with label-agnostic protein sequences.Brief. Bioinform.2022233bbab59510.1093/bib/bbab59535443027
    [Google Scholar]
  65. RoompK. AntesI. LengauerT. Predicting MHC class I epitopes in large datasets.BMC Bioinformatics20101119010.1186/1471‑2105‑11‑9020163709
    [Google Scholar]
  66. LataS. BhasinM. RaghavaG.P.S. Application of machine learning techniques in predicting MHC binders.Methods Mol. Biol.200740920121510.1007/978‑1‑60327‑118‑9_1418450002
    [Google Scholar]
  67. BhasinM. RaghavaG.P.S. Prediction of CTL epitopes using QM, SVM and ANN techniques.Vaccine20042223-243195320410.1016/j.vaccine.2004.02.00515297074
    [Google Scholar]
  68. AltmannD.M. New tools for MHC research from machine learning and predictive algorithms to the tumour immunopeptidome.Immunology2018154332933010.1111/imm.1295629902342
    [Google Scholar]
  69. SuriS. DakshanamurthyS. IntegralVac- A machine learning-based comprehensive multivalent epitope vaccine design method.Vaccines20221010167810.3390/vaccines1010167836298543
    [Google Scholar]
  70. WilmanW. WróbelS. BielskaW. DeszynskiP. DudzicP. JaszczyszynI. KaniewskiJ. MłokosiewiczJ. RouyanA. SatławaT. KumarS. GreiffV. KrawczykK. Machine-designed biotherapeutics: Opportunities, feasibility and advantages of deep learning in computational antibody discovery.Brief. Bioinform.2022234bbac26710.1093/bib/bbac26735830864
    [Google Scholar]
  71. CliffordJ.N. HøieM.H. DeleuranS. PetersB. NielsenM. MarcatiliP. BepiPred-3.0: Improved B-cell epitope prediction using protein language models.Protein Sci.20223112e449710.1002/pro.449736366745
    [Google Scholar]
  72. GrewalS. HegdeN. YanowS.K. Integrating machine learning to advance epitope mapping.Front. Immunol.202415146393110.3389/fimmu.2024.146393139403389
    [Google Scholar]
  73. RifaiogluA.S. AtasH. MartinM.J. Cetin-AtalayR. AtalayV. DoğanT. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases.Brief. Bioinform.20192051878191210.1093/bib/bby06130084866
    [Google Scholar]
  74. JiangY. HuoM. Cheng LiS. TEINet: A deep learning framework for prediction of TCR–epitope binding specificity.Brief. Bioinform.2023242bbad08610.1093/bib/bbad08636907658
    [Google Scholar]
  75. Silva-ArrietaS. GoulderP.J.R. BranderC. In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction.PLoS Pathog.2020166e100860710.1371/journal.ppat.100860732497149
    [Google Scholar]
  76. ShaoX.M. BhattacharyaR. HuangJ. SivakumarI.K.A. TokheimC. ZhengL. HirschD. KaminowB. OmdahlA. BonsackM. RiemerA.B. VelculescuV.E. AnagnostouV. PagelK.A. KarchinR. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets.Cancer Immunol. Res.20208339640810.1158/2326‑6066.CIR‑19‑046431871119
    [Google Scholar]
  77. MillarD.G. YangS.Y.C. SayadA. ZhaoQ. NguyenL.T. WarnerK. SangsterA.G. NakatsugawaM. MurataK. WangB.X. ShawP. ClarkeB. BernardiniM.Q. PughT. ThibaultP. HiranoN. PerreaultC. OhashiP.S. Identification of antigenic epitopes recognized by tumor infiltrating lymphocytes in high grade serous ovarian cancer by multi-omics profiling of the auto-antigen repertoire.Cancer Immunol. Immunother.20237272375239210.1007/s00262‑023‑03413‑736943460
    [Google Scholar]
  78. DhanushkumarT. SanthoshM.E. SelvamP.K. RambabuM. DasegowdaK.R. VasudevanK. GeorgeP.D.C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies.Life Sci.202433712236010.1016/j.lfs.2023.12236038135117
    [Google Scholar]
  79. NiemanD.C. PenceB.D. Exercise immunology: Future directions.J. Sport Health Sci.20209543244510.1016/j.jshs.2019.12.00332928447
    [Google Scholar]
  80. GomaseV. TagoreS. Omics: An approach for drug targets.Curr. Drug Metab.20089318910.2174/13892000878388472218336219
    [Google Scholar]
  81. ZhengY. LiuY. YangJ. DongL. ZhangR. TianS. YuY. RenL. HouW. ZhuF. MaiY. HanJ. ZhangL. JiangH. LinL. LouJ. LiR. LinJ. LiuH. KongZ. WangD. DaiF. BaoD. CaoZ. ChenQ. ChenQ. ChenX. GaoY. JiangH. LiB. LiB. LiJ. LiuR. QingT. ShangE. ShangJ. SunS. WangH. WangX. ZhangN. ZhangP. ZhangR. ZhuS. SchererA. WangJ. WangJ. HuoY. LiuG. CaoC. ShaoL. XuJ. HongH. XiaoW. LiangX. LuD. JinL. TongW. DingC. LiJ. FangX. ShiL. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials.Nat. Biotechnol.20244271133114910.1038/s41587‑023‑01934‑137679543
    [Google Scholar]
  82. LiuX. PengT. XuM. LinS. HuB. ChuT. LiuB. XuY. DingW. LiL. CaoC. WuP. Spatial multi-omics: Deciphering technological landscape of integration of multi-omics and its applications.J. Hematol. Oncol.20241717210.1186/s13045‑024‑01596‑939182134
    [Google Scholar]
  83. BackertL. KohlbacherO. Immunoinformatics and epitope prediction in the age of genomic medicine.Genome Med.20157111910.1186/s13073‑015‑0245‑026589500
    [Google Scholar]
  84. BahramiA.A. PayandehZ. KhaliliS. ZakeriA. BandehpourM. Immunoinformatics- In silico approaches and computational design of a multi-epitope, immunogenic protein.Int. Rev. Immunol.201938630732210.1080/08830185.2019.165742631478759
    [Google Scholar]
  85. GomaseV. TagoreS. Transcriptomics.Curr. Drug Metab.20089324524910.2174/13892000878388475918336229
    [Google Scholar]
  86. GomaseV. KaleK. TagoreS. HattureS. Proteomics: Technologies for protein analysis.Curr. Drug Metab.20089321322010.2174/13892000878388474018336224
    [Google Scholar]
  87. GomaseV. TagoreS. ChangbhaleS. KaleK. Pharmacogenomics.Curr. Drug Metab.20089320721210.2174/13892000878388483018336223
    [Google Scholar]
  88. GomaseV. ChangbhaleS. PatilS. KaleK. Metabolomics.Curr. Drug Metab.200891899810.2174/13892000878333114918220576
    [Google Scholar]
  89. GomaseV. TagoreS. Epigenomics.Curr. Drug Metab.20089323223710.2174/13892000878388482118336226
    [Google Scholar]
  90. ShukenS.R. An introduction to mass spectrometry-based proteomics.J. Proteome Res.20232272151217110.1021/acs.jproteome.2c0083837260118
    [Google Scholar]
  91. ChuC.P. LiuS. SongW. XuE.Y. NabityM.B. Small RNA sequencing evaluation of renal microRNA biomarkers in dogs with X-linked hereditary nephropathy.Sci. Rep.20211111743710.1038/s41598‑021‑96870‑y34465843
    [Google Scholar]
  92. LiuX. LiX. ChenL. HsuA.C.Y. AsquithK.L. LiuC. LaurieK. BarrI. FosterP.S. YangM. Proteomic analysis reveals a novel therapeutic strategy using fludarabine for steroid-resistant asthma exacerbation.Front. Immunol.20221380555810.3389/fimmu.2022.80555835280986
    [Google Scholar]
  93. OughtredR. RustJ. ChangC. BreitkreutzB.J. StarkC. WillemsA. BoucherL. LeungG. KolasN. ZhangF. DolmaS. Coulombe-HuntingtonJ. Chatr-aryamontriA. DolinskiK. TyersM. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions.Protein Sci.202130118720010.1002/pro.397833070389
    [Google Scholar]
  94. TripodiL. SassoE. FeolaS. ColuccinoL. VitaleM. LeoniG. SzomolayB. PastoreL. CerulloV. Systems biology approaches for the improvement of oncolytic virus-based immunotherapies.Cancers2023154129710.3390/cancers1504129736831638
    [Google Scholar]
  95. BergmanP.J. Cancer Immunotherapy.Vet. Clin. North Am. Small Anim. Pract.202454344146810.1016/j.cvsm.2023.12.00238158304
    [Google Scholar]
  96. RuiR. ZhouL. HeS. Cancer immunotherapies: Advances and bottlenecks.Front. Immunol.202314121247610.3389/fimmu.2023.121247637691932
    [Google Scholar]
  97. SzetoG.L. FinleyS.D. Integrative approaches to cancer immunotherapy.Trends Cancer20195740041010.1016/j.trecan.2019.05.01031311655
    [Google Scholar]
  98. ChaJ.H. ChanL.C. SongM.S. HungM.C. New approaches on cancer immunotherapy.Cold Spring Harb. Perspect. Med.2020108a03686310.1101/cshperspect.a03686331615865
    [Google Scholar]
  99. RileyR.S. JuneC.H. LangerR. MitchellM.J. Delivery technologies for cancer immunotherapy.Nat. Rev. Drug Discov.201918317519610.1038/s41573‑018‑0006‑z30622344
    [Google Scholar]
  100. HammershaimbE.A.D. CampbellJ.D. Vaccine Development.Pediatr. Clin. North Am.202471352954910.1016/j.pcl.2024.01.01838754940
    [Google Scholar]
  101. WoodlandD.L. Vaccine Development.Viral Immunol.201730314110.1089/vim.2017.29017.dlw28281914
    [Google Scholar]
  102. HamleyI.W. Peptides for vaccine development.ACS Appl. Bio Mater.20225390594410.1021/acsabm.1c0123835195008
    [Google Scholar]
  103. MooreT.V. NishimuraM.I. Improved MHC II epitope prediction — A step towards personalized medicine.Nat. Rev. Clin. Oncol.2020172717210.1038/s41571‑019‑0315‑031836878
    [Google Scholar]
  104. SahinU. DerhovanessianE. MillerM. KlokeB.P. SimonP. LöwerM. BukurV. TadmorA.D. LuxemburgerU. SchrörsB. OmokokoT. VormehrM. AlbrechtC. ParuzynskiA. KuhnA.N. BuckJ. HeeschS. SchreebK.H. MüllerF. OrtseiferI. VoglerI. GodehardtE. AttigS. RaeR. BreitkreuzA. TolliverC. SuchanM. MarticG. HohbergerA. SornP. DiekmannJ. CieslaJ. WaksmannO. BrückA.K. WittM. ZillgenM. RothermelA. KasemannB. LangerD. BolteS. DikenM. KreiterS. NemecekR. GebhardtC. GrabbeS. HöllerC. UtikalJ. HuberC. LoquaiC. TüreciÖ. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.Nature2017547766222222610.1038/nature2300328678784
    [Google Scholar]
  105. XieN. ShenG. GaoW. HuangZ. HuangC. FuL. Neoantigens: Promising targets for cancer therapy.Signal Transduct. Target. Ther.202381910.1038/s41392‑022‑01270‑x36604431
    [Google Scholar]
  106. SchumacherT.N. SchreiberR.D. Neoantigens in cancer immunotherapy.Science20153486230697410.1126/science.aaa497125838375
    [Google Scholar]
  107. MaW. PhamB. LiT. Cancer neoantigens as potential targets for immunotherapy.Clin. Exp. Metastasis2022391516010.1007/s10585‑021‑10091‑133950415
    [Google Scholar]
  108. SarfarazM. AnjumF. ZahraD. MaqsoodA. AshfaqU.A. Recent updates on peptide molecules in drug and vaccine development.Curr. Pharm. Des.202329201564157810.2174/138161282966623071712163237461342
    [Google Scholar]
  109. ReginaldK. ChanY. PlebanskiM. PohC.L. Development of peptide vaccines in dengue.Curr. Pharm. Des.201824111157117310.2174/138161282366617091316390428914200
    [Google Scholar]
  110. IgarashiY. SasadaT. Cancer vaccines- Toward the next breakthrough in cancer immunotherapy.J. Immunol. Res.2020202011310.1155/2020/582540133282961
    [Google Scholar]
  111. IscaroA. HowardN.F. MuthanaM. Nanoparticles- Properties and applications in cancer immunotherapy.Curr. Pharm. Des.201925171962197910.2174/138161282566619070821424031566122
    [Google Scholar]
  112. LiJ. XiaoZ. WangD. JiaL. NieS. ZengX. HuW. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells.Mol. Cancer202322114110.1186/s12943‑023‑01844‑537649123
    [Google Scholar]
  113. PengM. MoY. WangY. WuP. ZhangY. XiongF. GuoC. WuX. LiY. LiX. LiG. XiongW. ZengZ. Neoantigen vaccine: An emerging tumor immunotherapy.Mol. Cancer201918112810.1186/s12943‑019‑1055‑631443694
    [Google Scholar]
  114. SahinU. TüreciÖ. Personalized vaccines for cancer immunotherapy.Science201835963821355136010.1126/science.aar711229567706
    [Google Scholar]
  115. KatsikisP.D. IshiiK.J. SchlieheC. Challenges in developing personalized neoantigen cancer vaccines.Nat. Rev. Immunol.202424321322710.1038/s41577‑023‑00937‑y37783860
    [Google Scholar]
  116. ShemeshC.S. HsuJ.C. HosseiniI. ShenB.Q. RotteA. TwomeyP. GirishS. WuB. Personalized cancer vaccines- Clinical landscape, challenges, and opportunities.Mol. Ther.202129255557010.1016/j.ymthe.2020.09.03833038322
    [Google Scholar]
  117. HoltsträterC. SchrörsB. BukurT. LöwerM. Bioinformatics for cancer immunotherapy.Methods Mol. Biol.202021201910.1007/978‑1‑0716‑0327‑7_132124308
    [Google Scholar]
  118. Schaap-JohansenA.L. VujovićM. BorchA. HadrupS.R. MarcatiliP. T cell epitope prediction and its application to immunotherapy.Front. Immunol.20211271248810.3389/fimmu.2021.71248834603286
    [Google Scholar]
  119. CourcellesM. DuretteC. DaoudaT. LaverdureJ.P. VincentK. LemieuxS. PerreaultC. ThibaultP. MAPDP- A cloud-based computational platform for immunopeptidomics analyses.J. Proteome Res.20201941873188110.1021/acs.jproteome.9b0085932108478
    [Google Scholar]
  120. BhattacharyaM. SarkarA. WenZ.H. WuY.J. ChakrabortyC. Rational design of a multi-epitope vaccine using neoantigen against colorectal cancer through structural immunoinformatics and ML-enabled simulation approach.Mol. Biotechnol.2024672817-283110.1007/s12033‑024‑01242‑239190054
    [Google Scholar]
  121. BorchA. CarriI. ReynissonB. AlvarezH.M.G. MunkK.K. MontemurroA. KristensenN.P. TvingsholmS.A. HolmJ.S. HeekeC. MossK.H. HansenU.K. Schaap-JohansenA.L. BaggerF.O. de LimaV.A.B. RohrbergK.S. FuntS.A. DoniaM. SvaneI.M. LassenU. BarraC. NielsenM. HadrupS.R. IMPROVE: A feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition.Front. Immunol.202415136028110.3389/fimmu.2024.136028138633261
    [Google Scholar]
  122. RichardG. PrinciottaM.F. BridonD. MartinW.D. SteinbergG.D. De GrootA.S. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy.Expert Rev. Vaccines202221217318410.1080/14760584.2022.201245634882038
    [Google Scholar]
  123. RubinsteynA. KodyshJ. HodesI. MondetS. AksoyB.A. FinniganJ.P. BhardwajN. HammerbacherJ. Computational pipeline for the PGV-001 neoantigen vaccine trial.Front. Immunol.20188180710.3389/fimmu.2017.0180729403468
    [Google Scholar]
  124. AldousA.R. DongJ.Z. Personalized neoantigen vaccines: A new approach to cancer immunotherapy.Bioorg. Med. Chem.201826102842284910.1016/j.bmc.2017.10.02129111369
    [Google Scholar]
  125. TorringtonE. Cancer vaccinations: A personalized approach.Biotechniques202170630330510.2144/btn‑2021‑004934098738
    [Google Scholar]
  126. CarvalhoT. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial.Nat. Med.202329102379238010.1038/d41591‑023‑00072‑037773210
    [Google Scholar]
  127. CarlinoM.S. LarkinJ. LongG.V. Immune checkpoint inhibitors in melanoma.Lancet2021398103041002101410.1016/S0140‑6736(21)01206‑X34509219
    [Google Scholar]
  128. NaimiA. MohammedR.N. RajiA. ChupraditS. YumashevA.V. SuksatanW. ShalabyM.N. ThangaveluL. KamravaS. ShomaliN. SohrabiA.D. AdiliA. Noroozi-AghidehA. RazeghianE. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); The pros and cons.Cell Commun. Signal.20222014410.1186/s12964‑022‑00854‑y35392976
    [Google Scholar]
  129. SinghS. KhasbageS. KaurR.J. SidhuJ.K. BhandariB. Chimeric antigen receptor T cell.Indian J. Pharmacol.202254322623310.4103/ijp.ijp_531_2035848695
    [Google Scholar]
  130. ChungJ.B. BrudnoJ.N. BorieD. KochenderferJ.N. Chimeric antigen receptor T cell therapy for autoimmune disease.Nat. Rev. Immunol.2024241183084510.1038/s41577‑024‑01035‑338831163
    [Google Scholar]
  131. WalaJ.A. HannaG.J. Chimeric antigen receptor T-cell therapy for solid tumors.Hematol. Oncol. Clin. North Am.20233761149116810.1016/j.hoc.2023.05.00937353377
    [Google Scholar]
  132. NewcombR. JacobsonC. Chimeric antigen receptor T cells for B-cell lymphoma.Cancer J.202127210711110.1097/PPO.000000000000050933750069
    [Google Scholar]
  133. JiangC. McKayR.M. LeeS.Y. RomoC.G. BlakeleyJ.O. HaniffaM. SerraE. SteensmaM.R. LargaespadaD. LeL.Q. Cutaneous neurofibroma heterogeneity- Factors that influence tumor burden in neurofibromatosis type 1.J. Invest. Dermatol.202314381369137710.1016/j.jid.2022.12.02737318402
    [Google Scholar]
  134. GalassiC. ChanT.A. VitaleI. GalluzziL. The hallmarks of cancer immune evasion.Cancer Cell202442111825186310.1016/j.ccell.2024.09.01039393356
    [Google Scholar]
  135. JhunjhunwalaS. HammerC. DelamarreL. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion.Nat. Rev. Cancer202121529831210.1038/s41568‑021‑00339‑z33750922
    [Google Scholar]
  136. GomaseV. TagoreS. KaleK. BhiwgadeD. Oncogenomics.Curr. Drug Metab.20089319920610.2174/13892000878388471318336222
    [Google Scholar]
  137. LeeS. SchmittC.A. The dynamic nature of senescence in cancer.Nat. Cell Biol.20192119410110.1038/s41556‑018‑0249‑230602768
    [Google Scholar]
  138. ParvizpourS. PourseifM.M. RazmaraJ. RafiM.A. OmidiY. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches.Drug Discov. Today20202561034104210.1016/j.drudis.2020.03.00632205198
    [Google Scholar]
  139. PrawiningrumA.F. ParamitaR.I. PanigoroS.S. Immunoinformatics approach for epitope-based vaccine design- Key steps for breast cancer vaccine.Diagnostics20221212298110.3390/diagnostics1212298136552988
    [Google Scholar]
  140. AlmanaaT.N. Design of an epitope-based vaccine against MERS-CoV.Medicina20246010163210.3390/medicina6010163239459420
    [Google Scholar]
  141. UmitaibatinR. HarisnaA.H. JauharM.M. SyaifieP.H. ArdaA.G. NugrohoD.W. RamadhanD. MardliyatiE. ShalannandaW. AnshoriI. Immunoinformatics study- Multi-epitope-based vaccine design from SARS-CoV-2 spike glycoprotein.Vaccines202311239910.3390/vaccines1102039936851275
    [Google Scholar]
  142. MitranC.J. YanowS.K. The case for exploiting cross-species epitopes in malaria vaccine design.Front. Immunol.20201133510.3389/fimmu.2020.0033532174924
    [Google Scholar]
  143. SanamiS. Rafieian-KopaeiM. DehkordiK.A. Pazoki-ToroudiH. Azadegan-DehkordiF. MobiniG.R. AlizadehM. NezhadM.S. Ghasemi-DehnooM. BagheriN. In silico design of a multi-epitope vaccine against HPV16/18.BMC Bioinformatics202223131110.1186/s12859‑022‑04784‑x35918631
    [Google Scholar]
  144. ShakerB. AhmadS. ShenJ. KimH.W. NaD. Computational design of a multi-epitope vaccine against Porphyromonas gingivalis.Front. Immunol.20221380682510.3389/fimmu.2022.80682535250977
    [Google Scholar]
  145. MaharajL. AdelekeV.T. FatobaA.J. AdeniyiA.A. TshilwaneS.I. AdelekeM.A. MaharajR. OkpekuM. Immunoinformatics approach for multi-epitope vaccine design against P. falciparum malaria.Infect. Genet. Evol.20219210487510.1016/j.meegid.2021.10487533905890
    [Google Scholar]
  146. BemaniP. AmirghofranZ. MohammadiM. Designing a multi-epitope vaccine against blood-stage of Plasmodium falciparum by in silico approaches.J. Mol. Graph. Model.20209910764510.1016/j.jmgm.2020.10764532454399
    [Google Scholar]
  147. GebreM.S. BritoL.A. TostanoskiL.H. EdwardsD.K. CarfiA. BarouchD.H. Novel approaches for vaccine development.Cell202118461589160310.1016/j.cell.2021.02.03033740454
    [Google Scholar]
  148. LiangC.K. LeeW.J. PengL.N. MengL.C. HsiaoF.Y. ChenL.K. COVID-19 vaccines in older adults- Challenges in vaccine development and policy making.Clin. Geriatr. Med.202238360562010.1016/j.cger.2022.03.00635868676
    [Google Scholar]
  149. MontinD. SantilliV. BeniA. CostagliolaG. MartireB. MastrototaroM.F. OttavianoG. RizzoC. SgrullettiM. Miraglia Del GiudiceM. MoscheseV. Towards personalized vaccines.Front. Immunol.202415143610810.3389/fimmu.2024.143610839421749
    [Google Scholar]
  150. CañeteP.F. TuongZ.K. Embracing computational immunology.Immunol. Cell Biol.2024102866366410.1111/imcb.1281739356468
    [Google Scholar]
  151. SoleymaniS. TavassoliA. HousaindokhtM.R. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches.Comput. Biol. Med.202214010505710.1016/j.compbiomed.2021.10505734839187
    [Google Scholar]
  152. RamanaJ. MehlaK. Immunoinformatics and epitope prediction.Methods Mol. Biol.2020213115517110.1007/978‑1‑0716‑0389‑5_632162252
    [Google Scholar]
  153. TongJ.C. RenE.C. Immunoinformatics: Current trends and future directions.Drug Discov. Today20091413-1468468910.1016/j.drudis.2009.04.00119379830
    [Google Scholar]
  154. JoonS. SinglaR.K. ShenB. Vaccines and immunoinformatics for vaccine design.Adv. Exp. Med. Biol.202213689511010.1007/978‑981‑16‑8969‑7_535594022
    [Google Scholar]
  155. LimC.P. KokB.H. LimH.T. ChuahC. Abdul RahmanB. Abdul MajeedA.B. WykesM. LeowC.H. LeowC.Y. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design.Pathog. Glob. Health2023117213415110.1080/20477724.2022.207245635550001
    [Google Scholar]
  156. De GrootA.S. MoiseL. TerryF. GutierrezA.H. HindochaP. RichardG. HoftD.F. RossT.M. NoeA.R. TakahashiY. KotraiahV. SilkS.E. NielsenC.M. MinassianA.M. AshfieldR. ArditoM. DraperS.J. MartinW.D. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools.Front. Immunol.20201144210.3389/fimmu.2020.0044232318055
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665373152250625054723
Loading
/content/journals/ppl/10.2174/0109298665373152250625054723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test